High-efficiency oscillations at 1940 nm and 2070 nm in diode-pumped Tm:Lu$_2$O$_3$ ceramics lasers and their OPO frequency conversion

O.L. Antipov, A.A. Novikov, I.D. Eranov
Institute of Applied Physics of RAS, Nizhny Novgorod, Russia

D.B. Kolker
Novosibirsk State Technical University, Novosibirsk, Russia

Abstract — CW and repetitively-pulsed oscillations at 1940 nm or 2070 nm in diode-pumped Tm:Lu$_2$O$_3$ ceramics lasers were studied and optimized. Mid-IR optical parametric oscillators based on AgGaSe or ZnGeP nonlinear crystals pumped by the Tm:Lu$_2$O$_3$ laser radiation were examined.

Keywords — Laser ceramics, repetitively pulsed oscillations, optical parametric oscillators, mid-infrared band

Solid-state 2-μm lasers based on Tm- or Ho-doped crystals and glasses having many applications for surgery, material processing, lidars, gas detection, and pumping of mid-IR optical parametric oscillators (OPOs) are attracting great interest in the last years [1]. High-quality laser ceramics are investigated as a substitute for the single crystals. Recently, the sesquioxides Lu$_2$O$_3$ ceramics doped by Tm$^{3+}$ ions have demonstrated good potential for the efficient laser oscillations in CW and repetitively pulsed (mode-locking or Q-switched) regimes [2-5].

In this report, we present the resent results of investigations of the diode-pumped Tm:Lu$_2$O$_3$ ceramics lasers. The Tm:Lu$_2$O$_3$ ceramics under diode pumping at ~800 nm were found to be able to oscillate both at around 2070 nm and 1940 nm. CW and Q-switched oscillations regimes in these lasers were studied and optimized. Acousto-optical modulators were used to provide powerful repetitively-pulsed radiation at these wavelengths.

The nonlinear frequency conversion of the 2-μm radiation of the Tm:Lu$_2$O$_3$ lasers was examined. The OPOs based on AgGaSe or ZnGeP nonlinear crystals pumped by the Tm:Lu$_2$O$_3$ lasers were created. The mid-IR radiation at wavelengths of 3-5 μm was obtained.

Fig. 1. Experimental schematic of the double-side pumped Tm:Lu$_2$O$_3$ ceramics lasers. F_1 and F_2 are the fiber-coupled diodes, LT$_1$ and LT$_2$ are telescopes, M_1-M_3 are the cavity mirrors, AOM is the acousto-optical modulator.

References