Spectroscopic Characterization of Eu$^{3+}$:KY(WO$_4$)$_2$ Laser Crystal

P.A. Loiko, N.V. Kuleshov, K.V. Yumashev
Center for Optical Materials and Technologies
Belarusian National Technical University
Minsk, Belarus
kinetic@tut.by

S.N. Bagaev, S.M. Vatnik
Institute of Laser Physics
Siberian Branch of Russian Academy of Sciences
Novosibirsk, Russia

V.I. Dashkevich, V.A. Orlovich
B.I. Stepanov Institute of Physics
National Academy of Sciences of Belarus
Minsk, Belarus
v.dashkevich@dragon.bas-net.by

A.A. Pavlyuk
A.V. Nikolaev Institute of Inorganic Chemistry
Siberian Branch of Russian Academy of Sciences
Novosibirsk, Russia

Abstract—Monoclinic Eu:KY(WO$_4$)$_2$ laser crystals are grown by TSSG method; polarization-resolved absorption and stimulated-emission cross-section spectra are determined for this crystal. Spectroscopic properties are modeled within ASCI theory. Under UV excitation, Eu:KY(WO$_4$)$_2$ provides intense red emission with CIE coordinates $x = 0.670$, $y = 0.329$.

Keywords—trivalent europium; double tungstates; red emission

I. INTRODUCTION

Trivalent europium ions Eu$^{3+}$ attract attention due to intense visible emissions associated with $^{5}D_0 \rightarrow ^{7}F_J$ transitions. Different crystalline materials have been studied as potential hosts for Eu-doping, mainly for production of red phosphors. Recently, it was also shown that Eu:double tungstates can be laser-active yielding red output at 702 nm [1]. In the present paper, we aimed to study novel laser crystal, Eu:KY(WO$_4$)$_2$.

II. ABSORPTION

Monoclinic 2at.%Eu:KY(WO$_4$)$_2$ crystal was grown from the flux by TSSG method, Fig. 1. This figure represents also its absorption spectrum in the visible, as well as polarization-resolved structure of band related with $^{7}F_1 \rightarrow ^{5}D_1$ transition (that is suitable for laser-pumping). Excited-state absorption was estimated by means of modified Judd-Olfet method. It was determined that ESA from upper laser level, $^{7}D_0$, can suppress laser oscillations in $^{5}D_0 \rightarrow ^{7}F_2$ channel.

![Fig. 1. Absorption of 2at.%Eu:KY(WO$_4$)$_2$ crystal in the visible (left graph), anisotropy of absorption band related with $^{7}F_1 \rightarrow ^{5}D_1$ transition (right graph), inset represents image of as-grown crystal boule.]

III. LUMINESCENCE

Photoluminescence spectrum of Eu:KY(WO$_4$)$_2$ crystal under 532 nm excitation (for $E \parallel N_m$), as well as PL decay curve, are shown in Fig. 2. The lifetime of $^{5}D_0$ state is 430 μs. Stimulated-emission cross-sections for $^{5}D_0 \rightarrow ^{7}F_4$ transition are shown in Fig. 2. Light polarization along N_m optical indicatrix axis is most preferable from the point of access to higher σ_{abs}. Under UV excitation, Eu:KY(WO$_4$)$_2$ crystal provides intense red emission (CIE coordinates $x = 0.670$, $y = 0.329$). Dominant wavelength in the PL spectrum is 613 nm with 98% purity.

![Fig. 2. PL spectrum and decay curve of Eu:KY(WO$_4$)$_2$ crystal (left graph), stimulated-emission cross-sections for $^{5}D_0 \rightarrow ^{7}F_4$ transition (right graph).]

IV. CONCLUSIONS

Polarization-resolved study of absorption and luminescence of novel laser crystal, Eu:KY(WO$_4$)$_2$, is performed for the first time, to our knowledge. Eu:KY(WO$_4$)$_2$ looks promising for CW visible (702.8 nm) lasers, as well as red phosphors.

ACKNOWLEDGMENT

This work was performed within joint project of BRFBR and SB of RAS (No. F12SO-002).

REFERENCES