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In memoriam of
Alexander Yakovlevich Kazakov

1954–2020

Alexander Ya. Kazakov—a scientist of high international reputation—unexpectedly passed away
on December 23, 2020, aged 66. Since 2015 he was a member of the Organizing Committee of the
annual International conference ‘Days on Diffraction’ and a co-editor of its Proceedings. A.Ya. Kaza-
kov, D.Sc., was a department head at the St. Petersburg State University of Industrial Technologies
and Design and a Professor at the St. Petersburg State University of Aerospace Instrumentation.

He was a versatile researcher, whose contribution to various areas of mathematics and theoretical
physics was significant, in particular, to plasma physics, optical signal processing, studies of fields
near non-stationary caustics and wave propagation near boundaries with inflection points. His level
of expertise was invaluable in discussions, reviewing countless publications and theses— it would be
just a slight exaggeration to say that he was an opponent and referee everywhere. Special attention
should be paid to his research concerning the Heun equation—a memorial session on this topic is
included in the programme of this conference.

A.Ya. Kazakov will be remembered as a good friend, a gentleman with a keen sense of humor,
a scientist with broad erudition and lively curiosity. It was a unique privilege to be colleagues and
friends of such a wonderful person as Alexander Yakovlevich. Be remembered forever!
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Wave propagation in and by thin plates and waveguides containing
inhomogeneities

I. David Abrahams
Isaac Newton Institute, University of Cambridge, United Kingdom
e-mail: i.d.abrahams@newton.ac.uk

This talk is motivated by wave propagation in a duct containing an inhomogeneity or flexural wave
scattering by a crack in a thin elastic plate. The former problem can be cast into a matrix Wiener–
Hopf equation of a particular class, and for illustration we present two other model problems which
give rise to equations of this same class. In the general case, we have not been able to obtain an exact
factorization of the original Wiener–Hopf kernel, so instead reduce the equation, via pole removal,
to an infinite linear algebraic system of equations. This generically has very slow convergence, but
here we offer a novel approach to obtaining an accurate and very rapid solution via input of direct
physical information on corner or other singular behaviour.

Vortex-generation in the system of multihelical and twisted anisotropic
optical fibers

Alexeyev C.N., Barshak E.V., Vikulin D.V., Lapin B.P., Yavorsky M.A.
V. I. Vernadsky Crimean Federal University, Pr. Vernadsky 4, Simferopol, Russia, 295007
e-mail: lena.barshak@gmail.com

To date, optical vortices (OVs) [1] carring orbital angular momentum (OAM) [2] due to their
unique properties are widely used in different fields. In particular, one can example tweezers [3],
information technologies [4], quantum optics [5], etc. The range of OVs application requires efficient
methods of their generation. It is often convenient to use the methods of excitation of OVs directly
in waveguides, since such a fiber vortex can be further coupled to another fiber more efficiently than
a one created in free space.

Previous studies of the light propagation in twisted anisotropic and multihelical optical fibers
have shown that they can be used as a medium for the transmission and controlling of OVs [6, 7].
This is the reason of their great potential in the field of information, communications and quantum
technologies in which OVs are associated as carriers of information.

Since twisted anisotropic and multihelical fibers are happened to be possessed of the properties
that make them friendly medium for the vortex-used technologies, we assume that the systems
formed by these types of fibers may also have promising capabilities. In this work we study the
light propagation in the system of connected one after the other multihelical and twisted anisotropic
optical fibers. We demonstrate the generation of linearly polarised OV with nonzero OAM from an
input EH-mode in such a system. At that, the even EH-mode is transformed to the x-polarised OV,
and from the odd EH-mode the y-polarised OV is generated. We show the corresponding evolution
of OAM and spin angular momentum of an input field. Parameters of twisted anisotropic and
multihelical fibers are obtained for a numerical example of the established field transformation in the
system.

This work was financially supported by the Russian Foundation for Basic Research (Project
No. 20-47-910001).
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Asymptotic solutions of a system of gas dynamics with low viscosity
that describe smoothed discontinuities

Allilueva A.I.
Institute for Problems in Mechanivs of the Russian Academy of Sciences, Moscow, Russian Federation
e-mail: esina anna@list.ru

We construct formal asymptotic solutions describing smoothed shock waves and tangential and
weak discontinuities for the nonlinear system of gas dynamics of a fluid with small viscosity. We
show that the profile of the smoothed shock wave is described by the ordinary differential equation
while for th tengential discontinuity the profile is described by the evolutionary system of equations
on a moving surface. The results are published in [1].
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Efficient asymptotic solution for linearized one-dimensional run-up
problem with dispersion

Anikin A.Yu.
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Pr. Vernadskogo,
101-1, Moscow, Russia
e-mail: anikin83@indox.ru

We consider a Cauchy problem with localized initial data for a one-dimensional pseudo-differential
equation describing a run-up on a shore of water waves with dispersion. We present asymptotic
formulas for the solution both before and after the moment in time, when the wavefront collides with
the shore. The formulas are efficient from the practical viewpoint, and appeal only to trajectories of
the corresponding Hamiltonian system. In the regime before the collision, the solution is described
with help of Airy function. After the collision, the solution is a sum of incoming and reflected waves,
where the former is given in terms of WKB asymptotics, and the latter in terms of Airy function.
In a neighborhood of the shore, the sum of two waves admits an asymptotics in terms of Bessel
functions.

The work is supported by the Russian Science Foundation (Project No. 16-11-10282).

Parametrization of phase space of Painlevé V equation

Babich M.V., Kalinin K.M.
PDMI, SPbU, Russia
e-mail: mathideas74@gmail.com

All Painlevé equations can be considered as Hamiltonian systems. Their phase spaces are some
algebraic symplectic manifolds. We consider the simplest Painlevé equation corresponding of the
isomonodromic deformation of the differential system with irregular singularity. The presented theory
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explains the presence of the symplectic structure and gives a method of the canonical parametrization
of the phase space.

Töplitz matrices in the BC-method

M.I. Belishev, N.A. Karazeeva
St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, Russia
e-mail: belishev@pdmi.ras.ru, karazeev@pdmi.ras.ru

The dynamical system of the form

utt −∆u− 〈∇ ln ρ,∇u〉 = 0 in R2
+ × (0, T ),

u|t=0 = ut|t=0 = 0 in R2
+,

uy|y=0 = f for 0 6 t 6 T,

is considered in R2
+ := {(x, y) ∈ R2 | y > 0}, where ρ = ρ(x, y) > 0 is smooth, f = f(x, t) is a

Neumann boundary control, u = uf (x, y, t) is a solution (wave). The control operator of the system
acts from L2(R× [0, T ]) to L2(R2

+) by f WT

7→ uf (·, ·, T ). The response operator acts in L2(R× [0, T ])

by f RT7→ uf |y=0. The connecting operator CT = (W T )∗W T acts in L2(R× [0, T ]) and is expressed via
R2T in a simple explicit form well known in the Boundary Control Method.

Let R2T
σ be the response operator given on controls supported in σ × [0, T ], where σ ⊂ R is a

finite interval. The inverse problem is to determine ρ
∣∣
x∈σ, 06y6T from the given R2T

σ . To solve it
numerically, one needs to invert the Gram matrix Gij = (CTfi, fj)L2(R×[0,T ]) for a rich enough set of
controls f1, . . . , fN (with N ∼ 100). This matrix is positive but strongly ill posed.

In the talk, we propose a way to reduce the inversion of Gij to inversion of a matrix G̃ij, which is
simply determined by Gij and has a block-Töplitz structure. This significantly reduces the amount
of computation.

Some results on Electric Impedance Tomography of surfaces

Belishev M.I., Korikov D.V.
St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, Russia
e-mail: belishev@pdmi.ras.ru, thecakeisalie@list.ru

Let (M, g) be a smooth compact two-dimensional Riemannian manifold (surface) with a smooth
metric tensor g and smooth boundary Γ. Its DN-map Λ : C∞(Γ) → C∞(Γ) is associated with the
(forward) elliptic problem ∆gu = 0 in M \ Γ, u = f on Γ, and acts by Λf := ∂νu

f on Γ, where
∆g is the Beltrami–Laplace operator, u = uf (x) the solution, ν the outward normal to Γ. The
corresponding inverse problem (EIT-problem) is to determine the surface (M, g) from its DN-map Λ.

An algebraic version of the Boundary Control method (Belishev, 2003) is developed:
1) the version is extended to the case of nonorientable surfaces and a criterion of orientability (in

terms of Λ) is obtained;
2) a characteristic description of Λ that provides the necessary and sufficient conditions for

solvability of the inverse problem for orientable surfaces, is given;
3) a procedure that determines surfaces with (unknown) internal holes , is proposed.
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Rayleigh–Bloch waves above the first cut-off and higher-order resonant
loads on straight-line cylinder arrays

Bennetts L.G.
School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
e-mail: luke.bennetts@adelaide.edu.au
Peter M.A.
Institute of Mathematics, University of Augsburg, 86135 Augsburg, Germany
e-mail: malte.peter@math.uni-augsburg.de

Linear theory predicts incident waves impose resonant loads on regularly spaced, straight-line
arrays of surface piercing circular cylinders [1]. The lowest-order resonance has been shown to be
caused by resonant excitation of so-called Rayleigh–Bloch waves (array bound modes) [2]. We use a
transfer-operator method to investigate Rayleigh–Bloch waves above the first cut-off (i.e. above the
lowest-order resonance), and show the connection with higher-order resonances.

Fig. 1: (a) Normalized load at middle of M -cylinder array vs. wavenumber k, for cylinder ra-
dius a = 0.2 and centre-to-centre spacing W = 1, showing primary and secondary resonances
around k / π = 0.88 and 1.88, respectively. (b) Transfer-operator eigenvalues, µ, in complex
plane for k / π = 0.88, showing continuous spectrum (closely spaced dots) and discrete spec-
trum (connected with Rayleigh–Bloch waves). (c) Eigenvalues above cut-off at k / π = 1.38,
where discrete spectrum has four elements and moved off unit circle. (d) Eigenvalues at
k / π = 1.88.
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The brilliant Raman stumbles

Michael Berry
H H Wills Physics Laboratory, University of Bristol, Europe
e-mail: asymptotico@bristol.ac.uk

Raman argued that in a continuously varying layered medium, such as air above a hot road, a ray
that bends so as to become horizontal must remain so, implying that the reflection familiar in the



16 DAYS on DIFFRACTION 2021

mirage cannot be explained by geometrical optics. This is a mistake (repeatedly made and corrected
since 1799), as standard ray curvature arguments demonstrate. But a simple limiting process, in
which the smoothly varying refractive index is approximated by a stack of thin discrete layers, is not
quite straightforward because it involves a curious singularity, related to the level ray envisaged by
Raman. In contrast to individual rays, families of rays possess caustic (focal) singularities. These can
be calculated explicitly for two families of rays that are relevant to the mirage. Only exceptionally
does the locus of reflection (lowest points on the rays) coincide with the caustics. Caustics correspond
to the ‘vanishing line’, representing the limiting height of objects that can be seen by reflection. For
these two families, the waves that decorating mirage caustics are described by the universal Airy
functions Ai and Bi, and can be calculated exactly.

A Python implementation of the general Heun function using elementary
integral series

Birkandan T.
Istanbul Technical University, Department of Physics, 34469 Istanbul, Turkey
e-mail: birkandant@itu.edu.tr
Giscard P.-L.
Université Littoral Côte d’Opale, UR 2597, LMPA, F-62100 Calais, France
e-mail: giscard@univ-littoral.fr
Tamar A.
Independent Researcher, Delhi, India
e-mail: adityatamar@gmail.com

The Heun equation is known since the end of the 19th century [1, 2] but its importance in
physics was recognised only recently, especially after the early 2000s when Heun functions started
to be used as solutions of many physics problems [3]. As a consequence, the commercial computer
algebra systems Maple and Mathematica have produced in-built functions to evaluate Heun-type
functions, while freely available codes working on Matlab/GNU Octave are now also available.
These codes enable the numerical evaluation of general and singly confluent Heun functions [4, 5]
and all ultimately rely on series expansions and analytic continuation.

Using the Python language and its common modules NumPy and SciPy for numerical analysis,
we present a computational implementation of the general Heun function which relies instead on the
unconditionally convergent elementary integral series representation of Heun functions presented in
[6]. The code can not only be used as a standalone Python program, but it can also be used in a
Python-based system such as SageMath in order to serve as the numerical calculator of symbolic
results such as those produced using the package from [7]. We will show that the code evaluates a
general Heun function successfully in any region that does not cross over a singularity, is everywhere
convergent up to infinity, is faster than existing alternatives and can easily be extended to singly, bi-,
doubly- and tri-confluent Heun functions. Its current limitation, namely crossing over singularities,
will be discussed as well and prospects for overcoming it will be presented.
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Two-dimensional stationary massless Dirac equation:
singularities of phases of semi-classical asymptotics

Bogaevsky I.A.
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Leninskie Gory, Moscow
GSP-1, 119991, Russia; Scientific Research Institute for System Analysis;
e-mail: ibogaevsk@gmail.com

Quasiparticles in graphene are described by the two-dimensional massless Dirac equation. We
consider its stationary solution with a localized right side in an autonomic non-homogeneous electro-
magnetic field. The phase of its semi-classical asymptotics defines a singular Lagrangian submanifold.
In the case of a generic electromagnetic field we present local normal forms of the projection of this
Lagrangian submanifold onto the configuration plane.

Resolvents of elliptic operators on quantum graphs with small edges:
holomorphy and Taylor series

Borisov D.I.
Institute of Mathematics, Ufa Federal Research Center, RAS, Chernyshevsky str. 112, Ufa, 450008,
Russia
e-mail: borisovdi@yandex.ru

We consider an arbitrary metric graph, to which we glue a graph with edges of lengths proportional
to ε, where ε is a small positive parameter. On such graph, we consider a general self-adjoint
second order differential operator Hε with varying coefficients subject to general vertex conditions;
all coefficients in differential expression and vertex conditions are supposed to be holomorphic in ε.
We introduce a special operator on a special graph obtained by rescaling the aforementioned small
edges and assume that it has no embedded eigenvalues at the threshold of its essential spectrum.
Under such assumption, we show that that certain parts of the resolvent of Hε are holomorphic
in ε and we show how to find effectively all coefficients in their Taylor series. This allows us to
represent the resolvent of Hε by an uniformly converging Taylor-like series and its partial sums can
be used for approximating the resolvent up to an arbitrary power of Hε. In particular, the zero-order
approximation reproduces recent convergence results by G. Berkolaiko, Yu. Latushkin, S. Sukhtaiev
[1] and by C. Cacciapuoti [2], but we additionally show that next-to-leading terms in Hε-expansions
of the coefficients in the differential expression and vertex conditions can contribute to the limiting
operator producing the Robin part at the vertices, to which small edges are incident. We also discuss
possible generalizations of our model including both the cases of a more general geometry of the
small parts of the graph and a non-holomorphic Hε-dependence of the coefficients in the differential
expression and vertex conditions.

The research is supported by the Russian Science Foundation (grant No. 20-11-19995).
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Optimal control with phase constraints
for a quasilinear endovenous laser ablation model

Chebotarev A.Yu.1, Kovtanyuk A.E.2, Degtyareva A.V.2, Mesenev P.R.2
1Institute for Applied Mathematics, FEB RAS, Vladivostok, Russia,
2Far Eastern Federal University, Vladivostok, Russia
e-mail: chebotarev.ayu@dvfu.ru

The optimal control problem for quasilinear equations of radiation-conductive heat transfer simu-
lating the process of endovenous laser ablation in the bounded domain G with the boundary Γ = ∂G
consists in minimizing the functional

J(θ) =

∫ T

0

(∫
G1

θ(x, t)dx− θd(t)
)2

dt→ inf (1)

on the solutions of the initial-boundary value problem:

σ∂θ/∂t− div(k(θ)∇θ)− µaϕ = u1χ, −div(α∇ϕ) + µaϕ = u2χ, x ∈ G, 0 < t < T, (2)
θ = 0, 2α∂nϕ+ ϕ = 0 on Γ, θ|t=0 = θ0. (3)

Moreover, the following restrictions take into account:

u1,2 ≥ 0, u1 + u2 ≤ P, θ|G2 ≤ θ∗. (4)

Here, θ is the difference between the temperature in G and the constant boundary temperature,
ϕ is the intensity of radiation averaged over all directions, α is the photon diffusion coefficient, µa
is the absorption coefficient, k(θ) is the coefficient of thermal conductivity, σ(x) is the product of
the specific heat capacity and the volume density, u1 describes the power of the source spending on
heating the fiber tip, u2 is the power of the source spending on radiation, P is the maximum power
of the source, χ is the characteristic function of the part of the medium in which the fiber tip is
located divided by the volume of the fiber tip. In the subdomain G1, it is required to provide a
given temperature profile θd, while the temperature in the subdomain G2 cannot exceed the critical
value θ∗.

Estimates for the solution of the controlled system (2), (3) are obtained. On the basis of these
estimates the solvability of the control problem is proved. An algorithm for solving the optimal control
problem is proposed, based on the approximation of the phase constraint in G2 by a functional with
a penalty. The efficiency of the algorithm is illustrated by numerical examples.

This work was supported by the Ministry of Education and Science of the Russian Federation
(grant no. 075-15-2019-1878).

Acoustic cloaking using thin resonant ligaments

Lucas Chesnel1, Jérémy Heleine1, Sergei A. Nazarov2

1INRIA/CMAP, École Polytechnique, Route de Saclay, 91128 Palaiseau, France;
2IPME, RAS, V.O., Bolshoj pr., 61, St. Petersburg, 199178, Russia;
e-mail: lucas.chesnel@inria.fr, jeremy.heleine@inria.fr, srgnazarov@yahoo.co.uk

In this work, we consider the propagation of acoustic waves in a 2D waveguide Ω which is un-
bounded in the (Ox) direction and which contains an obstacle. This leads us to study the problem

∆u+ λ2u = 0 in Ω
∂νu = 0 on ∂Ω

(1)

where ∂ν corresponds to the derivative along the exterior normal. We fix the wavenumber λ ∈ (0;π)
so that only the modes w±(x, y) = e±iλx can propagate. We are interested in the solution to (1)
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generated by the incoming wave w+ coming from −∞. It admits the decomposition

u(x, y) =
w+(x, y) +Rw−(x, y) + . . . for x→ −∞

T w+(x, y) + . . . for x→ +∞
(2)

where the ellipsis stand for evanescent terms and R, T ∈ C are reflection and transmission coefficients.
The goal of this presentation is to explain how to cloak the obstacle by adding thin ligaments

of width ε� 1 as depicted in Figure 1-middle. More precisely, when adding ligaments, we create a
new geometry Ωε and we denote by Rε, T ε the corresponding scattering coefficients. Our objective
is to show how one can place the ligaments and tune their lengths to get, when ε tends to zero,

Rε = o(1), T ε = 1 + o(1)

as if, approximately, there were no obstacle. The difficulty in this task is that in general the depen-
dence of the scattering coefficients with respect to the geometry is implicit and not linear. However,
working with these thin ligaments which are almost 1D objects, we can get relatively explicit formula.
The approach is based on asymptotic analysis for thin ligaments. A key ingredient in the approach
is that we work around the resonance lengths of the ligaments. This allows us to get effects of order
one with geometrical perturbations of size ε. This work will be published in the article [1].

The work of S.A. Nazarov has been supported by the RNF, project 17-11-01003.

Fig. 1: Top: waveguide with an obstacle. Middle: the lengths of the three ligaments have been
tuned to cloak the obstacle. Bottom: reference situation. A bit far from the obstacle, the fields
in the waveguide with the cloaking device and in the reference situation are approximately
the same.
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Design of a mode converter using thin resonant slits
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In this work, we are interested in the propagation of acoustic waves in 2D in a guide Ω infinite
in the direction (Ox), that we assume to be governed by the problem:{

∆u+ ω2u = 0, in Ω,
∂nu = 0, on ∂Ω,

(1)

where n is the unit outward normal to Ω. We choose the wave number ω so that only two propagative
modes w±1 and w±2 exist. The study of the diffraction of the waves w+

1 and w+
2 leads to consider the
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matrices R = (rjk)1≤j,k≤2 and T = (tjk)1≤j,k≤2, where rjk (respectively tjk) is the coefficient of
reflection (respectively transmission) of the mode k for the wave w+

j . Our goal is to design a mode
converter, that is to find a geometry such that the mode 1 is converted into the mode 2 and conversely,
with the energy completely transmitted. In general, it is a difficult problem because the dependence
of the diffraction coefficients with respect to the geometry is non linear and non explicit.

