Interferometric measurements of optical inhomogeneities in an alkali vapor laser active medium

A.A. Babin, O.I. Beloshitskaya, V.A. Bogachev, S.G. Garanin, G.N. Kachalin, A.V. Kopalkin, S.M. Kulikov, A.S. Safronov, F.A. Starikov, S.A. Sukharev, V.V. Feoktistov, V.A. Shotniev
Russian Federal Nuclear Center
Sarov, Russia

Abstract—The results of measurements of optical inhomogeneities in a cesium vapor laser active medium by means of a Michelson interferometer are presented.

Keywords—cesium vapor laser; wavefront aberrations; optical inhomogeneities; Michelson interferometer.

The present work is devoted to the study of optical inhomogeneities arising in various operation regimes of cesium vapor laser (CVL) [1-3]. Design features of the investigated CVL, such as pumping, flow of the gaseous medium in a closed cycle, the heating of the laser medium lead to the appearance of optical inhomogeneities in the generation area that can significantly affect the quality of the output radiation beam. A Michelson interferometer was used for measuring of the aberrations in active medium CVL in this paper. Probe laser, operating in a single mode at a wavelength $\lambda=532$ nm served as a light source to produce an interference pattern.

It is reported that «cold» active medium ($T\approx 24^\circ$C) doesn’t introduce noticeable distortion in the wavefront profile of the probe beam. When the cell is heated up to the operating temperature ($T\approx 120^\circ$C) and the flow of the active medium is turned on, the tilt appears in the wavefront of the probe beam. The magnitude of tilt aberration for a single pass through the medium is 9.97λ that corresponds to the deflection angle of 8.3×10^{-4} rad. The value of this aberration was in part compensated up to 1.58λ that corresponds to the deflection angle of 6×10^{-5} rad in the experiments. The thermal «lens» in the active medium is formed when pumping. Experimentally measured defocus aberration is 1.85λ that corresponds to a negative lens with a focal length of 13 m. The experiment was carried out with maintaining the working temperature, pump power and the flow rate in the cell corresponding to [2].

It is proposed to take into account the negative thermal lens occurring in the active medium of CVL when designing the resonator and optical scheme of the laser.

