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FOREWORD

“Days on Diffraction” is an annual conference taking place in May–June in St. Petersburg since
1968. The present event is organized by St. Petersburg Department of the Steklov Mathematical
Institute, St. Petersburg State University, and the Euler International Mathematical Institute.

The conference is supported by a grant from the Government of the Russian Federation, agreement
№ 075-15-2019-1620, and by Simons Foundation (via PDMI RAS, grant № 507309).

The abstracts of 57 talks, presented during 5 days of the conference, form the contents of this
booklet. The author index is located on the last page.

Full-length texts of selected talks will be published in the Conference Proceedings. Format file and
instructions can be found at http://www.pdmi.ras.ru/~dd/proceedings.php. The final judgement
on accepting the paper for the Proceedings will be made by editorial board after peer reviewing.

Organizing Committee

© ‘Days on Diffraction’, PDMI, 2020



90 years to V.M. Babich

The Organizing Committee of “Days on Diffraction 2020” congratulates Vassily Mikhailovich
Babich on the occasion of his 90th birthday, celebrated by the diffraction theory community on
13 June 2020. V.M. is a bright member of the Leningrad/St. Petersburg school of mathematical
physics known for his outstanding contributions to the mathematical theory of diffraction and wave
propagation and for his personal influence. In 1954 V.M. began his teaching career at his alma
mater (the Department of Mathematical Physics of the Leningrad State University). He also heads
the Laboratory for Mathematical Methods in Geophysics at the St. Petersburg Department of the
Steklov Mathematical Institute (PDMI) since 1967. The undisputed reputation of his weekly seminar
at the PDMI is based on the very high level of talks.

For his work on applications of the ray method to propagation of seismic waves, V.M. Babich
was awarded State prize of the Soviet Union. In 1998 he was awarded V.A. Fock prize for his results
developing asymptotic methods in the diffraction theory. The level of his studies is characterised
by the fact that his paper on waves in anisotropic media was reprinted in a leading international
geophysical journal 33 years after its original publication in Russian. This year, Vassily Mikhailovich
chairs his 53rd “Days on Diffraction”, and his name is inseparably linked with this annual conference.
The Organizing committee expresses its sincere gratitude and deep respect to Vassily Mikhailovich
and wishes him sound health and new achievements in his research.
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The Toffoli gate in multihelical optical fibres

Alexeyev C.N., Barshak E.V., Vikulin D.V., Lapin B.P., Yavorsky M.A.
V. I. Vernadsky Crimean Federal University, Pr. Vernadsky 4, Simferopol, 295007, Russia
e-mail: barshakev@cfuv.ru

Nowadays, optical vortices (OVs) are becoming progressively more important as beams which
carrier of the orbital angular momentum (OAM) [1, 2]. Indeed, advanced research in the information,
telecommunications and quantum technologies is associated with the use as a carrier of information
not only spin (associated with polarization), but also the OAM of a photon. The information
encoding in the OAM-associated degrees of freedom of light has the advantages of extremely high
data-carrying capacity of a communication channel, as compared to the standard techniques, and
provides a high level of the resistance to eavesdropping.

Since orthogonal states of OVs characterized by different OAM values form a multidimensional
space, this question turns out to be closely related to the possibility of modeling quantum calculations
by means of classical optical fields [3]. Obviously, comprehensive use of information OAM-potential
for modeling quantum calculations requires having a mechanism for carrying out basic logical oper-
ation, or gates [4].

In this work the effect of topological-charge controlling of the output optical vortex via a changing
of sign of the circular polarization and a radial number of the input beam in twisted multihelical
optical fibres is discussed. Based on this effect the way to create a universal logical gate Toffoli
is described. Gate Toffoli is a 3-qbit-gate, which is also known as the “controlled-controlled-not”
gate (see Fig. 1). We suppose that this type of all-fiber OAM-controlling would be useful in such
OV-based applications as classical and quantum information encryption and simulation of quantum
computing.

|a〉 |a〉

|b〉 |b〉

|c〉 |c⊕ ab〉

Fig. 1: Circuit representation of Toffoli gate (CCNOT-gate).