In our study, we choose to work with domains Ω made of two half-guides connected by thin
ligaments of width ε � 1 (see Figure 1). This can seem paradoxical because in general, due to the
features of the geometry, energy is almost completely reflected and we have, when ε goes to zero:

Rε =

(
1 0
0 1

)
+ o(1) and T ε =

(
0 0
0 0

)
+ o(1).

However, by carefully tuning the position of the ligaments and their lengths around the resonant
lengths, we were able to show that we can obtain, when ε goes to zero:

Rε =

(
0 0
0 0

)
+ o(1) and T ε =

(
0 1
1 0

)
+ o(1),

that is the desired effect of mode conversion. The method lies on an asymptotic analysis with respect
to the width of the ligaments which allows us to explicit the dependence of Rε and T ε with respect
to the geometric parameters. In particular, working around the resonant lengths allows us to obtain
an effect of order 1 with a ligament of width ε. We also crucially use the symmetry with respect to
the (Oy) axis. Figure 1 shows one of the geometries obtained by this method. More details can be
found in the article [1].

The work of S.A. Nazarov has been supported by the RNF, project 17-11-01003.

Fig. 1: Numerical illustration of the mode conversion: the geometry has been designed to
allow one to convert the first mode into the second one (left), and the second mode into the
first one (right).
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Exact asymptotics for the exit problem at infinity for diffusion processes
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We construct the exact asymptotic solution (nonoscillating WKB-type solution) to the problem

∂u

∂t
= h

a(x)

2

∂2u

∂x2
+ b(x)

∂u

∂x
, x ∈ (0,∞), t > 0, u

∣∣
t=0

= 0, u
∣∣
x=0

= 0, u
∣∣
x→∞ = µ(t), (1)
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where u = u(x, t, h), a(x), b(x) > 0, a(x), b(x) ∈ C∞ with a described asymptotic behavior as x→∞,
µ(t) ∈ C∞, h→ +0 is a small parameter, and

∫∞
0
b−1(x) dx converges.

The solution u of problem (1) is probabilistic in nature [1].
To solve (1), we consider the fundamental solution G to the above initial boundary value problem:

G = 2(2πh)−1/2V̂ (x, t, τ + a+, h) exp{−ζ2/h}
∣∣
ζ=0

,

where V (x, t, τ + y, h) is the symbol of initial boundary value problem which solves the problem

∂V

∂t
= h

a(x)

2

∂2V

∂x2
+ b(x)

∂V

∂x
, V

∣∣
t=0

= 0, V
∣∣
x=0

= 0, V
∣∣
x→∞ = exp

{
−(t− τ − y)2

2h

}
and a+ is the creation operator [2, 3]. We justify the asymptotic solutions constructed here.

The study of V.G. Danilov was implemented in the framework of the Basic Research Program at
the National Research University Higher School of Economics (HSE University) in 2021.
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On the analogue of Kirchhoff’s formula for the wave equation
in a two-dimensional domain

M.N. Demchenko
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of
Sciences, Fontanka 27, Saint-Petersburg
e-mail: demchenko@pdmi.ras.ru

Let u(x, t) be a solution to the wave equation ∂2
t u−∆u = 0 in Ω×R, Ω being a bounded domain

in R2. We discuss the problem of determining u from the values of u, ∂νu on the space-time boundary
∂Ω × R (ν is the outward unit normal to ∂Ω). In the three-dimensional case, the simplest way to
solve the problem in consideration is to apply Kirchhoff’s formula. The latter is derived by applying
Green’s formula to the solution u and the fundamental solution of the wave equation. However, in
the two-dimensional problem, which is considered here, this approach requires Cauchy data on an
unbounded time interval. The reason is that the corresponding fundamental solution (unlike that
in the three-dimensional case) is non-zero for arbitrarily large t for any fixed x. Here we provide
an algorithm of determining the solution u from data on ∂Ω × I, where I is some bounded time
interval, in the two-dimensional case. To obtain this algorithm, we replace the fundamental solution
in Kirchhoff’s formula with a certain function, which vanishes for large t.

The research was supported by the RFBR grant 20-01-00627-a.
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The problem on the rotation of a two-phase drop

Denisova I.V.
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 61 Bol’shoy prosp.,
V.O., St. Petersburg, 199178, Russia
e-mail: denisovairinavlad@gmail.com
Solonnikov V. A.
St. Petersburg Department of Steklov Math. Institute, Russian Academy of Sciences, 27 Fontanka,
St. Petersburg, 191023, Russia
e-mail: solonnik @pdmi.ras.ru

The stability of an axially symmetric liquid drop F consisting of two viscous incompressible
capillary fluids F± and rotating about the x3-axis with the angular velocity ω is considered. We
study the free boundary problem for the perturbation of velocity vector field v = (v1, v2, v3) and
pressure function p of the two-phase fluid written in the coordinate system rotating with ω:

ρ±(vt + (v · ∇)v + 2ω(e3 × v))− µ±∇2v +∇p = 0, ∇ · v = 0 in Ωt ≡ Ω+
t ∪ Ω−t , t > 0,

v(x, 0) = v0(x), x ∈ Ω0 ≡ Ω+
0 ∪ Ω−0 ∈ R3,

T(v, p)n =
(
σ−H−(x) + ρ−

ω2

2
|x′|2 + p−0

)
n, x ∈ Γ−t ,

[v]|Γ+
t
≡ lim

x→x0∈Γ+
t ,

x∈Ω+
t

v(x, t)− lim
x→x0∈Γ+

t ,

x∈Ω−
t

v(x, t) = 0, Vn = v · n, x ∈ Γt ≡ Γ−t ∪ Γ+
t ,

[T(v, p)n]|Γ+
t

=
(
σ+H+(x) + [ρ±]|Γ+

t

ω2

2
|x′|2 + p+

0

)
n, x ∈ Γ+

t , x′ = (x1, x2, 0),

where Vn is boundary speed of the free outside surface Γ−t and the interface Γ+
t , n is the outward nor-

mal to Γt, ν±, ρ± are the step-functions of viscosity and density, respectively, vo is the initial velocity
distribution, T is the stress tensor with the elements Tik = −δki p + µ±(∂vi/∂xk + ∂vk/∂xi), i, k =
1, 2, 3; µ± = ν±ρ±, δki is the Kronecker symbol, σ± ≥ 0 are surface tension coefficients; p±0 are given
constants on Γ±t , H± are doubled mean curvatures of these surfaces, e3 is the unit vector in the
direction of x3. The dot means the Cartesian scalar product, “ × ” does the vector one. We suppose
to comply with the conservation laws of volume: |Ωt| = |F|, |Ω+

t | = |F+|, of the barycenter of both
fluids, momentum and angular momentum, F , F+ being axially symmetric equilibrium figures.

We obtain the global unique solvability of the problem provided that the initial data and the
rotation speed are small, as well as the proximity of unknown surfaces to certain axially symmetric
equilibrium figures. It is proved that if the second variation of energy functional is positive, the
perturbation of an axially symmetric equilibrium figure tends to zero exponentially as t → ∞, the
motion of the drop going over to the rotation of the liquid mass as a rigid body. We develop the
technique used by V.A. Solonnikov to prove the stability of a solution near the slow rotation of an
axisymmetric equilibrium figure for a single fluid of finite volume [1]. Some preliminary considerations
for the problem were given in [2]. In particular, the existence of axisymmetric equilibrium figures
close to balls was demonstrated there.
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From Heun class equations to Painlevé equations

Dereziński, J., Latosiński, A.
Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Pas-
teura 5, 02-093, Warszawa, Poland
e-mail: jan.derezinski@fuw.edu.pl, adam.latosinski@fuw.edu.pl

Ishkhanyan, A.
Russian-Armenian University, Yerevan, 0051 Armenia;
Institute for Physical Research of NAS of Armenia, 0203 Ashtarak, Armenia.
e-mail: aishkhanyan@gmail.com

In the first part of our paper we discuss linear 2nd order differential equations in the complex
domain, especially Heun class equations, that is, the Heun equation and its confluent cases. The
second part of our paper is devoted to Painlevé I–VI equations. Our philosophy is to treat these
families of equations in a unified way. This philosophy works especially well for Heun class equations.
We discuss its classification into 5 supertypes, subdivided into 10 types (not counting trivial cases).
We also introduce in a unified way deformed Heun class equations, which contain an additional
nonlogarithmic singularity. We show that there is a direct relationship between deformed Heun class
equations and all Painlevé equations. In particular, Painlevé equations can be also divided into 5
supertypes, and subdivided into 10 types. This relationship is not so easy to describe in a completely
unified way, because the choice of the “time variable” may depend on the type. We describe unified
treatments for several possible “time variables”.
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arXiv : 2007.05698 [math.CA].

Constructive uniform semiclassical asymptotics of polynomials
defined by second-order recurrent equations

Dobrokhotov S.Yu.
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
e-mail: s.dobrokhotov@gmail.com

A lot of orthogonal polynomials un(z) (n is the number of a polynomial, z is its argument), for
example, Chebyshev, Hermite, Laguerre, Legendre polynomials, etc, are determined by second-order
recurrence relations

a(z, n)un+1(z) + b(z, n)un(z) + c(z, n)un−1(z), n = 0, 1, ..., N, ...., z ∈ R

with initial conditions in the form of polynomials u0(z) = v0(z), u1(z) = v1(z). Here v0(z), v1(z) are
polynomials of z and a(z, n), b(z, n), c(z, n) are polynomials of z and n.

We develop an uniform approach to describe the asymptotics of solutions of equations of this
type as n → ∞ that are uniform in the variable z. The idea of the method lies in the transition
from a discrete equation to a continuous pseudodifferential one and application of the semiclassical
approximation. A feature of the problem under consideration is that the symbol of the corresponding
pseudodifferential operator is complex-valued. We suggest a method that reduces the problem to two
equations with real-valued symbols and constructs the Plancherel–Rotach-type uniform asymptotics
in the form of Airy or Bessel functions of a complex argument.

The talk is based on the joint work with A.V. Tsvetkova.
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Bessel functions and semiclassical asymptotics

Dobrokhotov S.Yu., Minenkov D.S., Nazaikinskii V.E.
Ishlinsky Institute for Problems in Mechanics RAS, 101-1 Vernadsky Ave., 119526 Moscow, Russia
e-mail: s.dobrokhotov@gmail.com, minenkov.ds@gmail.com, nazaikinskii@yandex.ru

The construction and application of the Maslov canonical operator are illustrated by the example
of Bessel functions. Representations of these functions for real values of the argument via the
canonical operator are derived, and well-known asymptotics are obtained as a corollary.

The study was supported by the Government program (contract no. AAAA-A20-120011690131-7).

Homogenization of nonstationary periodic Maxwell system
in the case of constant permeability

Dorodnyi, M.A., Suslina, T.A.
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia,
e-mail: mdorodni@yandex.ru, t.suslina@spbu.ru

We study the Cauchy problem for the nonstationary Maxwell system in the case where the
magnetic permeability is given by a constant positive matrix µ, and the dielectric permittivity is
given by the rapidly oscillating (as ε→ 0) matrix ηε(x) := η(x/ε):

∂tEε(x, t) = (ηε(x))−1 curlHε(x, t), div ηε(x)Eε(x, t) = 0, x ∈ R3, t ∈ R;

∂tHε(x, t) = −µ−1 curlEε(x, t), div µHε(x, t) = 0, x ∈ R3, t ∈ R;

Eε(x, 0) = (Pεf)(x), Hε(x, 0) = φ(x), x ∈ R3.

Here a symmetric matrix-valued function η(x) is periodic with respect to some lattice, positive
definite, and bounded. Next, φ ∈ L2(R3;C3), div µφ(x) = 0, f ∈ L2(R3;C3) and Pε is the orthogonal
projection of the space L2(R3;C3; ηε) onto the subspace {u ∈ L2(R3;C3) : div ηε(x)u(x) = 0}.

It is well known that the electric and magnetic fields Eε and Hε weakly converge to the fields
E0 and H0, which are the solutions of the homogenized Maxwell system with a constant effective
dielectric permittivity η0.

Denote by Dε = ηεEε, D0 = η0E0, Bε = µHε, B0 = µH0 the corresponding electric displacement
vectors and the magnetic inductions. Our main results (see [1, 2]) are as follows.

• Let φ, f ∈ H2(R3;C3), and div µφ = 0. Then for t ∈ R and ε > 0 we have

‖Hε(·, t)−H0(·, t)‖L2(R3) 6 C(1 + |t|)ε(‖φ‖H2(R3) + ‖f‖H2(R3)),

‖Bε(·, t)−B0(·, t)‖L2(R3) 6 C(1 + |t|)ε(‖φ‖H2(R3) + ‖f‖H2(R3)).

• Let f ∈ H3(R3;C3), and φ = 0. Then for t ∈ R and ε > 0 we have

‖(Eε(·, t)− Eε(·, 0))− (1 + Σε)(E0(·, t)− E0(·, 0))‖L2(R3) 6 C|t|(1 + |t|)ε‖f‖H3(R3),

‖(Dε(·, t)−Dε(·, 0))− (1 + Σ̃ε)(D0(·, t)−D0(·, 0))‖L2(R3) 6 C|t|(1 + |t|)ε‖f‖H3(R3).

Here Σε and Σ̃ε are the so-called correctors of zero order. These results are sharp with respect to the
norm type as well as with respect to the dependence on t. However, these estimates can be improved
under some additional assumptions.

• Let φ, f ∈ H3/2(R3;C3), and div µφ = 0. Then for t ∈ R and ε > 0 we have

‖Hε(·, t)−H0(·, t)‖L2(R3) 6 C(1 + |t|)1/2ε(‖φ‖H3/2(R3) + ‖f‖H3/2(R3)),

‖Bε(·, t)−B0(·, t)‖L2(R3) 6 C(1 + |t|)1/2ε(‖φ‖H3/2(R3) + ‖f‖H3/2(R3)),
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• Let f ∈ H5/2(R3;C3), and φ = 0. Then for t ∈ R and ε > 0 we have

‖(Eε(·, t)− Eε(·, 0))− (1 + Σε)(E0(·, t)− E0(·, 0))‖L2(R3) 6 C|t|(1 + |t|)1/2ε‖f‖H5/2(R3),

‖(Dε(·, t)−Dε(·, 0))− (1 + Σ̃ε)(D0(·, t)−D0(·, 0))‖L2(R3) 6 C|t|(1 + |t|)1/2ε‖f‖H5/2(R3).

Supported by Russian Science Foundation (project 17-11-01069).
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Prandtl equation in Kondratjev spaces

Duduchava R.
University of Georgia & A. Razmadze Mathematical Institute
e-mail: RolDud@gmail.com

We consider the Prandtl equation

a(t)

1− t2
u(t)− 1

2π

∫ 1

−1

u′(τ)dτ

τ − t
= f(t), t ∈ J := [−1, 1]. (1)

Here the known function in the right-hand side f belongs to the Sobolev–Kondratjev KWm−1
p (J ) or

Hölder–Zygmund–Kondratjev KZ0
µ−1(J ) space, while the solution u we look in the space KWm

p (J )
or KZ0

µ(J ). The space KWm
p (J ) (the space KZ0

µ(J ), µ = m + ν, m = 0, 1, 2, . . ., 1 < p < ∞,
0 < µ 6 1) consists of functions ϕ(t) for which the function u itself and the weak Fuchs derivatives

Dku := (1 − t2)
dk

dtk
u belong to the Lebesgue space Lp(J ) (to the Hölder–Zygmund KZ0

ν(J ) space)
for k = 1, . . . ,m (for more details see [2] where these spaces are introduced). The coefficient a is
sufficiently smooth a ∈ C`(J ), where ` > m.

Importance of the Prandtl equation (1) is well known (cf., e.g., [1]).
For the equation (1) we derive the criteria to be Fredholm in the Sobolev–Kondratjev and Hölder–

Zygmund–Kondratjev spaces and find out that the Fredholm properties are independent of the integer
parameter of these spacesm. These results imply, for example, that all Fuchs derivatives of a solution
Dku(t) are smooth provided the right-hand side is infinitely smooth.

Conditions for the unique solvability of equation (1) are also indicated.
The same result is valid for more general equation with Fuchs derivatives

n∑
k=0

[
ak(t)D

ku(t)− bk(t)
∫ 1

−1

(
1− τ 2

1− t2

)dk Dku(τ)dτ

τ − t

]
= f(t), t ∈ J ,

where dk ∈ C are complex numbers and coefficients are sufficiently smooth.
Similar results hold for equation on piecewise-smooth curves with corners, provided Fuchs deriva-

tives and kernels of Mellin convolution type are defined properly.
For the investigation of the equations (1)–(2) and their analogues on curves with corners we apply

localization and the resulting local representatives turn out to be systems of Mellin pseudodifferential
equatins on semi-axes. Unique solvability of some equations of type (1) result from their connection
with the boundary value problems for some partial differential equations.
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Parametrix for the inverse source problem of thermoacoustic tomography
with reduced data

Matthas Eller
Georgetown University, USA
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Our goal is to solve the inverse source problem of thermo- and photoacoustic tomography, with
data registered on an open surface partially surrounding the source of acoustic waves. The proposed
modified time reversal algorithm recovers the source term up to an infinitely smooth error term.
Numerical simulations show that the error term is quite small in practical terms. The present
technique is applicable in the presence of a known variable speed of sound. We illustrate our results
with numerical simulations in 2 and 3 spatial dimensions.

The influence of cortical bone thickness, soft tissue, and porosity
on ultrasonic guided wave propagation

Ermolenko O.A., Fomenko S.I., Glushkov E.V., Glushkova N.V.
Institute for Mathematics, Mechanics and Informatics, Kuban State University, Krasnodar, Russian
Federation
e-mail: miakisheva.olga@gmail.com, sfom@yandex.ru, evg@math.kubsu.ru

Tatarinov A.
Riga Technical University, Riga, Latvia
e-mail: alta2003@apollo.lv

At present, osteoporosis is one of the most common non-communicable diseases. It is associated
with reducing bone mass and microarchitectural bone deterioration, leading to reduced bone quality
and an increase in fracture risk. One of the promising methods for assessing the quality of bone
tissue (cortical bone) is Quantitative Ultrasound (QUS), which is non-radiative, non-invasive, and
relatively cheap [1]. Cortical bones support the propagation of ultrasonic traveling waves. Uncovering
its dependence on the factors related to the state of the bone, such as the thickness of the cortical
layer, porosity, radial gradient, and degree of mineralization, as well as properties of surrounding soft
tissues, can provide hidden signs of osteoporosis to improve its diagnostics [2].

The purpose of this work is the study of the dispersion curves, frequency response, and time-
frequency characteristics of ultrasonic guided waves (GWs) piezoelectrically generated in samples
mimicking real bones (phantoms) to identify signs predicting osteoporosis. The analytically based
computer models have been adapted to simulating the GW excitation and propagation in multilayered
phantoms mimicking waveguide properties of tubular bones. The models are based on the explicit
integral representations in the form of inverse Fourier transform path integrals of the waveguide’s
Green matrix and the source load vector, from which the GWs are extracted using the residue
technique [3]. The influence of thickness, elastic properties, and porosity on the GW frequency
response and time-frequency characteristics are analyzed and discussed.

The work is supported by the Russian Science Foundation (project No. 17-11-01191).
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Hybrid numerical-analytical scheme for 3D scattering problems
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The study of guided wave (GW) diffraction by local inhomogeneities (obstacles) is a classical
wave problem in various practical applications. For example, ultrasonic structural health monitoring
(SHM) of thin-walled constructions (aircraft skins, pipelines, chemical tanks, etc.) is based on the
GW property to propagate over long distances and interact with local defects of any nature. The
application of SHM technologies requires the development of mathematical and computer models
describing the GW excitation, propagation, and diffraction in elastic waveguides with obstacles of
various nature and shape (cracks, cavities, inclusions corrosion, and others). A standard finite
element method (FEM) can provide a numerical solution for arbitrary scatterers. However, the
FEM is intended for finite domains and not well-suited for wave problems in prolonged structures
(waveguides). Besides, the FEM numerical results are not physically evident. They do not give the
wave structure of the solution, e.g., the wave energy distribution among the excited GWs, without
post-processing.

