Investigations of room temperature, diode-side-pumped Yb:LuAG slab laser

M. Kaskow*, L. Gorajek, L. Galecki, M. Piasecki, J. Kwiatkowski, W. Zendzian, K. Kopczynski and J. K. Jabczynski
Institute of Optoelectronics
Military University of Technology
00-908 Warsaw, Poland
*e-mail: mateusz.kaskow@wat.edu.pl

H. Jelinkova, J. Sulc, M. Nemec
Faculty of Nuclear Physics and Physical Electronics
Czech Technical University
Brehova 7, 11-519 Prague, Czech Republic

Abstract—High gain, side pumped by fast axis collimated laser diode stack, Yb:LuAG slab laser was examined. 87 mJ of energy with 20.9 % slope, small signal gain of 6.1 was demonstrated in room temperature.

Keywords—lasers; solid state lasers; ytterbium; diode pumped

An increased interest to Yb:LuAG due to its excellent thermo-optical and laser properties has been observed for last few years [1]. The aim of this work was to examine its feasibility as a gain medium for 0.1 J-class energy, room-temperature oscillators.

The 15 at. % Yb:LuAG slab of 3x3x12 mm3 dimensions was side-pumped by 2D fast-axis-collimated LD stack, delivering up to 0.62 J in 0.8-ms duration pump pulse at 970 nm wavelength. Pump beam was tightly focused in y-axis by means of cylindrical lens to 0.4-mm width, delivering 13 J/cm2 pump density onto entrance sidewall of Yb:LuAG slab (see Fig. 1).

The best results for 150-mm length cavity were demonstrated for OC transmission of 86%. We have achieved for maximal pump energy of 0.62 J up to 87 mJ of output energy with 20.8% of slope efficiency (see Fig. 2).

Due to aperture reabsorption losses M^2 parameter in y-axis was < 1.5, whereas in x-direction was above 3. We have observed significantly higher gain comparing to the similar Yb:YAG slab laser [2] measured in the same set up. The estimated net roundtrip gain is 6.1 corresponding to 2.54 cm$^{-1}$.

Fig. 1. Scheme of diode-side-pumped Yb:LuAG laser.

Fig. 2. Energetic characteristic of Yb:LuAG laser for different output transmissions.

REFERENCES

The work was supported by Polish National Science Center under projects NCN 2012/06/M/ST/00425, NCN 2012/05/B/ST/00088 and co-financed from European Union resources under National Strategic Reference Framework (Innovative Economy Program No. WND-POIG.01.01.00-14-095/09)