This work was financially supported by the Russian Ministry of Education and Science, Mega-
grant project № 075-15-2019-1934 and also by V. I. Vernadsky Crimean Federal University, project
BΓ02/2020.
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Semi-classical asymptotics of spectral bands for rotating dimers

Anikin A.Yu.
RAS Ishlinsky Institute for Problems in Mechanics, pr. Vernadskogo, 101 bld., Moscow, 1119526,
Russia
e-mail: anikin83@inbox.ru

We deal with the Schrödinger operator Ĥ = −h2∆/2 +V (x) in the semi-classical limit describing
the interacting pair of particles moving in the two-dimensional periodic trigonally symmetric potential
field. Namely, we assume that V (x) = U0(x1, x2) + U0(x3, x4) + U1(x), where U0 is periodic on a 2D
lattice and has a trigonal symmetry, and U1(x) describes the interaction between two particles. We
discuss the asymptotics as h→ 0 for the ground state spectral band widths as well as the dispersion
relations between energy and quasi-momentum and the form of Bloch functions. Studying this sort
of quantum systems called the ‘rotating dimers’ was proposed by M. I. Katsnelson and motivated by
the physics of graphene.

The work was supported by the Russian Foundation for Basic Research (grant № 18-31-00273).

Uniform asymptotic solution in the form of an Airy function
for semiclassical bound states in one-dimensional problems

Anikin A.Yu., Dobrokhotov S.Yu., Nazaikinskii V.E., Tsvetkova A.V.
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
e-mail: anikin83@inbox.ru, dobr@ipmnet.ru, nazay@ipmnet.ru, annatsvetkova25@gmail.com

Let h be a small positive parameter and p̂ = −ih d
dx
. On the real axis R with coordinate x, we

consider the family of h-pseudodifferential operators [1]

Ĥ(E) = H(x, p̂, E, h) (1)

acting on m-dimensional vector functions Ψ(x) = (ψ1(x), ψ2(x), ..., ψm(x)) with a smooth m × m
matrix-valued symbol H(x, p, E, h) = H0(x, p, E) + hH1(x, p, E) +O(h2).

We consider the spectral problem

Ĥ(E)Ψ = 0, Ψ ∈ L2(R;Cm) (2)

for operator pencil (1), where the unknowns are the number E and the vector function Ψ(x).
We study the formal asymptotic solution (or quasimode) of the problem (2) as h→ 0. We obtain

efficient formulas for the leading term of a set of quasimodes in terms of Airy function under certain
conditions on the leading symbol H0 of the operator pencil Ĥ(E).

We also discuss some examples. In particular, Shrödinger equation and its generalization can be
considered as examples. We also present the results for the pseudodifferential equation describing
water waves above an uneven bottom given by a function D(x) depending only on x1 (see [2]) and
for the two-dimensional Dirac operator with a radially symmetric potential describing the quantum
states in graphene located in a constant magnetic field (see [3]).

The work was supported by the Russian Science Foundation (project № 16-11-10282).

References
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[3] M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge University Press, Cam-
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On application of flag coordinates to extension
of Lie–Poisson–Kirillov–Kostant structure

from general linear group orbits

Babich M.V.
PDMI RAS, Fontanka 27, St. Petersburg, Russia
e-mail: mbabich@pdmi.ras.ru

The canonical method of the construction of the coadjoint orbit of the Lie group is the factor-
ization of the right-invariant section of the group with respect to some subgroup. This subgroup
consists of all the elements commuting with some fixed element from the dual of the corresponding
Lie algebra. The subgroup form the kernel of the projection to the orbit.

I define the linear manifold that is canonically defined for any orbit. The subgroup acts on
this manifold by invertible linear transformations. The set of these transformations is considered as
manifold. The cotangent bundle of this manifold gives the desired extension of the coadjoint orbit.

All the considerations base on the concept of the flag coordinates on the orbit.

References

[1] M.V. Babich, On extensions of canonical symplectic structure from coadjoint orbit of complex
general linear group, Zap. Nauchn. Semin. POMI, 487, 28–39 (2019).