To obtain efficient solutions, hybrid numerical-analytical approaches are currently being devel-
oped, based on the coupling of numerical solutions in local domains containing the source or obstacles
with explicit analytical representations in the external semi-infinite domain. Such hybrid methods
allow reducing computational costs and obtaining explicit analytical representation for the scattered
GWs. However, they are not widely spread because the possibility of such coupling with an external
multimode wave field is generally not provided in standard (commercial) FEM software. We have
proposed a scheme avoiding this difficulty using the FEM software as a black box [1]. The main idea
is to use the FEM for obtaining a set of local numerical solutions that serve as a basis in the inner
domain with the source or scatterers. The expansion coefficients of both the FE decomposition in
the inner domain and the external modal expansion are determined from the continuity conditions
at the artificial boundary between them. This scheme has already been implemented in the 2D
case. We present its further development for 3D scattering problems, starting from examples of its
implementation for acoustic waveguides with arbitrary obstacles based on COMSOL MultiPhysics
software.

The work is supported by the Russian Science Foundation (project No. 17-11-01191).
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Wormhole solitons in lasers with saturable absorption
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Topological one-, two-, and three-dimensional (1D-, 2D-, and 3D-) dissipative optical solitons
forming in media or schemes with energy input and output, were studied in a large number of
publications, see a review [1]. Here we analyze a type of topological solitons which is intermediate
between 2D and 3D. Being generated by 2D-solitons, such 3D dissipative solitons in a laser medium
or in a cavity of sufficiently large size, acquire nontrivial properties.

The model under consideration represents a matrix in which centers with nonlinear (saturable)
gain and absorption are embedded. The matrix is linear, with linear gain and frequency dispersion.
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The centers are characterized by effectively two-level scheme of energy levels with fast response to the
field. The medium can be placed into a cavity of large size. Radiation propagation is described by
the generalized complex Ginzburg–Landau equation for a slowly varying envelope which is scalar in
approximation of fixed radiation polarization and two-component vector when polarization variations
are taken into account.

For scalar structures, the generating structure is one of known stable 2D-vortex laser solitons or a
complex of such solitons with point-wise vortices (zeros of the complex envelope). A 3D- initial field
distribution results by multiplication of 2D (transverse) distribution by an exponential multiplier
describing purely phase variation in the third (longitudinal) dimension. Then vortices form one
or several vortex lines, and 3D solitons acquire wormhole shape. More exactly, the exponential
multiplier can include phase variation in transverse dimensions, and all these distributions represent
exact solutions of the governing equation (assuming that 2D-solution is known). Therefore, the 3D
wormhole solitons form a family with continuous spectrum of spectral parameter.

The linear stability analysis shows the instability of such “ideal” wormhole solitons in a medium
with infinite size. It is confirmed by direct numerical solution of the governing equation. However,
situation changes for a cavity with finite length L. The wormhole solitons maintain symmetry
and straight vortex lines for short lengths L. For larger L, the instability leads to soliton symmetry
breaking accompanied by bends or even breaks of vortex lines. The critical value of length separating
these two scenarios, can be given by the linear stability analysis. There are two ways of stabilization
of vortex lines and solitons bending in cavities with finite length. First, stabilization can result finally
to some fixed bending of soliton; interesting, that even more stable are structures with “double-helix”
vortex lines. Second, stable symmetric solitons are possible with an additional closed vortex line.
Such structures are demonstrated both for bright, with intensity vanishing at periphery, and dark,
where instead of vanishing, stabilization of intensity takes place, topological scalar solitons.

For vector case, a large number of new topological polarization phenomena arise [2]. We discuss
some types of additional polarization singularities appearing in the wormhole laser solitons.

The research is supported by grant 18-12-00075 of the Russian Science Foundation.
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Solutions to quasiperiodic equations: selfsimilarity and quantization
conditions
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Quasiperiodic Shrödinger equations arise in many problems of modern physics. The behaviour
of their solutions at infinity was studied by many authors, see review [1]. Computer calculations
lead to the conjecture that this behavior can be multiscale and selfsimilar. This conjecture looks
very natural in view of papers of Sinai, Helffer and Sjöstrand, Buslaev and Fedotov, and Fedotov
and Klopp, see [2–5]. The first satisfactory result (and the first rigorous result) was obtained by
Jitomirskaya and Liu [6] in the so called localization regime.

In this talk, we discuss the Maryland equation that is one of the most popular models in the
theory of almost periodic equations and was introduced by specialists in solid state physics Grem-
pel, Fishman and Prange [7]. We describe solutions to the Maryland equation in the semiclassical
approximation. In the case when our approach can be applied, there are no well localized solutions.
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Roughly, we show that, after some smoothing, the graphs of a solution on certain large intervals
look like the graphs of solutions to the Maryland equations with new parameters on an interval of
the length of the order of one. Moreover, studying solutions of such a new renormalized equation,
one can reconstruct the behavior of solutions of the input Maryland equation. One can say that the
semiclassical behavior of a solution of the input equation is determined by a series of quantization
conditions, and that that is the behavior of a solution to the renormalized equation that determines
which of these conditions are satisfied. In this talk, we focus on this effect. The talk is based on a
joint work with Frederic Klopp [8].

References

[1] P. Wiegmann, A. Zabrodin, Quantum group and magnetic translations Bethe ansatz for the
Asbel–Hofstadter problem, Nuclear Physics B, 422, 495–514 (1994).

[2] Y.G. Sinai, Anderson localization for one-dimensional difference Schrodinger operator with
quasiperiodic potential, J. Stat. Phys., 46, 861–909 (1987).
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On self-similar solutions to some difference equations

Fedotov A.A., Lukashova I.I.
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We study a function σ satisfying the difference equation

σ(z + h) = (1 + e−iz) σ(z − h), (1)

where z is a complex variable, and h ∈ (0, π) is a parameter. This function and kindred ones arise
in many problems of mathematical physics, e.g., in the scattering theory [2], in the theory of almost
periodic operators [3], in the theory of integrable systems [4], etc.

The function σ can be considered as a trigonometric analogue of the Euler Γ-function: it satisfies a
homogeneous first order linear difference equation with a coefficient being a first order trigonometric
polynomial.

The σ satisfies a series beautiful functional relations, one knows the location of its zeros and poles,
and its asymptotics as Im z → ±∞. But, the behavior of σ along the lines parallel to the real axis is
not well understood. In this talk, assuming that Im z is bounded away from zero, we study σ(z) as
Re z →∞. We show that σ has a multiscale behaviour that depends on number theoretical properties
of the parameter h. The theoretical results are illustrated by results of computer calculations.

Let us note that the asymptotic analysis of σ(z) as Re z → ∞ is equivalent to the one of the
logarithmic sum

S(z, h,N) =
N∑
k=1

ln
(
1 + e−i(z+h−2hk)

)
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as N → ∞. To study the latter, we use a method similar to one developed in [1] to study the
Gaussian exponential sums. In particular, we obtain a renormalization formula that expresses the
input logarithmic sum via the logarithmic sum with a smaller number of terms and new constant
parameters instead of h and z.
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On adiabatic evolution generated by a one-dimensional Schrödinger
operator
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Consider the Schrödinger equation

i
∂Ψ

∂t
= −∂

2Ψ

∂x2
+ v(x, εt)Ψ, t ∈ R, x ≥ 0, ε→ 0, (1)

with the boundary condition Ψ|x=0 = 0. This equation describes adiabatic evolution in L2[0,+∞)
generated by the time-dependent stationary operator H(τ) = −∂2/∂x2 + v(x, τ) with the Dirichlet
boundary condition at zero, τ = εt being the rescaled time.

We consider the model case

v(x, τ) =

{
−1 if 0 ≤ x ≤ 1− τ,
0 otherwise.

(2)

In this case the spectrum of H(τ) consists of the (absolutely) continuous spectrum filling [0,+∞)
and a finite number of negative eigenvalues. H(τ) has exactly n eigenvalues if τn+1 ≤ τ < τn, where

τn = 1− π(n− 1/2), n ∈ N. (3)

As τ approaches the critical value τn, the n-th eigenvalue approaches the edge of the continuous
spectrum and, having reached it, disappears.

We study a particular solution Ψn of (1) constructed by Fedotov [1], which has asymptotics of
the form

e
− i
ε

τ∫
τn

En(s) ds
∞∑
m=0

εmψn,m(x, τ), ε→ 0, (4)

as long as the n-th eigenvalue exists. Here En(τ) is the n-th eigenvalue and ψn, 0(·, τ) is the correspond-
ing eigenfunction of H(τ). During and after the disappearance of En(τ) the asymptotic behaviour
of Ψn is different. Asymptotics inside the potential well have been described by Fedotov [1, 4]. We
describe asymptotics outside of the potential well.

This problem in large part mirrors the problem of wave propagation in variable-depth shallow
water, which was studied heuristically by physicists, e.g. Pierce [3], and then rigorously by Fedotov [2].
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Lorentzian Calderón problem under curvature bounds
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We introduce a method of solving inverse boundary value problems for wave equations on Lorent-
zian manifolds, and show that zeroth order coefficients can be recovered under certain curvature
bounds. The set of Lorentzian metrics satisfying the curvature bounds has a non-empty interior in
the sense of smooth, compactly supported perturbations of the metric, whereas all previous results
on this problem impose conditions on the metric that force it to be real analytic with respect to
a suitably defined time variable. The analogous problem on Riemannian manifolds is called the
Calderón problem, and in this case the known results require the metric to be independent of one of
the variables. Our approach is based on a new unique continuation result in the exterior of the double
null cone emanating from a point. The approach shares features with the classical Boundary Control
method, and can be viewed as a generalization of this method to cases where no real analyticity is
assumed. The talk is based on joint work with Spyros Alexakis and Lauri Oksanen.

Detection of small-scale inhomogeneities in an elastic-acoustic medium

Filatova V.M.
IKBFU, Kaliningrad, Russia
e-mail: vifilatova@kantiana.ru

The paper is devoted to the mathematical modeling of the plaques detection in the vein. Math-
ematically, we consider the problem of elastic-acoustic medium visualization. The visualization is
conducted using Reverse time migration. Results of numerical experiments are presented.

This work was supported by the Volkswagen Foundation.

The monotonicity method for the inverse crack scattering problem

Takashi Furuya
Hokkaido University, Japan
e-mail: takashi.furuya0101@gmail.com

Let Γ ⊂ R2 be a smooth non-intersecting open arc (crack), and we assume that Γ can be extended
to an arbitrary smooth, simply connected, closed curve ∂Ω enclosing a bounded domain Ω in R2.
Let k > 0 be the wave number, and let θ ∈ S1 be incident direction. We consider the following direct
scattering problem: For θ ∈ S1 determine us such that

∆us + k2us = 0 in R2 \ Γ, (1)
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us = −eikθ·x on Γ (2)

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0, (3)

where r = |x|, and (3) is the Sommerfeld radiation condition. It is well known that there exists a
unique solution us and it has the following asymptotic behaviour:

us(x) =
eikr√
r

{
u∞(x̂, θ) +O

(
1/r
)}
, r →∞, x̂ :=

x

|x|
. (4)

The function u∞ is called the far field pattern of us. With the far field pattern u∞, we define the far
field operator F : L2(S1)→ L2(S1) by

Fg(x̂) :=

∫
S1
u∞(x̂, θ)g(θ)ds(θ), x̂ ∈ S1. (5)

The inverse scattering problem we consider is to reconstruct the unknown arc Γ from the far field
pattern u∞(x̂, θ) for all x̂ ∈ S1, all x̂ ∈ S1 with one k > 0. In other words, given the far field operator
F , reconstruct Γ.

In order to solve such a problem, we use the monotonicity method. The feature of this method
is to understand the inclusion relation of an unknown target and artificial object by comparing the
data operator with some operator corresponding to an artificial one. For recent developments of the
monotonicity method, we refer to [2–4]. The following theorems are our main results for solving the
inverse crack scattering problem.
Theorem (Theorem 1.1 in [1])
Let σ ⊂ R2 be a smooth non-intersecting open arc. Then,

σ ⊂ Γ ⇐⇒ H∗σHσ ≤fin −ReF, (6)

where the Herglotz operator Hσ : L2(S1)→ L2(σ) is given by

Hσg(x) :=

∫
S1

eikθ·xg(θ)ds(θ), x ∈ σ, (7)

and the inequality on the right-hand side in (6) denotes that −ReF −H∗σHσ has only finitely many
negative eigenvalues, and the real part of an operator F is self-adjoint operators given by ReF :=
1

2
(F + F ∗).
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Diffraction of a waveguide mode at the open-end of a dielectric-loaded
circular waveguide

Galyamin S.N., Tyukhtin A.V.
Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia
e-mail: s.galyamin@spbu.ru
Vorobev V.V.
Department of Informatics, Technical University of Munich, 80333 Munich, Germany

Contemporary beam and THz technologies are tightly interlaced during last years. Strong THz
fields allow realization of THz driven electron guns, THz bunch compression, streaking [1] and THz
driven wakefield acceleration [2]. Inversely, dielectric capillaries similar to those used for THz bunch
manipulation can be in turn utilized for development of high-power narrow-band THz sources [3].
Mentioned cases involve interaction of THz waves and particle bunches with an open end of certain
dielectric loaded waveguide structure, most frequently a circular capillary. For further development
of the discussed prospective topics a rigorous approach allowing analytical investigation of both
radiation from open-ended capillaries and their excitation by external source would be extremely
useful.

We present an elegant and efficient rigorous method for solving circular open-ended dielectric-
loaded waveguide diffraction problems based on Wiener–Hopf technique. We deal with the case of
uniform dielectric loading and internal excitation by a waveguide mode. Corresponding S-parameters,
near-field and far-field distributions are presented.

Work is supported by Russian Science Foundation (Grant No. 18-72-10137).
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Formation of solitary strain waves in viscoelastic waveguides
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Polymeric materials play an essential role nowadays as they are used in a huge number of struc-
tures; therefore, the study of strain waves propagation in polymers is an important problem. In
polymeric materials, for example, in polymethylmethacrylate (PMMA), viscoelastic relaxation pro-
cesses significantly affect the dynamics of strain waves. The viscosity is characterized by the loss
tangent, which is often weakly dependent on the wave frequency and remains almost constant in the
range from fractions of a hertz to hundreds of kilohertz [1].

During physical experiments, a short longitudinal strain wave was generated at the end of the
polymeric bar and the resulting deformations were recorded at different positions along the bar axis.
It was shown that a short wave rapidly decays and a long solitary wave forms behind it, which has
a much longer path and can propagate over long distances with almost the same amplitude [2].

The existence of the solitary waves was predicted by the nonlinear theory of elasticity. The
Korteweg – de Vries and Boussinesq-type equations were asymptotically derived for the long waves
in nonlinearly elastic waveguides [3]. However, this theory does not take into account viscoelastic
effects, which play a crucial role in the formation of the long solitary wave.

In the present work we develop a model for the longitudinal strain waves in a viscoelastic bar,
which is valid for both long and short waves. We consider the full three-dimensional problem and
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reduce it to a two coupled one-dimensional integro-differential equations. These equations can be
further reduced to the single Boussinesq-type equation if viscosity is neglected. The predictions of
our model are in good agreement with the experimental results.
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General Heun functions in free shear layer acoustics
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In this talk, we present our recent research on acoustics and stability of free shear layers based
on the Euler equations for compressible flows. Our approach is based on finding an exact solution
to the underlying linearized problem. We further show the challenge offered by the exact solution
given in terms of the generalized Heun function.

In the first part of our work, the linearized compressible Euler equations were reduced to an
ordinary differential equation, the well-known Pridmore–Brown equation [1], using a normal mode
approach. We show that this equation can be reduced to the standard known form of the generalized
Heun’s differential equation [2] for the case of a hyperbolic tangent base flow profile we consider.
Furthermore, we show how the distinction between the acoustic problem and the stability problem
is expressed in the formulation of the eigenvalue problem.

In the second part, we focused on the solution of the eigenvalue problem and on the challenges
posed by Heun’s differential equation. In particular, the so far unsolved two point connection problem
of the generalized Heun function prevents a direct solution of the eigenvalue problem. Accordingly,
approaches to overcome this challenge are presented: due to the boundary conditions, we were able to
formulate integral criteria for the stability problem which restrict the amount of possible eigenvalues.
To answer the question of reflection and transmission of acoustic waves through the shear layer, an
approach is presented which uses a further transformation of the generalized Heun equation to a
symmetric form [3] in order to be able to link the solution branches at the different singularities of
Heun’s ODE.
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The boundary integral equation method for the simulation guided waves
scattering by a distribution of cracks in a laminate

Golub M.V., Doroshenko O.V., Fomenko S.I.
Institute for Mathematics, Mechanics and Informatics, Kuban State University, Krasnodar, 350040,
Russian Federation
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Laminates are now widely employed in various areas since they can improve the reliability and
durability of elastic structures due to high fatigue resistance or reduction in weight. However, the
adhesive joints under in-service conditions give rise to some defects as micro-cracks, voids or delami-
nations. Therefore, an early-stage detection of degradation is an important issue for many industrial
applications. Guided waves showed their efficiency in the field of nondestructive evaluation for crack
identification. In this study, guided waves scattering by a distribution of strip-like micro-cracks situ-
ated in a multi-layered waveguide is considered. A semi-analytical hybrid approach for the simulation
of the guided waves excitation by a piezoelectric transducer presented in [1] is extended here. Both
the problems are investigated of a laminate with a distribution of open micro-cracks without face con-
tacts, and a laminate with partially closed delaminations modelled via the effective spring boundary
conditions. Random variables of centres and widths of the micro-cracks are numerically simulated
by a function of the probability density, for example, the uniform distribution. The wave scatter-
ing by distributional of cracks is modelled according to the boundary integral equation method [2].
Guided waves transmission through the damaged zone is compared for the two considered cases.
The possibility of the employment of the effective boundary conditions to substitute a distribution
of micro-cracks at higher frequencies is analysed and discussed.

The research is supported by the Russian Foundation for Basic Research (project 21-51-53014).
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A combined optimization technique for the engineering of optical devices
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A combined optimization technique for advanced device engineering is suggested. The proposed
method is a fusion of the Bayesian and SGD (Stochastic gradient descent) optimization schemes
dedicated to obtaining structure designs with improved performance. The developed technique was
applied specifically to improve the characteristics of the diffraction gratings and QC (Quantum
Cascade) amplifiers/detectors.

For the diffraction grating optimization task, the oblique-incident (off-plane) radiation scattering
from one-periodical gratings (2D structures) with arbitrary conductivity and varying border profile is
considered. The solution of the direct problem includes heavy computation of the numerical solution
of the 2D Helmholtz equation using the boundary integral equation method ([1], Ch. 12).
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For the QC structures, AlGaAs/GaAs active region materials are considered. The solution of the
direct problem consists of Schrödinger–Poisson’s system equation self-consistent solution.

Several numerical experiments were performed to test the proposed technique. The applied tech-
nique turns out to be at least 2 times faster, compared to the earlier genetic algorithm results [2]. The
results also show that the SGD algorithm applied on the latest stages (on a plateau) of optimization
contributes to the improvement of the results (Fig. 1). The obtained optimization improvements
can lead to the development of more efficient device generation strategies and the creation of new
devices: spectral instruments, beam splitters, detectors, amplifiers, etc.

