Pulsed Electron Beam Pumped Laser Based on ZnCdSe MQW Structure With High Threshold of Catastrophic Degradation

M.M. Zverev, N.A. Gamov, E.V. Zhdanova, D.V. Peregoudov, V.B. Studionov
Moscow State Technical University of Radio Engineering, Electronics and Automations
Moscow, Russia
e-mail: mzverev@mail.ru

S.V. Gronin, I.V. Sedova, S.V. Sorokin, S.V. Ivanov
Ioffe Physical Technical Institute of RAS
St. Petersburg, Russia

Abstract—The parameters of electron beam pumped RT lasers based on ZnSe-containing MQW structures were studied. Maximum value of output pulse power as high as 82 W per laser facet has been demonstrated. Both the high value of \(P_{\text{max}} \) and the threshold of catastrophic degradation in comparison with the earlier results could be explained by the relatively low level of defect density (~10^4 cm^-2) in the laser structure.

Keywords—electron beam pumped lasers, MQW-structures, superlattice waveguide

Pulse electron beam pumped (EBP) semiconductor lasers are prospective for using in optical location, navigation and communication systems etc. It has been demonstrated that employing ZnSe-based QW structures grown by molecular beam epitaxy (MBE) as active elements of EBP lasers allowed the reduction of electron pumping energy \(U_e \) to the values less than 4 keV \((T = 300 \, \text{K})\) [1]. However, the maximum values of output pulse power \((34 \, \text{W} \text{ for single laser and above 600 W for laser array at } U_e = 27 \, \text{keV}) \) of these lasers are restricted by the catastrophic degradation of the active element [2].

This paper presents the characteristics of room temperature EBP green laser with an extended waveguide and low density of structural defects. The ZnMgSSe/ZnCdSe laser structure has been grown by MBE on GaAs (001) substrates using SemiTEq (Russia) MBE setup. The structure consisted of a lower and upper Zn_{0.9}Mg_{0.1}S_{0.15}Se_{0.85} cladding layers, alternately-strained short-period \(\text{ZnS}_{0.14}\text{Se}_{0.86}/\text{ZnSe} \) superlattice waveguide, and an active region based on six 5-nm-thick ZnCdSe QWs equally spaced in 2.13-\mu m-wide waveguide. The structure design has been elaborated using strain compensation concept [3]. Electron beam with the pulse duration time of ~0.3 microseconds and energy up to 30 keV was used for the pumping.

The laser wavelength near the threshold is of 537 nm. Maximum output pulse power \((P_{\text{max}}) \) as high as 82 W per facet (at the efficiency of ~2.5%) has been demonstrated. The upper \(P_{\text{max}} \) value was limited by the catastrophic degradation of active element. The laser parameters were the following: cavity length \(L = 1.1 \, \text{mm} \), transverse size of the pumped region \(h = 0.65 \, \text{mm} \), \(U_e = 27 \, \text{keV} \). The reducing of the cavity length \(L_{\text{cav}} \) was followed by the increase of the efficiency, the maximum value of 8.6% was measured at \(P = 30 \, \text{W}, L = 0.4 \, \text{mm}, h = 0.24 \, \text{mm}, U = 21.4 \, \text{keV}, j = 18 \, \text{A/cm}^2 \). Both the high value of \(P_{\text{max}} \) and the threshold of catastrophic degradation (in comparison with the earlier results [2]) could be explained by the relatively low level of defect density (~10^4 cm^-2) in the laser structure.

References