On an evolutionary dynamical system of the first order
with boundary control

Belishev M.I.1, Simonov S.A.1,2

1St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of
Sciences, 27 Fontanka, St. Petersburg, 191023, Russia
2St. Petersburg State University, 7-9 Universitetskaya nab., St. Petersburg, 199034, Russia
e-mail: belishev@pdmi.ras.ru, sergey.a.simonov@gmail.com

We consider an abstract evolutionary dynamic system of the first order (with respect to time)
with boundary control, which is determined by a symmetric operator L0 : H →H . We show that
it is controllable, if and only if L0 has no maximal symmetric parts in H . This work is carried out
as part of the program to construct a new functional (so-called wave) model of symmetric operators.

Two-dimensional Dirac equation:
singularities of semi-classical approximations

Bogaevsky I.A.
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Leninskie Gory, Moscow
GSP-1, 119991, Russia; Scientific Research Institute for System Analysis, Nakhimovskii prosp., 36/1,
Moscow, 117218, Russia
e-mail: ibogaevsk@gmail.com

The two-dimensional massless Dirac equation describes the propagation of electrons and holes
in graphene. We consider the Cauchy problem for this equation with an electromagnetic field and
localized initial condition. The phase of its semi-classical approximation is described by a Lagrangian
submanifold with singularities.

Generically for small times this Lagrangian submanifold can have only two normal forms up to
canonical transformations. We give explicit formulas for them and investigate their singularities.
Our two normal forms are realized by constant magnetic and electric fields.

The work is partially supported by RFBR and JSPS (research project № 19-51-50005).
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Solution dynamic equations of plane deformation
for nonlinear model of complex crystal lattice

Bulygin A.N., Pavlov Yu.V.
Institute for Problems in Mechanical Engineering of Russian Academy of Sciences, Saint Petersburg,
Russia
e-mail: bulygin an@mail.ru

The nonlinear model of deformation of crystalline media with complex lattice was proposed in
[1, 2]. Deformation is described by vectors of acoustic U and optical u modes. For plane deformation,
U and u can be found from a system of four coupled nonlinear equations [3, 4]:

ρ
∂2Ui
∂t2

= σij,j, σij = λijmnemn − sij(1− cosus), us =
ux + uy

b
, emn =

Um,n + Un,m
2

, (1)

µ0
∂2ui
∂t2

= χij,j −
1

b
(p− sijeij) sinus, χij = κijmnεmn, εmn =

um,n + un,m
2

. (2)

Here ρ, µ0, b, p are density, reduced density, lattice cell size, half of the interatomic potential barrier,
respectively; σij, χij, sij are tensors of stress, micro-stress, and nonlinear striction; λijmn, κijmn are
elastic and microelastic tensors. In the nonlinear model (1), (2), the relative shifts of sublattices can
be arbitrarily large, but the gradients of micro- and macro-shifts are assumed to be small.

The nonlinear model describes large deformations of the crystal cell, radical restructuring of the
crystal medium under the influence of intense external effects, occurrence of defects of different kinds,
phase transformations and other phenomena, which are realized in modern technologies of obtaining
new materials with nanostructure, but are not described by the linear classical model.

We have found a common solution to the macrofield equations (1) for crystal media with cubic
symmetry. The tensor σij and vector U are expressed through the arbitrary function Q(x, y, t), which
is the dynamic analog of the Airy function. It is shown that Q(x, y, t) satisfies a non-uniform bigar-
monic equation. A general solution to this equation was found. It is represented through arbitrary
analytic functions. Complex representation of the general solution of the macrofield equations (1) is
given.

General solution to microfield equations (2) is found. The system of two coupled nonlinear
equations (2) is reduced to two independent equations to find us and um = (ux−uy)/b. The function
um is found as an arbitrary analytic function of a special argument. The function us is a solution to
the dynamic double sine-Gordon equation, for which amplitude before sinus is an arbitrary harmonic
function. Analysis of this equation has shown that under some limitations, it is reduced to equations
that are well studied in the literature.