Fig. 1: The optimization curves for genetic and proposed algorithms. Shaded regions indicate
standard deviation from the mean reciprocal wallplug efficiency.
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Geoacoustic inversion of vertical line array data in shallow water
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A technique for solving the inverse problem of estimating the effective acoustic parameters of the
bottom has been developed for shallow water with an ice cover. The initial data for the inversion are
the experimental dependence of the sound field amplitude on depth recorded at a vertical line array,
and a set of precalculated dependences simulated for different effective bottom parameters. The
range between a sound source and the array is an order of magnitude higher that the water depth.
In the calculations, the bottom is considered as a liquid homogeneous medium with different values
of the sound speed, density, and attenuation coefficient. Numerical modeling is carried out within
the framework of normal-mode theory. The obtained values of bottom parameters are considered
effective if they provide a maximum agreement between experimental and simulated data. The
technique has been tested in a field experiment on Lake Baikal with a solid ice cover. The work was
supported by the Russian Foundation for Basic Research (project no. 19-02-00127)
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Horizontal refraction of acoustic waves in a shallow water waveguide
with inhomogeneous bottom
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Mode parabolic equations and modal ray theory are applied to study horizontal refraction of
acoustic waves in a planar waveguide with an inhomogeneous lower boundary, typical for shallow
water arctic seas. Water depth is equal to H ∼ λ − 3λ, where λ is the acoustic wavelength. In the
model, depth and sound speed in the waveguide are constant. Inhomogeneities in the bottom are
associated only with the spatial variability of the sound speed. Numerical simulations show that
the horizontal refraction in such a waveguide is significant in an area where bottom sound speed is
approaching the water sound speed. Modal ray trajectories demonstrate that the angle of refraction
is up to 10 degrees. The work was supported by the Russian Foundation for Basic Research (project
no. 19-02-00127).

Asymptotic Bergman kernels in the analytic case
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In this talk, we shall be concerned with the semiclassical asymptotics for Bergman projections in
exponentially weighted spaces of holomorphic functions, with real analytic strictly plurisubharmonic
weights. Here a result due to O. Rouby, J. Sjöstrand, S. Vũ Ngoc, and to A. Deleporte, establishes
that one can describe the Bergman projection up to an exponentially small error. We shall discuss a
direct approach to the construction of asymptotic Bergman projections in the analytic case, developed
recently with A. Deleporte and J. Sjöstrand, which allows us to give a simplified proof of this result.

On semi-classical spectral series for an atom in a periodic polarized
electric field

Abdelwaheb Ifa1, Hanen Louati1, Michel Rouleux2
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As in [1] we consider the 3-D time-dependent Schrödinger operator H(t) = −h2∆ + V +E(t) · x
where V is a radial potential and E(t) a circularly polarized field with uniform frequency ω. Floquet
operator that takes the system through a complete period T = 2π/ω, turns out to be unitarily
equivalent to eiTP (x,hDx)/h. Up to a linear gauge transformation, P (x, hDx)) identifies with a magnetic
Schrodinger operator with symbol p(x, ξ) = (ξ1 + 1

2
ωx2)2 +(ξ2− 1

2
ωx1)2 + ξ3

3 +W (x), where W = V+
a quadratic term. Thus the semi-classical spectrum of Floquet operator is implied by this of P . If
V (r) has a non degenerate critical point at r = r0, then p(x, ξ) has itself a critical point at some
ρ0 = (x0, ξ0) ∈ T ∗R3, and for some values of the parameters V ′′(r0), ω and energy E, Floquet
exponents are purely imaginary. Then {ρ0} is indeed a microlocal well for p(x, ξ) and near ρ0 we
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can construct germs of quasi-modes that resemble those associated with the celebrated Landau levels
(the degeneracy being lifted), i.e. Hermite functions. The Magnetic Birkhoff Normal Form [2] allows
also for semi-excited states.

To consider semi-classical “shape resonances” for P , we assume a “profile” for V , with a Coulomb
like singularity at r = 0, featuring the “inner sea”, and a long range decay near r =∞, featuring the
“outer sea”. This is typically the situation where resonances are implied by tunneling from {ρ0} to
the inner and outer seas through the “phase-space forbidden region” Ω ⊂ T ∗R3. The quasi-modes
constructed already near ρ0 are extended in Ω along some extremal (complex) trajectories as follows:
(1) Considering the Hamiltonian q(x, ξ) = |ξ|2+W (x) obtained from p(x, ξ) by removing the magnetic
field, we are in the usual situation of shape-resonances ([3, 4]). In particular there are WKB solutions
of (Q(x, hDx) − E)u ∼ 0 of the form w(x;h) ∼ eiφ(x,E)/ha(x,E;h) where φ (solution of the eikonal
equation) is purely imaginary in the classically forbidden region; (2) Assuming the strength ω of the
magnetic field to be small, we seek for a solution of (P (x, hDx) − E)u ∼ 0 of the form u(x;h) =
eiψ(x,E)/hb(x,E;h)w(x,E;h). We use a quantization deformation with respect to ω modifying the
symplectic canonical 2-form to the magnetic canonical 2-form (Kostant–Souriau connexion), and
show that ψ verifies indeed a first order PDE (new “eikonal equation”) whose characteristics, as
ω → 0, are close to those of q. Thus we get a good approximation of the rate of decay of quasi-modes
that gives in turn an estimate on the imaginary part of the resonances.
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The time domain enclosure method for an inverse obstacle problem
governed by the Maxwell system

Masaru Ikehata
Laboratory of Mathematics, Graduate School of Advanced Science and Engineering, Hiroshima Uni-
versity, Higashihiroshima 739-8527, Japan
e-mail: ikehata@hiroshima-u.ac.jp

The time domain enclosure method with dynamical back-scattering data for various inverse obsta-
cle problems governed by the scalar wave equations in three dimensions was initiated in the article
[1]. We have already applied the idea to inverse obstacle problems governed by the Maxwell system
in [2] for a perfectory conductive obstacle, and an obstacle with the Leontovich boundary condition
in [3] and [4]. Those obstacles are impenetrable ones. In this talk we present a recent result [5] on
finding a penetrable obstacle via the time domain enclosure method.

References

[1] M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data
over a finite time interval: II. Obstacles with a dissipative boundary or finite refractive index and
back-scattering data, Inverse Problems, 28, 045010(29) (2012).

[2] M. Ikehata, The enclosure method for inverse obstacle scattering using a single electromagnetic
wave in time domain, Inverse Problems and Imaging, 10(1), 131–163 (2016).



DAYS on DIFFRACTION 2021 39

[3] M. Ikehata, On finding an obstacle with the Leontovich boundary condition via the time domain
enclosure method, Inverse Problems and Imaging, 11(1), 99–123 (2017).

[4] M. Ikehata, On finding the surface admittance of an obstacle via the time domain enclosure
method, Inverse Problems and Imaging, 13(2), 263–284 (2019).

[5] M. Ikehata, On finding a penetrable obstacle using a single electromagnetic wave in the time
domain, arXiv : 2011.07477 [math.AP] (2020).

On linear cocycles over irrational rotations with secondary collisions

Ivanov A.V.
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We consider a skew-product map

FA : T1 × R2 → T1 × R2, (1)

defined for any (x, v) ∈ T1 × R2 by

(x, v) 7→ (σω(x), A(x)v),

where σω(x) = x+ ω is a rotation of a circle T1 with irrational rotation number ω and

A : T1 → SL(2,R)

is a differentiable function. We suppose the transformation A has a special form

A(x) = R(ϕ(x)) · Z(λ(x)),

where
R(ϕ) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
, Z(λ) =

(
λ 0
0 λ−1

)
and ϕ : T1 → T1, λ : T1 → [λ0,∞) are C1-functions such that ϕ has index 0 and λ0 is sufficiently
large positive constant.

It is also assumed that the critical set C0 = {x ∈ T1 : cosϕ(x) = 0} consists of two points {x0, x1}
and the function ϕ satisfies the following conditions

|ϕ′(x)| ≥ C1ε
−1, x ∈ C0; | cosϕ(x)| ≥ C2, ∀x ∈ T1 \ Uε(C0),

where Uε(M) denotes a ε-neighborhood of a setM, C1, C2 are some positive constants and ε� 1.
One may note that as a trajectory of a point x ∈ T1 under the rotation σω hits Uε(C0), the hyper-

bolic properties of the corresponding cocycle generated by FA become weaker. Due to irrationality
of ω every trajectory intersects Uε(C0) and, particularly, each point of C0 interacts both with Uε(x0)
and Uε(x1). The hyperbolicity of the system (1) strictly depends on whether the trajectory of x0 hits
Uε(x0) (primary collision) before or after its intersection with Uε(x1) (secondary collision) [1].

In the present work we study the case when

σω(Uε(x0)) ∩ Uε(x1) 6= ∅.

Using approach developed in [1, 2] we show that for sufficiently small values of the parameter ε and
under some additional requirements on the function λ the secondary collisions compensate weakening
of the hyperbolicity due to primary collisions and the cocycle generated by FA becomes hyperbolic
in contrary to the case when secondary collisions can be partially eliminated [1].



40 DAYS on DIFFRACTION 2021

References

[1] A.V. Ivanov, On singularly perturbed linear cocycles over irrational rotations, Reg. & Chaotic
Dyn., 26(3), 479–501 (2021).

[2] V. F. Lazutkin, Interfearing combs and multiple horseshoe, Reg. & Chaotic Dyn., 2(2), 3–13
(1997).

Linear combinations of Seeley–DeWitt coefficients and their properties

Ivanov A.V.1,2, Kharuk N.V.1,2,3

1St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, 27
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2Leonhard Euler International Mathematical Institute, 10 Pesochnaya nab., St. Petersburg 197022,
Russia
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The asymptotic expansion of the heat kernel at small values of proper time can be written as
a series with Seeley–DeWitt coefficients [1, 2]. Using these coefficients, we construct functions of
a special type and study their properties. Some applications of these functions are considered. In
particular, we show their relation to the fundamental solution of the Laplace operator in d-dimen-
sional space at x ∼ y.
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Homoclinic transversal trajectories of singularly perturbed periodic
Hamiltonian systems with disappearing separatrix

Ivanov A.V., Panteleeva P.Yu.
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We study a singularly perturbed Hamiltonian system with a Hamiltonian

H(q, p, τ, ε) =
ε2

2
p2 − 1

2
ϕ(τ)q2 +

1

2
q4, ε� 1. (1)

It is assumed the function ϕ to be a periodic C2-function with period 1, which satisfy the following
condition
(H1): there exist τk ∈ [0, 1), k = 1, . . . , 2m, such that ϕ(τk) = 0, ϕ′(τk) 6= 0.

Systems of type (1) appear in many branches of physics, for example, they describe dynamics
of charged particles in the Earth’s magnetospheric tail, where the Larmor radius of the particles is
larger than the minimum radius of curvature of the magnetic field lines.

Introducing the fast time t = τ/ε, we consider equations of motion corresponding to (1) as the
simplest example of the slow-fast systems:

q̇ = p, ṗ = ϕ(τ)q − 2q3, τ̇ = ε.

Thus, (q, p) can be treated as fast variables and τ as a slow one. In the limit ε = 0 one gets the
so-called “frozen” system. The origin is an equilibrium of this system. Moreover, for those values
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of τ for which ϕ(τ) > 0 the “frozen” system possesses a figure-eight separatrix. However, each
time the parameter τ passes through the point τk the pitchfork bifurcation occurs and the separatrix
disappears or appears again. Such scenario leads to existence of very chaotic dynamics in the domain
correpsonding to oscillatory motion of the “frozen” system. One of key ingredients responsible for
such chaotic behaviour are homoclinic transversal trajectories, i.e. trajectories which approach the
origin at ±∞.

Using various asymptotic techniques [1, 2] in different regions of the extended phase space we
construct a set of such doubly-asymptotic trajectories. Particularly, we prove that there exists ε0 > 0
and a subset Eh ⊂ (0, ε0) such that
1. for any ε1 < ε0 the Lebesgue measure leb ((0, ε1) \ Eh) = O

(
e−c/ε1

)
with some positive constant c;

2. for any ε ∈ Eh the origin is a hyperbolic equilibrium of the system (1);
3. there exist positive constants C1, C2, ν < 1 such that for any natural k, corresponding ϕ(τk) > 0
and natural N ∈ [C1ε

−1−C2ε
−(1−ν), C1ε

−1]∩N there exists a homoclinic transversal trajectory with
the following behaviour. It stays exponentially close to the origin for τ ∈ R \ [τk, τk+1]. In contrary,
passing the point τk it detaches from the origin and comes inside the separatrix loop of the “frozen”
system, where it oscillates exactly N times around new-born equilibrium of the “frozen” system.
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Modeling of electrodynamic processes
by means of a micropolar continuum

Ivanova, E.A.
Higher School of Theoretical Mechanics, Peter the Great St. Petersburg Polytechnic University, Poly-
technicheskaya, 29, 195251, Saint-Petersburg, Russia;
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It is known that, before the beginning of the 20th century, all physical processes were described
by means of mechanical models. These models were based on the concept of the ether as a substance
occupying the whole free space, being able to penetrate into the material bodies endowing them
with additional physical properties. The concept implies that the ether implements the interactions
of the material bodies located at a distance from each other. In particular, when describing elec-
tromagnetic processes both in vacuum and in matter, scientists of the 19th century believed that
they were describing processes in the ether. In the 19th century, the mechanical models played an
important role for constructing the physical theories, namely, they were an intermediary between
scientist’s understanding of the nature of physical processes and mathematical description of these
processes, see [1]. Using the ether concept, 19th-century scientists (Volta, Ampere, Poisson, Oersted,
Young, Fresnel, Stokes, Navier, Cauchy, Green, Strutt, Neumann, Weber, Gauss, Riemann, Thom-
son, Maxwell, Helmholtz, Kirchhoff, FitzGerald, et al.), in fact, separated the process of constructing
a new theory into two stages. At the first stage, they created a mechanical model corresponding to
their intuitive understanding of the nature of the physical process. At the second stage, they derived
differential equations describing this mechanical model. At the turn of the 20th/21st centuries, the
interest in mechanical models of physical processes began to revive, see [2]. A large number of review
papers have been published over the past 30 years. In addition, studies aimed at creating mechanical
models of physical processes resumed in the second half of the 20th century and in the 21st century.
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Our model is based on rotational degrees of freedom only. This is the fundamental difference between
our model and the models of the 19th century. The basic steps we take to construct our model are:
to formulate equations of a special type micropolar continuum, and then to suggest analogies be-
tween quantities characterizing the stress–strain state of the continuum and quantities characterizing
electrodynamic processes. We introduce mechanical analogies of the electric field vector, the electric
induction vector, the magnetic field vector, the magnetic induction vector, the electric current den-
sity and the electric charge density, see [3]. In the framework of the suggested model, we obtain a set
of differential equations that coincide with Maxwell’s first equation, the Gauss law for electric field
and the charge conservation law. As a debatable question, we discuss the possibility of modifying
the Maxwell–Faraday equation and the Gauss law for magnetic field.
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Boundary control for transport equations

Alexandre Jollivet
CNRS & Université de Lille, France
e-mail: alexandre.jollivet@univ-lille.fr

We consider 2 types of control for the linear stationary Boltzmann equation in a bounded and
smooth domain X: first, control of a transport solution on a subdomain of X from the incoming
boundary condition, and then control of the outgoing solution from incoming condition. In the first
case we prove exact control under appropriate convexity assumption of the domain. Behavior of the
control in a diffusive regime is also considered. In the second case we show that control is not feasible
for well chosen optical parameters (absorption and scattering) of the domain X.

This a joint work with G. Bal (Chicago University).

Canonical representation of C∗-algebra associated with metric graph

Kaplun A.V.
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Fon-
tanka 27, St. Petersburg, Russia
e-mail: alex.v.kaplun@gmail.com

The eikonal algebra E(Ω) is a C∗-algebra associated with the metric graph Ω. This algebra was
introduced in [1] and later studied in [2]. Eikonals are bounded self-adjoint operators determined
by the dynamical system that describes the propagation of waves from the boundary into the graph
with finite velocity. Eikonals and algebra E(Ω) can be determined (up to an isometric isomorphism)
from dynamical and/or spectral inverse boundary data of the graph. It is shown that for arbitrary
graph algebra E(Ω) has a canonical block structure:

E(Ω) ∼= ⊕
N∑
j=1

{
φ ∈ C([0, δj],Mκj)| φ(0) ∈M0, φ(δj) ∈Mδj , M0,Mδj ⊆Mκj

}
.

The structure of its spectrum (the set of irreducible representations) is studied by analysis of the
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canonical block representation and is rather simple due to homeomorphism:

Ĉ ∼= [0, δj],

where C = C([0, δj],Mκj) and Ĉ is its spectrum.
Coordinatization of the spectrum, which uses the eikonals as coordinates, enables one to construct

a new graph deeply connected with the original Ω. This result is the next step towards solving the
inverse problem that is reconstruction of the metric graph via its inverse boundary data.
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Optimization of resonances in photonic crystals and related
Hamilton–Jacobi–Bellman equations

Karabash Illia
TU Dortmund, Germany;
Institute of Applied Mathematics and Mechanics of NAS of Ukraine
e-mail: i.m.karabash@gmail.com

Optical resonators with small decay rate (high-Q cavities) are important components in the
contemporary optical engineering because they enhance intrinsically small light-matter interactions.
The related mathematical problem is to design a photonic crystal structure that, under certain
constraints, generates a resonance as close as possible to the real line.

The engineering and computational aspects of the problem have drawn great attention since
the first fabrication success almost two decades ago. However, the analytic background of spectral
optimization for non-Hermitian eigenproblems is still in the stage of development.

While the existence of optimizers was handled by the Pareto optimization settings of [2] and
the associated Euler–Lagrange eigenproblems for 1-D optimizers were derived [2], the structure of
optimal resonators is not completely understood (cf. [3–6]).

In the talk, it is planned to outline the recently developed minimum-time control approach to
optimization of resonances in layered optical cavities [3]. In particular, this includes the derivation
of the associated Hamilton–Jacobi–Bellman equations. On the other hand, the shooting methods
[3, 4] for the effective computation of optimal symmetric structures and their connection with Max-
imum Principle will be described. We also plan to discuss briefly the analytical optimization of
multidimensional resonances [1].
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The study of acoustic modes back-scattering by bottom relief
inhomogeneities using the invariant imbedding method

Kazak M.S., Petrov P.S., Koshel K.V.
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A problem of sound propagation in the 2-D waveguide of a shallow sea Ω = {(x, z)|z ≥ 0} shown
in Fig. 1 is considered. The waveguide consists of the water layer 0 ≤ z ≤ h(x) separated from the
liquid penetrable bottom by the interface z = h(x). It is supposed that the sea has the constant
depth h = h0 outside the interval x ∈ [L0, L]. Thus inhomogeneity of bottom relief is localized on
this interval.

Fig. 1: (a) shallow-water waveguide with bottom relief inhomogeneity; (b) the relationship
between the reflection coefficient and the width of bottom relief inhomogeneity.

Sound propagation in such waveguide is described by the 2-D Helmholtz equation

∂2P

∂x2
+
∂2P

∂z2
+
ω2

c2
P = 0 , (1)

where P (x, z) is the acoustic pressure, and c is the sound speed, ω is the angular frequency. It
is supposed that the normal mode exp(−i k0,jx)ϕ0,j(z) is incident on the relief inhomogeneity on
the right where ϕ0,j is an eigenfunction of an acoustic spectral problem, аnd k0,j are corresponding
horizontal wavenumbers. It is assumed that water depth perturbation is small and sound propagation
can be considered adiabatic, i.e. a solution in the waveguide can be represented by the formula
P (x, z) = Aj(x)ϕj(x, z) .

The invariant imbedding method is used to obtain the following imbedding equations for the
mode amplitude from the Helmholtz equation (1)

∂
∂L
A(x, L) = ikA(x, L) + 1

2
ikε(L)(1 +R(L))A(x, L), A(x, L)|L→x = 1 +R(x);

d
dL
R(L) = 2ikR(L) + 1

2
ikε(L)(1 +R(L))2, R(L0) = 0.

(2)

The aim of the research is estimation of the reflection coefficient RL of a normal mode from
bottom relief inhomogeneity. Some parameters of bottom inhomogeneity are varied in order to study
and analyse the reflection coefficient.
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Inverse problem for non-linear parabolic equations

Yavar Kian
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We consider the inverse problem of determining some general class of non-linear terms appear-
ing in nonlinear parabolic equations. Our goal is to determine these non-linear terms from lateral
boundary measurements of solutions of the equation. In order to prove these results we apply some
arguments based on the new idea of multiple linearizations that we adapt to the framework of
parabolic equations. This talk is based on some joint work with Ali Feizmohammadi and Gunther
Uhlmann.