The obtained general solutions of equations of macro- and microfields allow us to set and solve
specific problems for propagation of nonlinear waves in crystalline media of cubic symmetry.
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allowing for martensitic transformations: plane deformation, Mechanics of Solids, 54, 797–806
(2019).
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Determination of a wave field in a layered medium from boundary data

M.N. Demchenko
St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of
Sciences, Fontanka 27, St. Petersburg, Russia
e-mail: demchenko@pdmi.ras.ru

We deal with the Cauchy problem for the hyperbolic equation

∂2
t u−∆u+Qu = 0 (1)

for the function u(x, y, t), x, t ∈ R, y > 0, with data on the space-time boundary

u|y=0 = f, ∂yu|y=0 = g. (2)

The problem in consideration is a mathematical formulation of the problem of continuation of a
non-stationary wave field from the boundary. In contrast to the classical Cauchy problem with data
on the set {t = t0}, the problem (1), (2) is ill-posed. We provide an algorithm of local recovering of
the solution u from local Cauchy data, i.e. from f , g given on a bounded set. We consider the special
case when the coefficient Q has the following form

Q(x, y, t) = q(x) + p(y, t). (3)

Under this assumption, equation (1) describes in particular a non-stationary wave process in a
laterally or vertically inhomogeneous medium.

To find the solution u, we separate variables in equation (1), which is possible due to (3), and apply
the eigenfunction expansion associated to the Schrödinger operator −∂2

x + q on the line. In general,
this approach requires the Cauchy data on an unbounded set, since the eigenfunction expansion is
nonlocal. However, we will show that it is possible to determine u locally from the functions f , g
given on a set, which is bounded both in x and t. In case Q ≡ 0, our algorithm can be formulated
in terms of analytic expressions.

The research was supported by the RFBR grant № 20-01-00627-a.

Features of the multipole scattering of acoustic field by refractive
and absorbing inhomogeneities with small wave size

Dmitriev K.V., Rumyantseva O.D.
Moscow State University, Acoustics Department, Leninskie gory, 1, 2, Moscow, 119992
e-mail: kdmitrie@lanat.ru, burov@phys.msu.ru

The process of acoustic field scattering by a single inhomogeneity, which is placed in a homo-
geneous non-absorbing background medium, is considered. In this case, the scattered field can be
represented as an expansion by components of different multipolarity. If the size of the inhomo-
geneity is small compared with the wavelength, then only the monopole and dipole components are
significant in this expansion. To describe them, one can introduce complex scattering coefficients
[1, 2]. These coefficients cannot be arbitrary, since they reflect the totality of all multiple scattering
processes within the inhomogeneity under consideration. This is manifested as a relationship between
the amplitude and phase of each scattering coefficient.

If the inhomogeneity is non-absorbing, the geometrical location of the points corresponding to the
values of each of the scattering coefficients on the complex plane is a circumference with the center
at the point −2i and with the radius 2. In the presence of absorption, this is the region inside the
described circumference.
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The inverse problem is posed of determining the parameters of the inhomogeneity of a small
wave size on the base of the scattering data. To solve this problem, the Novikov algorithm [3, 4] is
used. It turns out that for different values of the scattering coefficients, quality of the inhomogeneity
reconstruction occurs different. It is well known that the reconstruction difficulty increases with the
growth of the scatterer’s “strength”, which can be associated with the absolute value of the scattering
coefficient. Inhomogeneities with small wave size and low contrast are usually reconstructed better
than inhomogeneities with high contrast. However, this is not the only factor, and the phase of
the scattering coefficient has a strong influence on the reconstruction result. The stability of the
reconstruction of inhomogeneities with the positive real part of the scattering coefficients (the right
side of the circumference on the complex plane) is greater than that of inhomogeneities with the
negative real part (left side of the circumference). This can be explained by the defocusing of the
field inside the inhomogeneity in the first case and by the focusing in the second case, which is
associated, respectively, with a greater or lesser speed of sound inside the inhomogeneity compared
to the speed of sound in the background medium.

The study was carried out with the grant from the Russian Science Foundation (project № 19-
12-00098).
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Lagrangian manifolds and a “naive” constructive approach
for computing asymptotics via special functions near caustics

Dobrokhotov, S.Yu.
Ishlinsky Institute for Problems in Mechanics RAS and Moscow Institute of Physics and Technology,
101-1 prosp.Vernadskogo, Moscow, 119526, Russia
e-mail: s.dobrokhotov@gmail.com

We discuss the problem about the construction of effective asymptotic formulas near caustics.
Very often, exact and asymptotic solutions to many problems for linear differential and pseudodiffer-
ential equations of mathematical physics are expressed in terms of elementary and special functions
in parametric form. We show that the convenient parameters here are coordinates on suitable
Lagrangian manifolds, and they also work effectively in the vicinity of caustics (Lagrangian sin-
gularities). Their use and simple “naive” approach make it possible to construct effective uniform
asymptotics in the form of special functions of a complex argument. We illustrate our approach by
examples from the linear water wave theory.