Matching creeping waves with lit area diffraction field

Anna Kirpichnikova1, Nataliya Kirpichnikova2

1University of Stirling, UK
2Saint-Petersburg Department of Steklov’s Mathematical Institute, Russia
e-mail: anya@cs.stir.ac.uk, nkirp@pdmi.ras.ru

This paper continues the series of classical publications [1–4] on the shortwave diffraction of
the plane wave and authors’ papers [5–9] on diffraction on the prolate bodies of revolution with
axial symmetry. Shadow creeping waves for both Dirichlet and Neumann boundary conditions using
Fock’s asymptotics as the initial data were constructed. Numerical comparison of the Dirichlet and
Neumann currents showed that the wave field in the Fock’s boundary layer transforms continuously
into the ray field in the lit zone and decays exponentially in the shadow zone.
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Evolution of basins of attraction in perturbed Painlevé-2 equation

Kiselev, O.M.
Innopolis University;
Institute of Mathematics, UFRC RAS
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Solutions of the perturbed Painlevé-2 equation are typical for describing a dynamic bifurcation
of soft loss of stability in wide the phenomena. The perturbed Painlevé-2 can be derived as primary
term in narrow layer when one use the matching of asymptotic expansions before and after the
dynamical bifurcation. Dynamics in the narrow layer is crucial important to the behavior after this
layer.

Far from the bifurcation as t → −∞ the typical trajectories oscillates around u = 0. After the
bifurcation there are two basins of attractions for the trajectories as t → ∞. First one is a basin
near

√
t/2 another one is near −

√
t/2. The boundary for there basins for t → −∞ was described

by A.R. Its and A.A. Kapaev in 1987.
Perturbations of the Painlevé equations make deformations of this boundary and more of them the

perturbations can break it. The properties of modulated the boundary depending on the perturbation
are obtained. Both analytic and numerical results are given.

Reconstruction of unknown sources in cerebral oxygen transport model

Kovtanyuk A.E.1,2, Chebotarev A.Yu.2,3, Seleznev T.E.2, Lampe R.1
1Technische Universität München, München, Germany
2Far Eastern Federal university, Vladivostok, Russia
3Institute for Applied Mathematics, FEB RAS, Vladivostok, Russia
e-mail: kovtanyuk.ae@dvfu.ru

A continuum model of cerebral oxygen transport is considered. It is assumed that the blood and
tissue compartments occupy the same spatial region Ω ⊂ R3 and have volume fractions, σ and 1−σ,
respectively. Following [1], the oxygen transport can be described by the following coupled equations:

∂ϕ/∂t− α∆ϕ+ v · ∇ϕ = G+
m∑
j=1

qj(t)fj, ∂θ/∂t− β∆θ = −κG− µ, x ∈ Ω, t ∈ (0, T ). (1)

Here, ϕ and θ are the blood and tissue oxygen concentrations, respectively; µ describes the tissue
oxygen consumption; G = c(θ−ψ) is the intensity of oxygen exchange between the blood and tissue
fractions, where ψ is the plasma oxygen concentration; κ = σ(1 − σ)−1, where σ is the volumetric
fraction of vessels; v is a prescribed continuous velocity field in the entire domain G; α and β are
diffusivity parameters of the corresponding phases; fj are the characteristic functions of the disjoint
subdomains Ωj ⊂ Ω, j = 1, ...,m, which are some neighborhoods of the ends of arterioles and venules.
That is the contribution from arterioles and venules are described by the source functions of equations
(1) with unknown intensities qj, j = 1, ...,m. Notice that, in [1], this contribution is described by
the appropriate boundary conditions.

There are nonlinear monotonic dependencies of the tissue oxygen metabolic rate, µ, on the tissue
oxygen concentration, θ, and of the plasma oxygen concentration, ψ, on the blood oxygen concen-
tration, ϕ [1].

Equations (1) are supplemented by the boundary conditions imposed on Γ = ∂Ω and initial
conditions,

α∂nϕ+ γ(ϕ− ϕb)|Γ = 0, β∂nθ + δ(θ − ψb)|Γ = 0, ϕ(x, 0) = ϕ0(x), θ(x, 0) = θ0(x). (2)

Here, ∂n denotes the outward normal derivative at points of the domain boundary. Nonnegative
functions ϕb, ψb, γ, and δ are given.
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The Inverse Problem consists in finding intensities q1(t), ..., qm(t) and the corresponding solution
y = {ϕ, θ} of the boundary-value problem (1), (2) with the following integral overdetermination:∫

Ωj

ϕdx = Qj(t), t ∈ (0, T ), j = 1, ...,m.

Here, Qj are the prescribed avereged values of the functions ϕ with respect to subdomains Ωj.
The inverse problem is reduced to an integro-differential equation for ϕ, a priori estimates for

its solution are derived, from which unique solvability follows. An algorithm to find solutions is
proposed and implemented.
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On the numerical solution of the iterative parabolic equations
by the ETDRK pseudospectral methods
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We consider the Helmholtz equation (NHE) in a nonlinear Kerr-type medium:

Ezz + Exx + k2
0(1 + ε|E|2)E = 0 ,

where E = E(x, z) denotes the wave (acoustic, electromagnetic) field. Following the standard multi-
scale technique we can find [1], that solutions of NHE in the case of one-way wave propagation can
be approximated by the series of solutions of iterative parabolic equations (IPEs):

E(x, z) ≈
√

2

ε
exp(iz̃)

N∑
s=0

As(x̃, z̃) , 2iAs,z + As,xx + 2
s∑
j=0

Aj

s−j∑
i=0

AiA
∗
s−i−j + As−1,zz = 0 ,

where x̃ = k0x, z̃ = k0z, s = 0 . . . N , in the equations for As tildes are omitted, and A−1 ≡ 0.

Fig. 1: Numerical solution for A3(0, z) by ETD4RK method without (left), or with (right)
polynomial smoothing of A2,zz, compared with the exact solution.

In this work we develop a few approaches of numerical integration of the IPEs based on exponential
time differencing methods ETD2RK, ETD3RK, ETD4RK from [2]. The main difficulty in numerical
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solution of IPEs is in a proper approximation of the second derivative As−1,zz which can dramatically
spoil the accuracy of the solutions when s ≥ 3. One of the approaches for this problem is in using
of Chebyshev polynomials of the discrete variable. With their help we calculate the mean-square
polynomial trend of the p-th order for a series of previously obtained As−1,z at the n grid points
immediately preceding the point of calculation. Then by differentiating the obtained polynomial we
estimate the value of As−1,zz at the point of calculation of As. In the most of our calculations p = 4
and n = 120. Comparison with the exact solutions from [1] reveals good results.

The developed approach can be easily extended to the case of 3D NHE, not saying of the usual
cases of linear 2D and 3D Helmholtz equations. Solutions of such equations can be in demand in
problems of acoustics and laser optics.
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Radiation resistance of a crossed-loop antenna in a magnetoplasma
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Sources that are capable of exciting electromagnetic waves with helical phase fronts in a magne-
toplasma have recently been discussed in some detail, in particular with application to the whistler
frequency range which is important for numerous applications (see, e.g., [1] and references therein).
Such waves propagate both axially and azimuthally with respect to a static magnetic field superim-
posed on the plasma. As a result, they can carry orbital angular momentum along with the spin
angular momentum. Although the excitation of whistler waves with helical phase fronts has already
been studied experimentally in large plasma devices [2, 3], the radiation efficiency of the sources of
such waves still needs separate consideration.

In the present work, it is our purpose to analyze the radiation resistance of an antenna in the form
of two orthogonally crossed circular loops with quadrature-phased currents using an approach that is
based on an eigenfunction expansion representation of the excited field [4, 5]. The antenna is assumed
to be embedded in a cold collisionless magnetoplasma modeled upon the Earth’s ionosphere and can
excite waves with helical phase fronts, whose helicity type is determined by the sign of the phase
shift, π/2 or −π/2, between the currents in the loops. The emphasis is placed on calculating both
the total radiation resistance and the distribution of the radiated power over the spatial spectrum
of the excited waves in the resonant part of the whistler frequency range. Analytical and numerical
results will be reported for the radiation characteristics of such an antenna as functions of its size
and the plasma parameters. The results obtained can be useful in understanding the basic features
of exciting whistler waves with helical phase fronts in a magnetoplasma.

Acknowledgments. This work was supported by the Russian Science Foundation (project No. 20-
12-00114). Development of some numerical codes used for calculations was supported by the Ministry
of Science and Higher Education of the Russian Federation (project No. 0729-2020-0040).
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Numerical simulation of time-fractional diffusion-wave processes applied
to communication in bacterial populations

Kuttler Ch.1, Maslovskaya A.G.2, Moroz L.I.2
1Munich Technical University, Boltzmannstr. 3, 85747 Garching, Germany
2Amur State University, Ignatyevskoe Shosse 21, 675027 Blagoveshchensk, Russia
e-mail: maslovskayaag@mail.ru

In recent years, fractional calculus has provided promising scientific tools in the analysis of re-
search problems in physics, engineering, biology, and economics. In many practical cases, fractional
differential equations can be used to describe complex processes in more accurate way than the clas-
sical integer equations. In addition, the fractional differential theory is considered as a generalization
of the integer analogue. Deterministic approaches (in particular, time-dependent PDEs equations)
are widely used in mathematical biology and in silico researches. Here we consider a class of models
of biological systems, namely, bacterial communities. In this concept, a bacterium is not considered
to be a simple and primitive microorganism, the collective behavior of a bacterial community due
to the “quorum sensing” regulation is realized. Bacterial resistance to antibiotics resulting from the
quorum sensing causes the increasing challenges in medicine.

The various models of the bacterial quorum sensing formalized by “reaction-diffusion” PDEs have
been proposed previously. For instance, the hybrid fractional-stochastic model is described in [1].
The experimental data suggest the appearance of time-dependent fluctuations of signal substances
providing the quorum sensing during the bacterial population dynamics [2]. In this way, we can intro-
duce the time-fractional diffusion-wave modification of the quorum sensing model as a generalization
of the classical model in order to analyze different dynamical regimes of the biological system. The
current study is aimed at developing numerical techniques to solve the time-fractional diffusion-wave
problem with application to bacterial communication processes. The semilinear model is governed
by a time-fractional diffusion-wave partial differential equation:

∂αu

∂tα
= Du

∂2u

∂x2
− γuu− γL→uLu+ F1(x, u),

∂αL

∂tα
= DL

∂2L

∂x2
− γLL+ F2(x, u), 0 < x < l, t > 0,

(1)

where u(x, t) and L(x, t) are the concentrations of special substances produced by bacteria; l is linear
size of the domain solution; Du, DL, γu, γL, γL→u are the model parameters; the production terms are
defined by the normal distribution and the Hill’s law; α is the order of fractional derivative in Caputo
sense, for 0 < α < 1 the equation (1) is referred to as the subdiffusion equation, α = 1 corresponds
to the ordinary diffusion; where as for 1 < α < 2 the equation (1) is the superdiffusion equation;
α = 2 characterizes the wave regime or “ballistic diffusion”. The equation (1) is combined with the
corresponding initial and boundary conditions. To solve the problem numerically, we derived an
implicit computational scheme using the finite-difference approximation of Caputo derivative, and
an iterative procedure in view of the nonlinear reaction term. Computational experiments were
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performed to estimate time-dependent characteristics of bacterial quorum process. The developed
approach allows generalizing and essentially expanding diffusion-wave computational models applied
for simulation of dynamical biological system.

The reported study was funded by Russian Foundation for Basic Research, project number 20-
31-90075.
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Frame-based Gaussian beam shooting analysis of monostatic scattering
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This work is aimed at taking advantage of paraxial Gaussian beam properties to analyse very
large monostatic scattering problems.

In the first step of the proposed frame-based Gaussian beam shooting algorithm, the incident
field is expanded into superpositions of frame windows [1] on the planar faces of a surface exterior
to the scattering environment. Each frame window radiates in the form of a Gaussian beam, which
propagates from the first to the last reflecting surface through multiple bounces, in as much as the
initial frame window parameters guarantee sufficient paraxiality of the radiated beam. This first step
yields a frame-based transfer function of the scattering environment.

In the second step, the scattering cross section (SCS) is computed on a grid of directions. Due
to their spectral confinement (down to a given threshold), only a small number of Gaussian beams
contribute to each incident plane wave and to the corresponding scattered one in the opposite direc-
tion. Hence the complexity of the proposed algorithm is expected be O(BN), with B the maximum
number of beam bounces and N = (kR)2 the usual large parameter (k is the wavenumber and R is
the radius of the circumscribing sphere).

Initial results of this research have been reported in [2], using “urban like” scenarios composed
of rectangular parallelepipeds, as shown in Fig. 1. In Fig. 2, the SCS of such an environment is
computed at the 0.01 m wavelength, for S = 25 m, W = 20 m, H = 24 m, and for various values of
the frame window width parameter L.

Fig. 1: “Urban like” scenario. Fig. 2: Computed SCS for various values of L.

This communication will present further results of this ongoing work, exploring the conditions for
given accuracy of the obtained results, by comparison with Physical Optics results, and discussing
experimental computational efficiency of the method.
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A model problem of fluid current in a deep canal with rigid walls
terminated by a sloping plane
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We study a problem of Neumann–Kelvin type that deals with current of a fluid in a canal of
fixed width and of infinite depth. The fluid moves along vertical rigid plane walls of the canal having
free surface F : y = 0, x > 0, 0 < z < b. The fluid flux meets a sloping ‘plane’ B: y = x tanα,
0 < z < b, y < 0, 0 < α < π/2, then goes under this surface B to infinity in depth. The potential
U of the velocity satisfies the Laplace equation [1], the boundary condition of the second order on
the free surface F , the inhomogeneous Neumann condition on B and a complementary condition at
x = y = 0. A Meixner’s type condition and conditions at infinity are also assumed.

The problem is actually two-dimensional because its solution is represented in the form U(x, y, z) =
cos(kz)u(x, y; k) with k = π/b. The unknown function u fulfills the modified Helmholtz equation
4u − k2u = 0, the second order boundary condition on half-line y = 0, x > 0, the inhomogeneous
Neumann condition on y = x tanα, y < 0, the complementary condition at the origin (at the edge),
and other necessary conditions. The behaviour of the solution at infinity is actually clarified after
getting an explicit solution of the problem at hand. To this end, the problem is solved by split-
ting of its solution into two separate modes i.e. in the form of linear combination of two solutions
of simpler auxiliary problems with the first order boundary conditions on the free surface F . The
unknown constants in the combination are then determined explicitely, in particular, by use of the
complementary condition at the edge.

Each of the auxiliary problems is solved in a traditional way by means of the Sommerfeld integral
representation and of reduction to a system of functional equations of Malyuzhinets type studied in
a class of meromorphic functions [2]. The closed form solution given as the sum of two modes is then
asymptotically evaluated at far distances from the edge. The questions of uniqueness of the solution
obtained are aslo addressed.
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Hilbert spaces of functions related to dynamical system with discrete
time associated with finite and semi-infinite Jacobi matrices.
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In [1, 2] the authors proposed a method of association of some special Hilbert spaces of analytic
functions with one-dimensional dynamical systems. Among others there have been considered the
dynamical system with discrete time associated with finite Jacobi matrices. Now we use this method
to study the case of semi-infinite Jacobi matrices.
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Asymptotics of one-dimensional standing long waves on shallow water
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We consider one-dimensional shallow water equations (see [1, 2]) and look for periodical formal
asymptotic solutions in the two case: (a) the basin with two shores, (b) the basin with one shore
and vertical wall on the other side. The nonlinear problem is considered in the interval with variable
boundary. We consider coordinate transform similar to linearized Carrier–Greenspan transform [3]
that “fixes” the boundary. For resulting system periodical formal asymptotics can be constructed
as asymptotics of linearized shallow water equations from [4]. The error of such formal asymptotics
appears to be small in the case when nonlinear waves does not break.

Constructed asymptotics are compared with experimental results and fit well. Standing waves in
experimental vessel (similar to [5]) are induced by vertical oscillations with parametric resonance. We
consider two shapes of bottom (a) parabolic (asymptotics are defined using the Legendre polynomials)
and (b) slopping with vertical wall. Considered approach provides effective analytical-numerical
algorithm for finding approximate solutions.

This study is supported by RSF grant 19-11-13042 and results were obtained together with
S.Yu. Dobrokhotov, V.A. Kalinichenko and V.E. Nazaikinskii.
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Elastic surface waves on a coated vertically inhomogeneous half-space
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This study is focussed on surface waves on an isotropic elastic half-space coated with a thin,
vertically inhomogeneous coating layer, subject to prescribed vertical surface stress. The material
properties of the coating, including the Lamé elastic parameters and the volume mass density, are
assumed to be dependent on the vertical coordinate. The effective boundary conditions, replacing the
effect of a thin inhomogeneous coating layer, are first discussed. Then, the explicit hyperbolic-elliptic
model for surface waves is formulated, developing the methodology in [1]. The main feature of the
model is a singularly perturbed wave equation for the elastic potential on the interface between the
layer and the substrate, acting as a boundary condition for the elliptic equation governing decay over
the interior. The developed asymptotic formulation is then implemented, allowing simplified analysis
of the near-resonant regimes of the moving load.
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Holmgren–John unique continuation theorem for viscoelastic systems
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We consider Holmgren’s uniqueness theorem for a partial differential equation with a memory
term when the coefficients of the equation are analytic. This is a special case of the general unique
continuation property (UCP) for the equation if its coefficients are analytic. As in the case in the
absence of a memory term, the Cauchy–Kowalevski theorem is the key to prove this. The UCP is
an important tool in the analysis of related inverse problems. A typical partial differential equation
with memory term is the equation describing viscoelastic behavior. Here, we prove the UCP for the
viscoelastic equation when the relaxation tensor is analytic and allowed to be fully anisotropic.

Numerical study of focusing ultrasonic spherical transducers from porous
piezoceramics with multielectrode covering of same area

Nasedkin A.V.
Southern Federal University, Miltchakova str. 8a, 344090, Rostov on Don, Russia
e-mail: nasedkin@math.sfedu.ru

The paper considers a focusing piezoelectric transducer in the form of a spherical segment with
technological hole in the center. This transducer is designed to generate high-intensity ultrasonic
fields with controllable characteristics in the focal spot in the external acoustic medium.

To enhance the efficiency of the acoustic wave excitation, porous piezoceramics is suggested as an
active material for the transducer. As is well known, the best correspondence between impedances
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of the porous piezoceramics and the acoustic medium allows avoiding the use of the set of transi-
tion layers, which considerably complicate manufacturing and assembly of the spherical transducers.
Partial control of the characteristics of the focal spot in the acoustic medium can be implemented
by applying to one spherical surfaces the system of split electrodes with saw cuts and by setting
different values of the electric potentials for individual electrodes of this system. The saw cuts were
applied in such a way that all the split electrodes were had the equal areas. This split electrode
system were allowed to shift the position of the initial focus on the pre-defined distance, by using
the harmonically changing values of electric potentials with phase shifts on the electrodes.

The simulation of piezoelectric transducers was done with the use of multiscale finite element
technologies. At microlevel we determined averaged properties of porous piezocermics on the base of
the complex approach that includes the methods of the effective moduli and finite elements, different
models of representative volumes and algorithms for the computations of the fields of inhomogeneous
polarization [1]. The porous piezoceramic was further considered as a macrohomogeneous piezoelec-
tric medium with effective characteristics. Then the solid and finite element models of spherical
piezoelectric transducers with thickness polarization, multielectrode coverage and cuts between elec-
trodes were built. Further, we carried out computations for determination of the electric resonances
and antiresonances frequencies of the thickness modes, mode shapes and electric impedance frequency
characteristics. At the next stage we investigated the models of piezoelectric transducers submerged
into acoustic media. We also constructed finite element models of the whole system and computed
the focal zone in acoustic medium for harmonic mode and for transient processes. All the models were
implemented in computational package ANSYS. The calculation results allow us to conclude that the
number of split electrodes substantially affect on the ability of the shift of the initial focus and on the
intensity of the acoustic pressure in the shifted focus. It was noted that the multi-electrode coating
allows to control the view of the focal area at the working acoustic medium and, thus, improve the
efficiency of the transducer with a powerful ultrasound. Continuing research [2], here we carried out
a comparative analysis of piezoelectric transducers made of porous piezoelectric ceramics of various
porosities and studied non-stationary modes of operation of the considered piezoelectric transducers.

Author acknowledges the support of the Government of the Russian Federation (contract No. 075-
15-2019-1928).
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Symmetric wedge wave in an elastic solid
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Along with bulk and surface waves (a fair example of the latter is the Rayleigh wave in half-
space), wedge waves comprise a fundamental type of oscillations of solids and are intensively studied
in geophysics, machine building, civil engineering etc.

First theoretical results on waves propagating along the edge of a wedge were obtained by numer-
ical simulations. Then these waves were studied analytically at the physical level of rigor by many
authors, mostly for small interior angles (slender wedge) and interior angles slightly less then π.
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The first rigorous proof of existence of the wedge wave was obtained in the pioneering paper [1]
by variational method for interior angles less then π

2
. Then the idea of [1] was developed in [2] where

the range of aperture angles was enlarged.
We prove the existence of a symmetric wedge mode in an elastic deformable wedge for all ad-

missible values of the Poisson ratio σ ∈ (−1, 1
2
) and interior angles close to π, see Fig. 1, where

ε = tan(α).

Fig. 1: The cross section of isotropic homogeneous elastic wedge.

Theorem. For any σ ∈ (−1, 1
2
), one finds ε0 such that for any 0 < ε < ε0 there exists a symmetric

wedge wave decaying exponentially w.r.t. the distance from the edge. This wave propagates along
the edge with the velocity cw which has the following asymptotics as ε→ 0:

c2
w = c2

R(1− ε2ϑ+O(ε
5
2 )), (1)

where cR is the velocity of the Rayleigh wave whereas ϑ > 0 is an explicit coefficient depending on
σ only.

The talk is based on the paper [3]. The study of the second author was supported by the Russian
Science Foundation, grant no. 17-11-01003.
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Eigenvalues and threshold resonances in a quantum waveguide
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In the unit strip the spectral mixed boundary-value problem

−∆u`(y, z) = λ`u`(y, z), (y, z) ∈ Π = R× (0, 1),

u`(y, 0) = 0, y ∈ R, u`(y, 1) = 0, |y| > `, ∂zu
`(y, 1) = 0, |y| < `,

(1)

is considered where ` > 0 is a large parameter. This problem appears as a result of imposing
artificial Neumann condition at the interval (−`, `) × {1} ⊂ ∂Π, through which two unit planar
quantum waveguides are coupled, and attracts attention for a long time, see [1–4]. The following
asymptotic results will be presented and explained in the talk:
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• Miscellaneous asymptotic forms for eigenvalues in the discrete spectrum σ`d ⊂ (0, π2) of problem
(1) under variation of the parameter `;
• Estimate of multiplicity #σ`d the discrete spectrum as `→ +∞.
Since the multiplicity #σ`d grows unboundedly when ` → +∞, there is the sequence {`∗n}n∈N

of the critical lengths, for which problem (1) with the threshold parameter λ = π2 gets a bounded
solution and, therefore, the threshold resonance [5] occurs.
• Asymptotics of the critical lengths will be presented as n→ +∞.
It is remarkable that the main tool to investigate the quality of the threshold resonances in problem

(1) becomes differentiation along the boundary and manipulation with singularities of solutions at
the endpoints (±`, 1) of the Neumann window.

This work was performed under financial support of Russian Science Foundation (project 17-11-
01003).
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Spectra of Steklov and Robin–Laplace-problems in bounded, cuspidal
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It is well-known by works of several authors that the spectrum of the Neumann–Laplace operator
may be non-discrete even in bounded domains, if the boundary of the domain has some irregularities.
In the same direction, in a paper in 2008 the authors considered the Steklov spectral problem in a
bounded domain Ω ⊂ Rn, n ≥ 2, with a peak and showed that the spectrum may be discrete or
continuous depending on the sharpness of the peak. Later, we proved that the spectrum of the Robin
Laplacian in non-Lipschitz domains may be quite pathological since, in addition to countably many
eigenvalues, the residual spectrum may cover the whole complex plain.

We have recently complemented this study in two projects, where we consider the spectral Steklov-
and Robin–Laplace-problems in a bounded domain Ω with a peak and also in a family Ωε of domains
blunted at the small distance ε > 0 from the peak tip. The blunted domains are Lipschitz and the
spectra of the corresponding problems on Ωε are discrete. We study the behaviour of the discrete
spectra as ε→ 0 and their relations with the spectrum of case with Ω. In particular we find various
subfamilies of eigenvalues which behave in different ways (e.g. “blinking” and “stable” families) and
we describe a mechanism how the discrete spectra turn into the continuous one in this process.
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Fig. 1: Cuspidal peak and blunted domains.
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Edge diffraction of acoustic waves by periodic composite metamaterials:
the hollow wedge
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Normally in metamaterial research, some form of infinite periodicity is assumed which allows us
to restrict the study to a small portion known as the unit cell. This has led to many studies which
increase the complexity of the unit cell and reconstruct the global scattering using the periodicity of
the metamaterial. An alternative approach looks into the case where infinite periodicity is no longer
assumed. This means that the metamaterial will have well-defined boundaries that can symbolise
many different interfaces such as edges and corners.

In this presentation, the scattering of an acoustic pressure wave by a hollowed out wedge is
studied where, for simplicity, the unit cells will be sound-soft cylinders with infinite height and a
small radius. This configuration can also be viewed as two separate semi-infinite gratings with two
sets of scattering coefficients to determine. We will construct an iterative scheme from the resulting
infinite system of equations and find a solution using the discrete Wiener–Hopf technique. We shall
also discuss some tools that are useful for computations such as tail-end asymptotics and rational
approximations.

Fig. 1: Diagram of the hollow wedge with scatterers located at Rn and the incident wave ΦI

(in terms of the spacing s, the wedge angle α and the incident angle θI).
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Multipoint formulas for inverse scattering at high energies
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We consider inverse scattering for the multidimensional Schrödinger equation with smooth com-
pactly supported potential v. We give explicit asymptotic formulas for the Fourier transform v̂(p)
at fixed p in terms of the scattering amplitude f at n points at high energies. The precision of these
formulas is proportional to n. To our knowledge these formulas are new for n ≥ 2, whereas they
reduce to the Born formula at high energies for n = 1. This talk is based, in particular, on references
[1] and [2].
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Time-domain wave propagation in layered media

J.R. Ockendon, H. Ockendon, C.L. Farmer
University of Oxford, UK
e-mail: ock@maths.ox.ac.uk

This talk will consider some models for wave propagation in layered composites when the layers are
thin compared to the propagation distance. Such problems have been addressed by homogenisation
theory over the past 30 years. We will describe some examples in which the asymptotic behaviour
can be deduced from exact but complicated integral representations and, in the case of ‘Goupillaud’
materials, the asymptotic solution is compared with exact numerical solutions.

Most of the models will be amenable to asymptotic analysis using the method of multiple scales
in appropriate regions of space and time. In one-dimensional periodic problems the Goupillaud
property allows operational calculus to be used to derive integral representations of the solution.
These confirm that, over long enough times, the dominant response to an initial impulse is described
by a dispersed wave form involving Airy functions.

When homogenisation theory is applied to waves propagating along periodic layers in a two-
dimensional material, it reveals how energy exchange between the layers again eventually results in
a dispersed wavefield.

The talk will conclude with the numerical solution of one-dimensional waves in a random Goupil-
laud medium.
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Finite element methods for inverse initial source and control problems
subject to the wave equation
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University College London, Gower Street, London UK, WC1E 6BT
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Fields Institute, 222 College St, Toronto, Canada, M5T 3J1
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There is a well-known duality between inverse initial source problems and control problems for
the wave equation, and analysis of both these boils down to the so-called observability estimates (see
[1–3]). I will present recent results on numerical analysis of these problems.
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On resolvent approximations for elliptic high order operators
with periodic coefficients

Pastukhova S.E.
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We study homogenization of a fourth-order elliptic operator Aε with measurable ε-periodic coef-
ficients in d space dimensions (d ≥ 2), where ε is a small positive parameter tending to zero. Such
kind of operators arise, for instance, in elasticity theory on thin plates made of composite materials
with ε-periodic structure; the case d = 2 is the most important for applications. We find an approx-
imation for the resolvent (Aε + 1)−1 in the operator (L2(Rd)→L2(Rd))-norm with remainder term
of order ε3. This result relies in an essential way on the approximation of the resolvent (Aε + 1)−1

in the energy operator norm, that is, (L2(Rd)→H2(Rd))-norm, with ε2 order remainder term. The
latter approximation (in the energy operator norm) itself is of interest; it has been recently proved
in [1]. Formerly, resolvent approximations for high order elliptic operators in the energy operator
norm were known only with ε order remainder term (see, e.g., [2]). The larger preciseness of the
resolvent approximation in the energy operator norm can be attained thanks to the new type of
ansatz in powers of the parameter ε, which is proposed in [1]. To obtain the resolvent approximation
of ε3 order in the (L2→L2)-norm from the resolvent approximation of ε2 order in the energy operator
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norm, we follow the scheme applied in [3] to derive the resolvent approximation of ε2 order in the
(L2→L2)-norm from the resolvent approximation of ε order in the energy operator norm. All the
above approximations are constructed under minimal regularity assumptions on the data; and that is
why they make sense, generally, due to smoothing operators involved in them. Among the smoothing
operators, we exploit mostly Steklov’s averaging operator and its iterations. Besides, the usage of
smoothing in our ansatz plays a crucial role in the proof of estimates for the remainder terms. This
approach was firstly proposed in [4, 5] and is widely used now to obtain operator-type estimates for
homogenization error.
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A strict mathematical problem for quasiphotons

Perel, M.V.
Saint Petersburg State University, 7/9, Universitetskaya embankment, Saint-Petersburg, 199034
e-mail: m.perel@spbu.ru

Quasiphotons are asymptotic localized solutions of the wave equation with a smoothly varying
wave speed constructed in [1, 2]. These solutions are localized according to the Gauss law near a
point running along the geometrical-optical rays with the speed of the waves. In [3], any solution of
the wave equation in the half-plane with boundary data from a wide class was decomposed in terms
of quasiphotons. The crucial point was the expansion of the boundary data of solutions in terms of
the boundary data of quasiphotons. However quasiphotons do not vanish as time tends to infinity,
and thus the respective boundary value problem was not posed well-posed as a mathematical one.
However, as shown in [4], localized solutions with a proper localized behavior exist for a homogeneous
medium and are not unique.

The problem here is to state a well-posed mathematical problem for the solution of the initial-
boundary value problem for the wave equation in the half-plane with initial data specified as time
tends to minus infinity. We describe the functional class in which the solution of this problem should
be sought. We describe a class of data for which the existence and uniqueness are ensured. Some
stability conditions are found.

The technique is based on the known results for initial-boundary value problems on a bounded
time interval [5].

I thank E.A. Gorodnitskiy for useful discussions.
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Angular momentum of Airy beams under diffraction
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In the paraxial approximation, it is usually assumed that an elliptically polarized electromagnetic
wave has an electric and magnetic field perpendicular to the direction of propagation. This means
neglecting the small longitudinal components of these fields which are of the first order of smallness
in the angle of divergence with respect to the transverse components. Only when they are taken into
account the electric field strength and magnetic induction satisfy two scalar Maxwell’s equations.
The longitudinal components of the electric and magnetic fields lead to the appearance of the first-
order corrections for such quantities as the Umov–Poynting vector and the angular momentum of
the electromagnetic field.

In this paper, the orbital and spin components of the angular momentum of the electromag-
netic field are found for a two-dimensional elliptically polarized Airy beam. The choice of the beam
is associated with its diffraction-free propagation in a homogeneous linear medium in the paraxial
approximation. Due to this, diffraction effects appear only as corrections of the first order of small-
ness [1]. For a linearly polarized beam, the appearance of the spin angular momentum is solely due
to diffraction and is absent in the main order solution.

The propagation of a linearly polarized Airy beam in a photorefractive medium with diffusion
nonlinearity [2–4], in which it propagates without diffraction, is also considered. The dependence
of the spin angular momentum on the characteristics of the photorefractive medium and on the
conditions of diffusion nonlinearity creating is analyzed in detail.
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Solving diffraction gratings synthesis problems with multiperiodic profile
using gradient-based methods
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Diffraction gratings are widely applied in laser technology, spectroscopy, space research and many
other fields of modern science and technology [1]. Being used in different optical systems, diffraction
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gratings have to meet different requirements. In most cases a grating should have maximal possible
diffraction efficiency in certain diffraction orders. This required characteristic can be obtained by
choosing the grating profile shape, since it is the profile geometry that mostly determines the efficiency
with which light is diffracted in each order. To find the optimal parameters before a diffraction grating
is produced a diffraction grating synthesis problem should be solved.

In last decades, diffraction gratings with more complex profile, in particularly, with miltiperiodic
profile when grating period is divided into several number of equals parts, are often applied for
various purposes. For example, the binary blazed grating with such profile geometry can be used
to imitate properties of the transmission blazed grating with a sawtooth profile for protecting the
optical imaging systems of infrared guided missiles from damage due to its simplicity of producing [2].
At terahertz range such profile geometry of a metallic reflection grating allows to significantly reduce
the backscattering [3].

This work focuses on the problems of diffraction grating synthesis with multiperiodic profile. From
mathematical point of view the diffraction grating synthesis problems are optimal control problems
and are formulated as a minimization problem for the cost functional which depends on grating
geometry parameters called control parameters. Herewith, the cost functional is constructed in a
way such that its minimum corresponds to a maximal value of the diffraction efficiency in a desired
reflection or transmission diffraction order. To minimizing the cost functional a gradient-based
method with a gradient being computed through obtaining the solution of the adjoint problem [4]
is applied. It is the most stable method with respect to the increase of the number of the control
parameters, and its convergence to the optimal solution is mathematically justified [5]. In prospect
this allows one to consider a rather general formulation of the synthesis problem, in which the optimal
shape of the grating profile can be obtained directly as a result of solving the problem without any
special a priori assumptions (besides practical realization).
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New concept of the surface waves of interference nature: creeping waves

Popov M.M.
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191023, Russia
e-mail: mpopov@pdmi.ras.ru

In the paper [1] a new concept of the surface waves of interference nature, propagating in a
smooth, strictly convex surface Σ embedded in R3, was proposed and described for the whispering
gallery waves. Present report is an extension of this paper and it is devoted to the creeping waves,
propagating on the convex side of Σ embedded in 3D Euclidean space. Similar to whispering gallery
waves, they slide along geodesic flow on a Σ and inherit the 3D problems: torsion of the geodesic
lines and the wavefield singularities on their caustics.
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The main ideas of our theory remain, in principle, the same. Let ~r = ~r(s, γ) be the flow of
geodesic lines associated with the creeping wave, where ~r is radius-vector in R3, s is arc length of the
geodesic line and γ is a parameter, which specifies the geodesic line in the flow. For each geodesic
we construct a specific solution of the Helmholtz equation, concentrated in a tubular vicinity of the
selected geodesic line but which has no singularities on the caustics. At this step we make use of the
main ideas of the theory of creeping waves in 2D case: scaling of local coordinates in the neighborhood
of the geodesic and main oscillating factors of the ansatz, see [2]. The asymptotics of total wavefield is
presented as a superposition, or better to say, an integral over γ of the localized solutions. Evidently
the integral has no singularities on caustics and arising algorithm of the wavefield calculations does
not depend on an observation point.

We would like to emphasize the resemblance of our theory of creeping waves and Gaussian beam
summation method, see [3, 4].
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Spectrum of Laplacians on periodic graphs with waveguides

Saburova N.Yu.
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e-mail: n.saburova@gmail.com

We consider discrete Laplace operators on periodic graphs perturbed by guides (i.e., graphs which
are periodic in some directions and finite in other ones). For example, for planar graphs, the guide is
a periodic graph embedded into a strip. The spectrum of the Laplacian on the unperturbed periodic
graph is a union of a finite number of non-degenerate bands and eigenvalues of infinite multiplicity.
It is known [1] that the spectrum of the perturbed Laplacian consists of the unperturbed one and the
guided spectrum created by the perturbation. This additional guided spectrum is also a union of a
finite number of bands and the corresponding wave-functions are mainly located along the guides. The
guided spectrum may partly lie above the spectrum of the unperturbed operator, on this spectrum
and in gaps of the unperturbed problem. The guided spectrum lying above the spectrum of the
unperturbed operator was studied in [1]. Our goal is to study the guided spectrum in gaps of the
unperturbed problem. We estimate the number and the positions of the guided bands in gaps in
terms of eigenvalues of Laplacians on some finite graphs. We also determine sufficient conditions for
the perturbations of the periodic graphs under which the guided bands do not appear in gaps of the
unperturbed problem.
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Study of the Doppler spectrum of surface reverberation using numerical
simulation

Salin M.B., Razumov D.D., Dosaev A.S.
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Russia
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Previously, we have proposed an original modification of the boundary element method (in 2D),
which makes it possible to simulate the scattering of sound on the surface of water in a deep sea
without imposing restrictions on the shape of the surface. It was demonstrated that the method
cope with not small Rayleigh parameters, shading and multiple scattering [1, 2]. This time, we use
the surface obtained by hydrodynamic modeling as a soft boundary in acoustic modeling.

To simulate the sea surface we use the direct method for numerical simulation of potential flows
with a free surface of two-dimensional fluid proposed by Zakharov and Dyachenko [3]. As input, we
take the empirical energy spectrum of wind-generated waves S(f), which sets the initial surface. The
system of transformed Euler equations is numerically integrated to get how the surface evolves from
the initial state.

The subject of our interest is the sound of the middle frequency range from 1 to 5 kHz, which
scattering significantly depends on the state of the sea surface.The purpose of this study is to re-
produce some of the effects that are observed in experiments (such as not observing the Bragg peak
with sufficiently developed waves [4]). We get the pressure field, the backscattering strength, Doppler
spectrum depending on the angle of incidence and scattering angle at different wind speed and com-
pare our data with the predictions of classical models such as resonant scattering of sound or the
two-scale model and with empirical dependences.
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On some spectral problems in relative elliptic theory

Savin A.Yu., Semenova E.N.
Peoples’ Friendship University of Russia (RUDN University), Mikluho-Maklaya 6, Moscow
e-mail: a.yu.savin@gmail.com, semenova54380@gmail.com

Relative elliptic theory is the theory of elliptic operators associated with pairs (M,X), where X
is a submanifold in an ambient manifold M . Many aspects of relative elliptic theory were studied
systematically by B.Yu. Sternin and his coauthors (e.g., see [1,2]). In this talk, we focus on self-
adjoint extensions of symmetric problems in relative theory. In particular, we describe explicitly the
Friedrichs extension.



DAYS on DIFFRACTION 2021 65

The work is supported by RFBR (grant No. 19-01-00574a).

References

[1] B.Yu. Sternin, Elliptic and parabolic problems on manifolds with a boundary consisting of com-
ponents of different dimension, Tr. Mosk. Mat. Obshch., 15, 346–382 (1966).

[2] V. E. Nazaikinskii, B.Yu. Sternin, Relative elliptic theory, in Aspects of Boundary Problems in
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Asymptotic solution for the explicit difference scheme
for the wave equation

Sergeev S.A.
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We study solution of the explicit difference scheme for following wave equation with localized
initial data

utt(x, t)− 〈∇, c2(x)∇〉u(x, t) = 0, u|t=0 = V (x/µ), ut|t=0 = 0, x ∈ R2.

Function c(x) is smooth, bounded and strictly positive function, parametr µ� 1 is the localization
parameter.

Let us denote the lattice step by both directions as h. The solution of the difference scheme
crucially depends on the ratio h/µ. We want to study the behavior of this solution depending on
this ratio.

It is well known that for difference scheme one can match the pseudo-differential equation [1–3].
Solution of such equation is the continuous function and its reduction on the lattice gives us the
solution of the difference scheme. Maslov canonical operator provides analytical asymptotic formulas
for the solution of such equation.