The talk is based on the results of joint work with V. Nazaikinski, S. Shlosman, A. Anikin, A. Tol-
chennikov, D. Minenkov, A. Tsvetkovа, and supported by projects RSF (№ 16-11-10282) and RFBR
(№ 17-51-150006, 17-01-00644).
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Field structures in a laser with saturable absorption and doughnut
aperture

Fedorov S.V., Rosanov N.N., Veretenov N.A.
Ioffe Institute, Politekhnicheskaya str. 26, St. Petersburg 194021, Russia
e-mail: sfedorov2006@bk.ru, nnrosanov@mail.ru, torrek@gmail.com

Recently, there has been growing interest in topological structures in various branches of not only
mathematics, but also physics and other natural sciences. Pioneering research of L.D. Faddeev [1] of
topological three-dimensional structures of classical fields belonged to conservative systems (in the
absence of energy dissipation). Dissipative systems in which a balance of energy input and output
is realized are more stable. Various examples of such solitons in a laser medium with saturable
absorption are presented in [2] and the literature cited there.

Here we present an analysis of another laser scheme, in which even one-dimensional topological
solitons are also possible, but in a “topological” laser scheme. Namely, a fast saturable absorption
laser cavity has a doughnut-shaped aperture with a wide hole. Radiation propagates predominantly
normally to highly reflective mirrors, so that the ring is bypassed for a large number of consecutive
reflections. In the approximations of quasioptics and the mean field, the dimensionless governing
equation for a slowly varying field envelope E and the periodic boundary condition have the form

∂E

∂t
= (i+ d)

∂2E

∂x2
+ f(|E|2)E, E(x+ L, t) = E(x, t).

Here t is time, the evolution variable, x is the coordinate along the laser aperture perimeter equal to
L, d is the coefficient of effective diffusion, 0 < d � 1. The function f of intensity I = |E|2 in the
simplest case is real:

f(I) = −1− a0

1 + I
+

g0

1 + I/β

with positive coefficients of resonance absorption a0, amplification g0, and saturation β. Under the
conditions of classical bistability, the function f(I) vanishes for two positive values of the argument.

We assume that the trivial solution E = 0 is stable with respect to small perturbations, which
is achieved for f0 < 0. In addition to it, conditions for the existence and stability of regimes with a
uniform intensity distribution and an inclined wavefront of the form E = Ah exp(iKx− iΩt), Ah =
const 6= 0 are obtained. Here the inclination Km is determined by the relation Km = 2πm/L with
the integer topological index m. The set of numbers m is limited by the condition dK2

m < max f(I).
Of greatest interest are steady-state structures with an inhomogeneous intensity distribution,

which, when L→∞, transform into laser solitons. For them E(x, t) = F (ξ) exp(−iνt), ξ = x− V t.
Here the frequency shift ν and velocity V are eigenvalues of the nonlinear problem

(i+ d)
d2F

dξ2
+ V

dF

dξ
+
[
iν + f(|F |2)

]
F = 0, F (0) = F (L), dF/dξ(0) = dF/dξ(L).

The periodic function F is characterized by the phase incursion ∆Φ =
∫ L

0
(d argE/dx) dx = 2πm

with the topological index m. The structures with m = 0 are symmetric and motionless, whereas for
m 6= 0 they are asymmetric and moving. We present a number of such stable structures for different
topological indices.

The research was supported by the Russian Foundation for Basic Research, grant № 19-12-50174,
and the Russian Scientific Foundation, grant № 18-12-00075.
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On the density of states of the almost Mathieu operator
in semiclassical approximation

A. Fedotov
St. Petersburg State University, 3, Ulyanovskaya st., St. Petersburg, 198504, Russia
e-mail: a.fedotov@spbu.ru
E. Shchetka
St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences,
27, Fontanka, St. Petersburg, Russia
e-mail: shchetka.ekaterina@mail.ru

First, we remind the definition and properties of the integrated density of states for ergodic
operators (e.g., operators with random or almost periodic coefficients). Then, we briefly remind some
basic properties of the almost Mathieu operator, and finally we describe the graph of its integrated
density of states in the case when the operator can be studied in the semiclassical approximation,
and discuss its Cantorian structure.