In our case we restrict ourself to the leading wave front and the leading wave, which is localized in
the vicinity of this front [2]. Asymptotic formulas for such wave can be expressed via Airy functions
and their derivations. In some cases these asymptotic formulas can be presented with the help of
Jacobi theta-functions.

Such analytical representation of the asymptotic formulas provide convenient method for analysis
of the solution of the difference scheme.

This study is supported by RSF grant 16-11-10282.
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Short-wave asymptotic solutions of the wave equation with localized
perturbations of the velocity
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To describe the propagation of waves in media containing localized rapidly changing inhomo-
geneities (e.g., narrow underwater ridges or pycnoclines in the ocean, layers with sharply changing
optical or acoustic density, etc.), it is natural to use the wave equation with a small parameter char-
acterizing the ratio of the scales of the localized inhomogeneity and of the general change of velocity
(e.g., of the thickness of a pycnocline to the external typical scale of changes in ocean density). We
describe the propagation of wave packets whose characteristic wavelength is comparable with the
scale of inhomogeneity. The results are published in [1].
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Semiclassical asymptotics of the solution to the problem of scattering
of Gaussian beams on a delta-potential
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In the present work we consider the Cauchy problem for the Schrödinger equation with a delta
potential localized on a surface M of codimension 1. In this problem the Schrödinger operator is
defined as a self adjoint extension of the Schrödinger operator with a smooth potential restricted
to the functions vanishing on M . The domain of the operator requires boundary conditions for the
solution on the surface M (y ∈M):ψ(y − 0, t) = ψ(y + 0, t),

h( ∂ψ
∂m

(y − 0, t)− ∂ψ
∂m

(y + 0, t)) = q(y)ψ(y, t).

We describe the reflection of a Lagrangian manifold with complex germ and construct an asymp-
totic solution, using Maslov complex germs theory. The asymptotic is expressed as a linear combi-
nation of WKB asymptotic solutions with complex phases, corresponding to the incident, reflected,
and transmitted waves. The main terms of the asymptotics are obtained.
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A wave-related integral identity for solutions of Heun equation
and for other special functions

Shanin A.V.
Lomonosov Moscow State University, Department of Physics, Leninskie gory, Moscow, Russia, 119992
e-mail: a.v.shanin@gmail.com

The aim of this talk is to demonstrate that a known integral identity for solutions of the Heun’s
equation can be interpreted in terms of wave processes described in separated variables. As an
example, we consider a 2D problem of diffraction by a segment. We separate the variables for the
Helmholtz equation in the elliptic coordinates. For each separation constant, the field is a product
of two Mathieu functions. We make an observation that the field on a segment is expressed in terms
of a Mathieu function, and, beside, the directivity of the field is expressed in terms of the same
function. As it is known, the function on the obstacle is connected with the directivity via the
Fourier transform, and this provides the integral relation for the Mathieu function.

Carcasses of dispersion diagrams and pulses in waveguides

Shanin A.V., Korolkov A.I., Kniazeva K.S.
Lomonosov Moscow State University, Department of Physics, Leninskie gory, Moscow, Russia,
119992;
Prokhorov General Physics Institute of RAS, Vavilova st. 38, Moscow, Russia, 119991
e-mail: a.v.shanin@gmail.com, korolkov@physics.msu.ru

The problem of finding the pulse response of a thin-layered waveguide is studied. The waveguide
is described by the matrix Klein–Gordon equation. The field is represented as a sum of Fourier
integrals. This representation is interpreted as a contour integral on the complex manifold, that is
the dispersion diagram of the waveguide. The saddle-point method is applied to the integral. All
possible positions for the saddle points form the so-called carcass of the dispersion diagram. The
carcass is the set of points at which the group velocity is real. We demonstrate different types of
the carcass for the simplest non-trivial bi-layered waveguide. The complex branches of the carcass
correspond to different types of transient pulses.

The study has been funded by the RFBR grant 19-29-06048.

Theoretical and experimental analysis of the piezo-induced Lamb waves
for identification of defects between a waveguide and surface-mounted

objects

Shpak A.N., Golub M.V., Fomenko S.I.
Institute for Mathematics, Mechanics and Informatics, Kuban State University, Krasnodar, 350040,
Russian Federation
e-mail: alisashpak7@gmail.com, m golub@inbox.ru, sfom@yandex.ru

Mueller I.
Institute for Mechanics, Mechatronics and Mechanical Engineering, Bochum University of Applied
Sciences, D-44801 Bochum, Germany
e-mail: inka.mueller@hs-bochum.de

Continuous monitoring of the structural health using acousto-ultrasonic methods is based on the
employment of the piezo-induced guided waves, propagating in the structure and interacting with
all kinds of structural defects. Applicability of the acousto-ultrasonic methods in damage detecting
is confirmed by numerous scientific investigations; methods for signal processing and corresponding
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damage indices have been developed. However, to proceed from the research field to the industrial
field, some problems are to be addressed. Particularly, the reliability of the monitoring system must
be estimated in terms of the probability of detection of any damage with the stated size with a
certain confidence level. The performance of such analysis is either related to enormous expenses or
impossible due to the uniqueness of the inspecting structure. Therefore, it is necessary to employ
mathematical models to evaluate responding signal alteration due to various defects. A debonding
between the structure and surface-mounted objects, such as piezoelectric transducers and structural
stiffeners is investigated and analysis of wave motion is performed using a mathematical model.

A hybrid mathematical model [1] is extended here and employed to simulate Lamb wave excitation
and sensing via rectangular piezoelectric-wafer active transducers mounted on the surface of an elas-
tic plate with rectangular surface-bonded obstacles (stiffeners) with interface defects. The model is
validated experimentally using laser Doppler vibrometry for fully bonded and semi-debonded rectan-
gular obstacles. A numerical analysis of fundamental Lamb wave scattering via rectangular stiffeners
in different bonding states is presented. Two kinds of interfacial defects between the surface-mounted
obstacle and the plate are considered: the partial degradation of the adhesive at the interface and an
open crack. Damage indices calculated using the data obtained from a sensor are analyzed numeri-
cally. The choice of an input impulse function applied at the piezoelectric actuator is discussed from
the perspective of the development of guided-wave-based structural health monitoring techniques for
damage detection.
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A Sobolev problem with nonlocal conditions on a Riemannian manifold

Sipailo P.A.1, Nazaikinskii V.E.2, Savin A.Yu.1
1RUDN University, 6 Miklukho-Maklaya, 117198, Moscow, Russia
2Ishlinsky Institute for Problems in Mechanics RAS, 101-1 Vernadsky Ave., 119526 Moscow, Russia
e-mail: sipaylo@gmail.com

A Sobolev problem is a (pseudo)differential problem on a closed smooth manifold for which the
boundary conditions are posed on a certain submanifold of arbitrary codimension. We deal with
a Sobolev problem on a Riemannian manifold whose boundary conditions include the weighted
spherical means operator. We study the Fredholm solvability of this problem. As part of the
solution, we obtain an expression of the weighted spherical means operator in the form of a Fourier
integral operator associated with two-sided geodesic flow.

This work was supported by RFBR Grant 19-01-00574 A.

New class of the finite-gap Fuchsian equations

Smirnov A.O.
St. Petersburg State University of Aerospace Instrumentation, Russia, 190000, St. Petersburg, Bol-
shaya Morskaya str., 67A, Department of Advanced Mathematics and Mechanics
e-mail: alsmir@guap.ru

About 20 years ago [1, 2], a class of the finite-gap Heun equations have been proposed

d2y

dz2
+ P (z)

dy

dz
+Q(z)y = 0, (1)
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where

P (z) =
1

2

(
1− 2m1

z
+

1− 2m2

z − 1
+

1− 2m3

z − a

)
, Q(z) =

N(N − 2m0 − 1)z + λ

4z(z − 1)(z − a)
, (2)

N = m0 +m1 +m2 +m3, mi ∈ N0, λ, z ∈ C.
The algebraic genus of the corresponding spectral curve is

g = max

{
max
0≤j≤3

mj,
N

2
− min

0≤j≤3
mj

}
for even N,

g = max

{
max
0≤j≤3

mj,
N + 1

2

}
for odd N.

In 2006 [3], the coefficients (2) were slightly changed: an additional false singular point appeared.
The position of the fifth point z = b depends on the parameters a and mj, j = 0, . . . , 3.

In present work we consider the Fuchsian equation (1) with five regular singular points

P (z) =
1

2

(
1

z − 1
+

1

z + 1
+

1

z − k1

+
1

z + k1

)
, Q(z) =

−λ2 −Mλz + A1z
2 + A2z + A3

(z2 − 1)(z2 − k2
1)

, (3)

where λ is a spectral parameter,

M = g, A1 = −g(g + 2)

4
, A2 = 0, A3 =

g(1 + k2
1)

4
,

and g is an algebraic genus of the corresponding hyperelliptic spectral curve.
Examples of the finite-gap solutions to the equation (1), (3) for g ≤ 3 are given.
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Whispering gallery waves’ diffraction by boundary inflection: searchlight
asymptotics, wave operators, and an integral equation

Smyshlyaev V.P.
University College London, Department of Mathematics, Gower Street, London WC1E 6BT, UK
e-mail: v.smyshlyaev@ucl.ac.uk

We consider a long-standing problem of diffraction of a high-frequency whispering gallery wave
by boundary inflection. Like Airy ODE and associated Airy function are fundamental for describing
transition from oscillatory to exponentially decaying asymptotic behaviors, the boundary inflection
problem leads to an arguably equally fundamental canonical inner boundary-value problem for a spe-
cial PDE describing transition from a “modal” to a “scattered” high-frequency asymptotic behaviors.
This is a Schrödinger equation on a half-line with a potential linear in both space and time. The
latter problem was first formulated and analysed by M.M. Popov starting from 1970-s, and has been
intensively studied since then (see recent paper [1] for a review and some further references).

The associated solutions have asymptotic behaviors with a discrete spectrum at one end and
with a continuous spectrum at the other end, and of central interest is to find the map connecting
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the above two asymptotic regimes. We report recent result in [1] proving that the solution past the
inflection point has a “searchlight” asymptotics corresponding to a beam concentrated near the limit
ray. This is achieved by a a non-standard perturbation analysis at the continuous spectrum end, and
the result allows interpretations in terms of associated wave operators and of a scattering operator
connecting the modal and the scattered asymptotic regimes.

We also report some most recent progress on a reduction of the problem to one-dimensional
boundary integral equations and on their further analysis. The integral equations are of improper
weakly singular Volterra type of both first and second kinds (with appropriate jump conditions for
the latter), and can be shown to be well-posed. Their subsequent regularization allows to express the
solution in term of uniformly convergent Neumann series with some further benefits for the problem’s
asymptotic analysis.

Some parts of the reported work are joint with Ilia Kamotski, and with Shiza Naqvi.
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Simple unidirectional electromagnetic few-cycle pulses
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1Nevinpat, 7 Pirogova Ln., St. Petersburg 190000, Russia
2MIREA – Russian Technological University, 78 Vernadsky Av., Moscow 119454, Russia
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We present a family of simple electromagnetic finite-energy pulses, which are free of backward-
propagating components. The mathematical framework comprises using Hertz’s vector potential
built on the basis of the axisymmetric exact solution of the three-dimensional wave equation in a
linear isotropic medium [1, 2]

u+ =
1

S(z∗ − S)
, where S =

√
c2t2∗ − x2 − y2 , z∗ = z + iζ, t∗ = t+ iτ , (1)

with free real parameters ζ and τ . If fixing the branch of the square root so that S|x=0,y=0 =
√
c2t2∗ =

ct∗, the pulses propagate along the positive z-direction. The absence of singularities is ensured by
the condition ζ

τ
< c, where c > 0 is the speed of wave propagation in the medium.

Fig. 1: Transverse components of electric fields for (a) pancake, (b) ball, (c) needle, and (d)
doughnut pulses at x = 0 corresponding to (b),(d) real and (a),(c) imaginary parts of complex
wavefields obtained via Hertz’s potential based on u+ (1).
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Different ratios between the free parameters ζ and τ can yield, in particular, pancake, ball, and
needle pulses if Hertz’s potential is orthogonal to the z-axis. Furthermore, doughnuts are obtained
via longitudinally oriented Hertz’s potential – the technique feasible for any axisymmetric solution
(see, e.g., [3]).
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Propagation on broadband signals in shallow-to-deep scenario:
preservation and eventual loss of modal components’ identity

Sorokin M.A.
V. I. Il’ichev Pacific Oceanological Institute FEB RAS, 690041, Russia, Primorsky kray, Vladivostok,
Baltiyskaya str, 41;
Far Eastern Federal University, 690091, Russia, Primorsky kray, Vladivostok, Sukhanova str, 8
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In the presented study the modelling of acoustic field of propagating from the shelf to the deep
water is performed. Consider an model experimental path of length of 200 km was located in the
Sea of Japan, a source of signals was deployed on the shelf and a receiver was located in deep-water
part of the Sea of Japan. The propagation path consists of a 30 km long shallow-water part and a
150 km long deep ocean part.

Fig. 1: Acoustic field of separate mode No. 1.

In order to analyze modal arrival times and study the physics of propagation in this scenario
we performed separate simulation of the propagation of different modes formed by the source on
the shelf. Individual acoustic modes were used as an initial condition for wide-angled parabolic
equation, and acoustic acoustic field along the considered path was calculated. Interaction between
the modes was studied by performing modal decomposition of the resulting field. It is shown that
acoustic modes propagates almost adiabatically along the shallow-water part of the path, while in
the relatively small transitional area of the continental slope modal identity is erased due to strong
modal coupling. Despite that, modal components propagate with almost equal velocities along the
deep-water part of the path, and arrival times of individual modes can be associated, for example,
with individual peaks of impulse response of hydrophone.
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Heun’s differential equation, integral transformation and q-deformation

Takemura Kouichi
Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
e-mail: takemura.kouichi@ocha.ac.jp

Kazakov and Slavyanov have contributed greatly to the study of Heun’s differential equation and
related equations. In particular, they established Euler integral symmetries for the Heun equation [1]
and investigated relationship between the (deformed) Heun equation and the Painlevé VI equation [2].

On the other hand, the Euler integral symmetries for the Heun equation and the deformed Heun
equation were studied from the perspective of the middle convolution [3, 4].

A q-deformation of the Heun’s differential equation was found by Hahn [5], and it was rediscovered
in [6] by considering degenerations of the Ruijsenaars-van Diejen system. The q-Heun equation is
written as

{a0 + a1x+ a2x
2}g(x/q) + {b0 + b1x+ b2x

2}g(x) + {c0 + c1x+ c2x
2}g(qx) = 0,

under the condition a0a2c0c2 6= 0. Some basic properties of the q-Heun equation and its variants
were investigated in [7].

Recently we discovered a q-integral symmetry of the q-Heun equation [8], which was obtained by
applying a q-deformation of the middle convolution established by Sakai and Yamaguchi [9].
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On a two dimensional inverse source problem in a scattering medium
with partial boundary data

Alexandru Tamasan
University of Central Florida, USA
e-mail: tamasan@math.ucf.edu

This talk concerns an inverse source problem for the linearized Boltzmann equation in two di-
mensions. The medium is assumed known. The outgoing radiation is measured on an arc of the
boundary. For scattering kernels dependent on the angle of scattering, we show that a source can be
recovered in the convex hull of the measuring arc.

This is joint work with K. Sadiq of Radon Institute, Linz, Austria and H. Fujiwara of Kyoto
University, Kyoto, Japan.

Solution methods for the Helmholtz equation
within and across thin layers

Richard H. Tew
School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
e-mail: richard.tew@nottingham.ac.uk

Wave propagation within layered media and circumstances where rapid variations in the local
amplitude profile of a wave field occur across spatially ‘thin’ layers are both ubiquitous in nature
and have been the subject of close scrutiny for centuries.

Associated experimental and theoretical developments have gone hand-in-hand and some of the
mathematical challenges that have arisen have led to the formulation of mathematical techniques and
methodologies with wider-reaching applications, for example Keller’s celebrated Geometrical Theory
of Diffraction.

The purpose of this talk is to mention some of these developments and applications that have been
prominent over the last few decades and, wherever possible, to identify links between them. Those
chosen — which include (i) complex ray theory (ii) scattering by slender bodies (iii) Friedlander–
Keller ray expansions (iv) cloaking and (iv) scattering at points of inflection — do not form an
exhaustive list and these particular topics are chosen in part because they are amongst those most
familiar to the presenting author. It is hoped that this will engender an ongoing research dialogue
within the context of modern and applicable wave theory.

Nonlinear guided electromagnetic waves in circle cylindrical waveguide

Tikhov S.V., Valovik D.V.
Department of Mathematics and Supercomputing, Penza State University, Penza, Russia, 440026
e-mail: tik.stanislav2015@yandex.ru, dvalovik@mail.ru

The report focuses on the study of monochromatic electromagnetic wave propagation in a circle
cylindrical waveguide filled with nonlinear medium. The waveguide is a nonlinear dielectric layer on
a metallic rod with perfectly conducting coating on its outer surface. The metallic rod is of thickness
R1, the dielectric layer is of thickness R. Thus the waveguide can be considered as the so called
Goubau line of radii R2 = R1 + R with perfectly conducting coating. The dielectric permittivity
within the waveguide is described by the Kerr law and is characterized by the nonlinearity coefficient
α; coefficient α is assumed to be dependent on the radius of the waveguide. We look for guided
transverse-electric (TE) wave propagating in the dielectric layer. The guided waves are characterized
by propagation constants (PCs) that are solutions to a boundary eigenvalue problem for Maxwell’s
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equations with appropriate boundary conditions. Statement of the problem is similar to that given
in [1], where one just needs to replace interfaces at ρ = R1, R2 with perfectly conducted boundaries.

If α = 0, then the nonlinear problem degenerates into the linear one. It is well known that there
is only a finite number of guided TE waves in the linear problem, that is there is only a finite number
of PCs in this case.

If α is sufficiently small, then one can apply a classical perturbation approach to find “nonlinear”
PCs that are close to the corresponding linear solutions [1, 2]. Although this approach is quite simple
and commonly used in practice, it has at least two significant disadvantages. Firstly, this approach
is based on the usage of linear solutions (PCs) and, therefore, it cannot be applied if one wishes to
determine nonlinear solutions without linear counterparts. Secondly, it can be applied only for small
values of the nonlinearity coefficient.

In the paper we suggest a modern approach called the integral characteristic equation method
for studying the considered problem [3], which is essentially based on asymptotical evaluation of the
integral characteristic function. This approach does not have disadvantages mentioned above. To be
more precise, the method can be applied for arbitrary positive values of the nonlinearity coefficient α
and it allows one to prove existence of “nonlinear” PCs that do not have linear counterparts. In the
problem under consideration this approach allows proving existence of a novel type of guided waves
without linear counterparts. We also present numerical results and provide comparison between the
nonlinear and linear cases.

The work was financially supported by the Russian Science Foundation (grant no. 18-71-10015).
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Regularization of the boundary control method
via the mean curvature flow

Timonov, Alex
Steklov Mathematical Institute of the RAS (St. Petersburg branch);
University of South Carolina, USA
e-mail: altim@pdmi.ras.ru

The most remarkable feature of the Boundary Control Method (BCM) is that a nonlinear inverse
problem for a dynamical system is reduced to solving a system of algebraic linear equations with
the Gram matrix. However, the latter is extremely ill-conditioned in high dimensions. A novelty
is that a regularized mean curvature flow model is introduced and developed to stabilize numerical
implementations of the BCM.

Let G be a linear operator generated by the Gram matrix. Consider an operator equation Gu = v
in Banach spaces and assume that u is defined in a bounded domain Ω and it is smooth. To find
the regularized solutions, we minimize the Tikhonov functional Tα(u) = 1

2
‖Gu − v‖2

L2 + αS(u),
α > 0, in which the stabilizer S(u) is the norm in the space of functions of bounded variation, i.e.,
S(x) = ‖u‖BV (Ω) = ‖u‖L1(Ω) + E(u), and E(u) =

∫
Ω
|∇u| is the total variation of u. Based of the

Euler–Lagrange equation for Tα, the mean curvature flow problem

∂τuαε = gαε∇ ·
([
g−1
αε + α

]
∇uαε

)
−G∗(Guαε − v), gαε = (|∇uαε|2 + ε2)1/2, τ > 0, uαε = u0, τ = 0
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subject to the zero Neumann boundary condition is introduced. It is shown that for sufficiently
small ε > 0, α ∈ (0, 1) and at sufficiently large τ the regularized solutions uαε approximate u. The
computational effectiveness of the proposed approach is demonstrated in the numerical experiments.
One example of reconstruction of the mass density is shown below in comparison with the standard
Tikhonov H1-regularization.

Figure: Means of reconstructions for the smooth (left) and piecewise linear (right) model
density with the 10% level noise: the solid line – for the model density; asterisks – for the
Tikhonov H1-regularization; bullets – for the total variation minimization.
This work is supported in part by the National Science Foundation grant DMS-1818882.

Stability of equilibrium states of the Protosphera

Brunello Tirozzi, Paolo Buratti
Department of Physics, University of Rome “La Sapienza”, Italy
e-mail: brunellotirozzi@gmail.com, paolo.buratti@enea.it

We analyze the equilibrium states of a plasma with axial-symmetry located in a cylindrical vessel
V with an entrance for the gas (“gun”) and a positive and negative electrodes located respectively
at the top and the bottom of the vessel V . An example of such system is the Protosphera [1].
A magnetic field B acts in the plasma with magnetic energy

∫
V
dVB2/2µ0 much larger than the

pressure forces (force-free magnetic field). B satisfies the following condition inside V and is zero
outside

〈∇ ×B〉 = λB. (1)
These states are named Taylor states, they are characterized by a parameter λ. They are local
minima of the magnetic energy so their stability gives the stability of the plasma. We analyze the
case of nonlinear dependence of λ(ψ) with respect to the poloidal flux function ψ =

∫
S
dSB ·n where

S is a surface orthogonal with respect to the z axis. B can be represented by the formula

B =
1

2π
(∇ψ ×∇φ+ µ0I∇φ), (2)

µ0 is the magnetic permeability, φ is the toroidal angle, I is a suitable functional of φ satisfying the
relation µ0

dI
dψ

= λ(ψ).
In particular we find conditions on the magnetic field and on ψ such that the energy loss due

to dissipation due to Ohmic resistance is compensated (Dynamo effect). We construct non axis-
symmetric perturbation φ̃, B̃, Ã, such that the local minima are stable. We use also the concept of
helicity

H =

∫
V

A ·BdV, (3)

where A is the vector potential of B.
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The flux of helicity brought by the incoming gas can be described

h = −DK∇λ, (4)

where DK is an experimental constant and

h = −
〈

2φ̃B̃ + Ã× ∂Ã

∂t

〉
. (5)

From the minimization of the energy functional with an applied current J one gets, where η is
the resistivity

− 1

2µ0

h · ∇λ = ηJ2 (6)

([2]). Using the equation (4) we get the equation to be solved

DK

2µ0

|∇λ|2 = ηJ2. (7)
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On the effect of intersection of characteristics in a two-dimensional
massless Dirac equation with linear potential and localized initial data

Tolchennikov A.A.
Institute for Problems in Mechanics of the RAS, Moscow

We consider the Cauchy problem with localized initial data for the two-dimensional massless
Dirac equation (it describes quantum states in graphene [1]) with linear potential.

Applying the h-Fourier transform in spatial variables to the solution Ψ, we can write the expan-
sion Ψ̃(p, t) of the form Ψ̃ =

∑
σ∈± e

iS±/hη± (mode expansion η±). The specificity of this problem
(associated with the effect of changing the multiplicity) is that the phases and modes of this de-
compositions have different form depending on the value of p2/h

1
2 . For p2 � h

1
2 , the asymptotics

is constructed in the standard form WKB, where the modes are expanded in powers of h ([2]). For
|p2| � h

1
2 the asymptotics is constructed by the Kucherenko method [3] using Duhamel principle

(although a different situation with a smooth intersection of characteristics).
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An application of the method of real-valued semiclassical approximation
for the asymptotics with complex-valued phases to multiple orthogonal

Hermite polynomials

Tsvetkova A.V.
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
e-mail: annatsvetkova25@gmail.com

The multiple orthogonal Hermite polynomials Hn1,n2(z, a) are defined by the following recurrence
relations ([1]):

Hn1+1,n2(z, a) = (z + a)Hn1,n2(z, a)− 1

2
(n1Hn1−1,n2(z, a) + n2Hn1,n2−1(z, a)) ,

Hn1,n2+1(z, a) = (z − a)Hn1,n2(z, a)− 1

2
(n1Hn1−1,n2(z, a) + n2Hn1,n2−1(z, a)) .

We construct the uniform Plancherel–Rotach-type asymptotics of diagonal polynomials Hn,n(z, a) as
n→∞. To obtain the result we develop the method of the real-valued semiclassical approximation
for the asymptotics with complex-valued phases, using some ideas from [2]. We reduce the system
that defines the polynomials to a pseudo-differential equation. The feature of the problem is that the
symbol (the Hamiltonian) of the corresponding operator is complex-valued. We suggest a method
that reduces the problem to three equations with real-valued symbols (Hamiltonians). This allow us
to get rid of the complex-valued Hamiltonians and obtain uniform asymptotics of Hn,n(z, a) in the
form of the Airy function Ai of a complex argument.

The talk is based on the joint work with A. I. Aptekarev, S.Yu. Dobrokhotov and D.N. Tulyakov.
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On the relation between the T -matrices for different spheroidal
and spherical bases in the axisymmetric problem

of light scattering by a spheroid

Turichina D.G.1, Il’in V.B.1, Farafonov V.G.2
1St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg 199034, Russia
2St. Petersburg University of Aerospace Instrumentation, Morskaya 67, St. Petersburg 190000, Russia
e-mail: t.dasha5@mail.ru, v.b.ilin@spbu.ru, far@aanet.ru

We consider T -matrices in the axisymmetric light scattering problems, i.e. when the fields do
not depend on the azimuthal angle. It occurs when the radiation source is a dipole located at the
symmetry axis of a spheroid and the dipole moment is parallel to this axis. The axisymmetric
problem is also a part of the plane wave scattering problem within the approach suggested in the
case of a spheroid in [1]. In the best known formulation of the light scattering problem for a spheroid
that is a generalization of the Mie theory for a sphere [2], the axisymmetric problem corresponds
to the separate problem for the azimuthal number m = 0. In the field expansions used in the both
mentioned papers, the spheroidal wave functions were utilized as the scalar basis. Such a basis
corresponds to the problem geometry but in numerical realization causes some problems related to
difficulties in calculations of these functions in a wide range of parameter values.

In another approach (see, e.g., [3, 4]) the basis is formed by the spherical wave functions whose
computations do not meet problems. However, in this case the infinite systems of linear algebraic
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equations relative to the unknown field expansion coefficients become ill-conditioned for large aspect
ratios (a/b ≤ 10− 20) [5].

Our analysis of the relations between the spheroidal and spherical T -matrices derived in different
bases opens the way to overcome the difficulties of both approaches. Namely, for strongly elongated
or flattened spheroids, we solve the problem applying a proper spheroidal basis [1] in which case
there is no limitations of the aspect ratio a/b, and then make the transition from the spheroidal wave
functions to the spherical ones. As a final step, we transform the spherical T -matrix in the basis
of [4] into the standard T -matrix in the basis of [3]. The result can be further used for solution of
application problems, which is demonstrated by our numerical illustrations.
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Superwaves create complicated phenotypes by short genotypes

Sergey Vakulenko
Institute for Mechanical Engineering Problems RAS
e-mail: vakulenfr@mail.ru

In this paper, we consider excitable media. We show that in these media the propagation of
waves with chaotic and time periodic fronts is possible, as well as waves, which transfer associative
memory. The time evolution of medium state at the wave fronts are determined by attractors. We
can completely control these attractors by initial data choice. By those results we show that the
number of genes needed for morphogenesis weakly depends on organism size but sharply depends on
the number of cell types involved in morphogenesis.

Such waves and chaotic regimes arise in many systems including ecosystems and systems of
chemical kinetics.

The paper is conjoint with Ivan Sudakov (Dayton and Novgorod University), Dmitry Grigoriev
(Lille) and John Reinitz (University of Chicago).

Propagation of global analytic singularities for Schrödinger equations
with quadratic hamiltonians

Francis White
University of California Los Angeles, 520 Portola Plaza, Los Angeles, CA 90095
e-mail: fwhite@math.ucla.edu

We study the propagation in time of 1/2-Gelfand–Shilov singularities, i.e. global analytic singu-
larities, of tempered distributional solutions of the initial value problem{

∂tu+ qw(x,D)u = 0,

u|t=0 = u0,



DAYS on DIFFRACTION 2021 79

on Rn, where u0 is a tempered distribution on Rn, q = q(x, ξ) is a complex-valued quadratic form
on R2n = Rn

x × Rn
ξ with nonnegative real part Re q ≥ 0, and qw(x,D) is the Weyl quantization of

q. We prove that the 1/2-Gelfand–Shilov singularities of the initial data that are contained within a
distinguished linear subspace of the phase space R2n, called the singular space of q, are transported
by the Hamilton flow of Im q, while all other 1/2-Gelfand–Shilov singularities are instantaneously
regularized. Our result extends the observation of Hitrik, Pravda–Starov, and Viola ’18 that this
evolution is instantaneously globally analytically regularizing when the singular space of q is trivial.
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Dispersion and attenuation of fundamental edge waves in a two-layered
plate: 3D solution and approximate theories

Wilde M.V., Surova M.Yu.
Saratov State University, 83, Astrakhanskaya str., 410012, Saratov, Russia
e-mail: mv wilde@mail.ru, mzhilko@yandex.ru

Edge waves (EW) are guided waves in thin-walled structures, which are similar to Lamb waves but
strongly localized in the vicinity of edges. They are thoroughly studied in the case of a homogeneous
plate (see [1]). It is shown theoretically and experimentally [2, 3], that the EW-family contains two
fundamental waves and infinitely many high-order waves. In the case of a laminated plate, only the
fundamental waves were studied up to recent time on the basis of 2D plate theories, which reduce
the laminate to a homogeneous plate with some effective stiffnesses.

In this work, the 3D theory of elastodynamics is used to study fundamental EWs in a semi-
infinite two-layered plate composed of two dissimilar isotropic plates. The semi-analytical method
based on modal expansion is employed for numerical investigation of dispersion properties of waves,
propagating along the edge ot the plate under consideration. The most interesting property of EWs
in a two-layered plate is the attenuation of the second fundamental wave, caused by coupling between
quasi-symmetric and propagating quasi-antisymmetric modes.

In the first part of the work the plate composed of two dissimilar plate with elastic moduli and
thicknesses being of the same order (e.g. aluminium 3 mm and steel 1 mm). The dispersion curves
obtained on the basis of 3D theory are compared to those calculated with the use of the classical
laminated plate theory [4]. The limits of applicability of the latter are discussed.

In the second part the isotropic plate coated by a thin soft film is considered as a two-layered
plate. The limits of applicability of the effective boundary condition [5] by describing of edge waves
are studied by comparison with the 3D solution.
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Inverse boundary problems for biharmonic operators in transversally
anisotropic geometries

Lili Yan
Department of mathematics, University of California, Irvine, CA92697-3875, USA
e-mail: liliy6@uci.edu

We study inverse boundary problems for first order perturbations of the biharmonic operator on
a conformally transversally anisotropic Riemannian manifold of dimension n ≥ 3. We show that a
continuous first order perturbation can be determined uniquely from the knowledge of the set of the
Cauchy data on the boundary of the manifold provided that the geodesic X-ray transform on the
transversal manifold is injective.

Exact formulation of nonlocal transparent boundary conditions in wave
problems for a layered or FG elastic strip, plate, and cylinder

D.D. Zakharov
Department of Mathematics, Russian University of Transport, 127994 Moscow, Obraztcova Str., 9-9
e-mail: dd zakh@mail.ru

The problem how to formulate the exact non-reflecting boundary conditions (NBC) is investigated
in context of NDT needs. For this purpose, an elastic region consisting of a certain core of finite size
(S1) and attached infinite solid (S2) in the form of 2D semi-strip or 3D infinite plate or semi-cylinder
is considered. Normally the solid S1 is the solid of “inspection” and the impact of S2 is finally
replaced by the respective NBC. The infinite solid S2 is assumed to be free from any source of energy
providing the energy flow from the infinity, i.e., its energy exchange is possible only via the virtual
boundary of continuous contact in between S1 and S2. Thus, the statement of the total problem can
be subdivided into respective subproblems due to the superposition principle when necessarily. The
faces of S2 can be stress-free, rigidly clamped, or combine these homogeneous boundary conditions
on different sides or in the different directions. The materials of S2 can be transversely isotropic,
layered or functionally gradient. For the time harmonic problem under such assumptions, the wave
field of S2 is firstly presented as a series of eigenfunctions satisfying the radiation principle, then
the sought NBC are formulated as the demand of zero magnitudes of non desirable waves using the
generalized orthogonality relations. Secondly, the NBC obtained above are reduced to the system
of the boundary integral equations (BIE) of special kind with two singular and one hyper singular
equation. The properties and potentials use of resulting BIE is discussed.

Edge-scattering of Gaussian beams and geometrical theory of diffraction

Zalipaev, V.V.
Krylov State Research Centre, St. Petersburg, Russia
e-mail: v.zalipaev@metalab.ifmo.ru

In this talk we discuss application of geometrical theory of diffraction (GTD) to solving scattering
problems of Gaussian beams by edges of perfectly conducting (PEC) screens in a frequency domain
in case of the short-wave approximation. Basically our asymptotic analysis is confined by studying
two canonical problems, namely, constructing uniform GTD asymptotic solutions to scattering of
Gaussian beams of Gauss–Hermit type by flat PEC disk and diffraction by circular aperture in a
PEC screens. A well-known scalar wave propagation model based on Helmholtz equation is being
used to develop the asymptotic analysis. For both problems it is assumed that the wave length of
the incident beam is much less than the geometric parameters of the problems: waist of the incident
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beam, radius of curvature of disk or aperture edges, and corresponding distance as we pay a particular
interest to description of the diffracted fields in the near-filed zone. We consider a case when waist
of the beam is comparable to the size of a disk or aperture.

From the point of view of historical background it is worth remarking that all the basic points
of mathematical foundations of GTD could be found in the famous monograph [1]. The presented
analysis is based on the principles of uniform GTD described in [1]. A well-known short-wave
asymptotic GTD solution of point source diffraction by similar disks or aperture was employed in
order to develop the current analysis as the Gaussian beam paraxial approximation is obtained
by complexification of a point source solution. Thus, we utilize the short-wave asymptotic GDT
solution for plane wave scattering by a disk that was developed in [2]. In this talk we also derived
short-wave asymptotic solutions for the corresponding problems using physical optics (PO) methods
(Kirchoff approximation). In numerical analysis interference pictures of intensity distributions of
the diffracted fields in the near-field zone to compare GDT and PO results are presented. Details of
accuracy analysis in applicability of GTD and PO methods are discussed for both canonical problems.
In future prospectives, it is assumed to study a short-wave scattering of vectorial electromagnetic
beams of Gauss–Laguerre type (optical vortexes) by edges of screens, wedges and apertures, by
applying uniform GTD analysis. As it is of great interest to analyse the evolution of corresponding
topological charges of the incident beams due to a diffraction process [3].
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Over-reflection of acoustic waves by compressible boundary layer flows

Zhang Y.1,*, Oberlack M.1,2

1Chair of Fluid Dynamics, TU Darmstadt, Otto-Berndt-Str. 2, 64287 Darmstadt, Germany
2Centre for Computational Engineering, TU Darmstadt, Dolivostr. 15, 64293, Germany
e-mail: *zhang@fdy.tu-darmstadt.de

The acoustic wave equation for inviscid compressible boundary layer flows, i.e. the Pridmore–
Brown equation, is studied for the over-reflection of acoustic waves based on the exact solution in
terms of the confluent Heun function. As shown in figure 1(a), an acoustic wave with frequency ω̃,
wavenumber vector k̃ propagates at an angle Θ in the free stream and incident on an exponential
boundary layer bounded by a rigid wall, giving rise to a reflected wave, characterized by the reflection
coefficient R. The projection of k̃ in the horizontal direction is the streamwise wavenumber α̃, and
their angle is denoted by φ (incident angle). In our study, the reflection coefficient R is given as a
function of the dimensionless streamwise wavenumber α, the Mach numberM and the incident angle
of acoustic waves φ, and computed numerically.

It is shown that the over-reflection (R > 1) of acoustic waves arises in boundary layer flows,
i.e. reflected amplitudes are greater than incident amplitudes. The phenomenon has been validated
to be closely related to the critical layer yc, at which there is a jump in the energy flux across
the critical layer. In figure 1(b), a special acoustic phenomenon, the resonant over-reflection, is
observed and proved to be caused by resonant frequencies ωr induced by unstable modes of the
temporal stability. At resonant frequencies induced by the first unstable mode, the over-reflection
coefficient has an unusual peak in an extremely narrow frequency interval, as shown in figure 1(b).
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The maximum values of these peaks are largely synchronised with the variation of the growth rate ωi
of the unstable modes. In addition, the resonant over-reflection appears also at resonant frequencies
caused by higher unstable modes, but their peaks of the over-reflection coefficient are always smaller
than that caused by the first unstable mode.

Fig. 1: (a) Illustration of an exponential boundary layer flow. (b) Over-reflection coefficient
R as a function of α and φ in propagation domains at M = 5.
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Alexey Popov’s diffraction by a jump of curvature revised

Ekaterina A. Zlobina1, Aleksei P. Kiselev1,2

1St. Petersburg State University, St. Petersburg, Russia
2St. Petersburg Department of Stekov Mathematical Institute, St. Petersburg, Russia
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We are concerned with construction of high-frequency asymptotic formulas for the wavefield
described by

uxx + uyy + k2u = 0, ∂nu|C = 0, (1)

where k → ∞ is the wavenumber and ∂n denotes the derivative along the normal to a contour C.
The boundary C is a sum of the half-line C− and the piece of smooth contour C+, as shown in Fig. 1,
with a jump in curvature at the conjugation point O. The incident field is a plane wave uinc = eikx,
and u = uinc + uout, where uout is the outgoing wave. The problem has been earlier addressed in [1]
by Alexey Vladimirovich Popov who ingeniously used a combination of parabolic-equation approach,
Kirchhoff-type heuristics and Malyuzhinets technique to derive an expression for the cylindrical wave
arising at the non-smoothness point O.

eikx

x

y

O

C+

diffracted

wave

limit ray

C
−

Fig. 1: The geometry of the problem.
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We describe the outgoing wavefield uout in a neighborhood of O through a formal employment
of the Leontovich–Fock parabolic-equation method [2, 3]. With this we continue our work on the
systematic application of boundary-layer techniques to diffraction by a jump of curvature and similar
problems [4, 5]. We introduce the standard stretched coordinates [2, 3]

S = k
1
3 s, N = k

2
3n,

where s is the arc length of the contour C measured from O and n is the length of normal to C, and
seek the outgoing field in the form of the Leontovich–Fock Anzatz:

uout = eiksW (S,N).

Substitution of the Anzatz in (1) gives, to the main order, the parabolic equation

WNN + 2iWS + 2κH(S)NW = 0 (2)

with the boundary condition
WN |N=0 = −iκH(S)Se−iκ

S3

6 . (3)

Here, H(S) = {1, S > 0; 0, S ≤ 0} is the Heaviside function, κ is the value of curvature of C+ at the
point O.

We explicitly solve the problem (2)–(3). The solution is, in a sense, similar to that presented
in [2, 3] for a smooth contour, but with some classical Airy functions replaced by incomplete Airy
functions. We derive formulas for the wavefield in the vicinity of the limit ray (Fig. 1). Similarly to
[2, 3], the wavefield is a sum of the classical Fresnel field and a background field which is described
by a novel special function. An expression for the diffracted wave which we obtain agrees with the
one found in [1].

A support from RFBR grant 20-01-00627 is acknowledged.
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