Medical ultrasound tomography problem: simulation with attenuation

Filatova V.M.
IKBFU, Kaliningrad, Russia
e-mail: vifilatova@kantiana.ru

The paper is devoted to the numerical study of the acoustical medium visualization in a formula-
tion close to medical ultrasound tomography. Numerical experiments of visualization of the speed of
sound and attenuation using Energy Reverse time migration (Energy RTM) were realized. The final
image contains both the image of the speed of sound and the image of the attenuation. Analyzing
the data of the inverse problem (pressure measurements on the boundary for different positions of
the sources) these two images are separated.

Developing an algorithm for solving the inverse problem was supported by the Russian Science
Foundation (grant № 16-11-10027). Numerical experiment using the OMICS compute cluster was
supported by the Volkswagen Foundation. The authors acknowledge computational support from
the OMICS compute cluster at the University of Lübeck.

Visualization of complex shape inclusions
in the breast ultrasound tomography problem

Filatova V.M.
IKBFU, Kaliningrad, Russia
e-mail: vifilatova@kantiana.ru
Sedaikina V.A.
Saint Petersburg, Russia
e-mail: vsedaikina@gmail.com

Visualization of the acoustical medium is an important diagnostic instrument of determining
breast cancer. The acoustical medium is visualized using the well-known geophysical method Reverse
time migration (RTM). We describe some results of simulations of this problem for a specific breast
model in 2D. The numerical solution of the problem relies on standard library of parallel computing
(OpenMP) and is carried out on a cluster system. After applying the RTM procedure, the images are
processed for localizing regions of interests (ROIs). The procedure of processing includes increasing
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the intensity of the inclusions that interest us, filtering to reduce and remove noise, edge detection of
the inclusions. The described method is automated to eliminate the need for manual processing.

Developing an algorithm for solving the inverse problem was supported by the Russian Science
Foundation (grant № 16-11-10027). Numerical experiment using the OMICS compute cluster was
supported by the Volkswagen Foundation. The authors acknowledge computational support from
the OMICS compute cluster at the University of Lübeck.

Double-deck structure of boundary layers in weakly compressible
heat-conducting flows in channels with heated wavy walls

Gaydukov R.K., Fonareva A.V.
National Research University Higher School of Economics, Moscow, Russia
e-mail: roma1990@gmail.com, fon-alisa@yandex.ru

The flow of an incompressible or a compressible fluid (gas) along surfaces with small irregularities
has been widely considered in the literature. The well-known solutions of these problems for large
Reynolds numbers are the flow with multi-deck (double- and triple-deck) structures of boundary
layers. These solutions were found in various problems of liquid flows along surfaces with small
irregularities, see, e.g., [1–3]. But all these problems were considered without taking into account
the heat-transfer processes.

Fig. 1: 2D-channel with wavy walls.

We consider a nonstationary problem of a viscous weakly compressible heat-conducting fluid flow
in a two-dimensional channel with small periodic irregularities on the heated walls for large Reynolds
numbers Re, see Fig. 1. This problem is described by the system of Navier–Stokes, heat transfer
and continuity equations in the Boussinesq approximation which has the form (in the dimensionless
case)

ε2/5∂U

∂t
+ 〈U,∇〉U = −∇p+ ε2∆U + jβε2/5T,

ε2/5∂T

∂t
+ 〈U,∇T 〉 =

ε2

Pr
∆T,

〈∇,U〉 = 0,

where U = (u, v) is the velocity vector, p is the pressure, T is the relative temperature, ε = Re−1/2 is
a small parameter, j = (1, 0), and β is the dimensionless coefficient of thermal expansion. We assume
that the Prandtl number Pr is of order 1. This system is supplemented with nonslip boundary
conditions on the walls and a given temperature on the walls. The coefficient at the time-derivative
is determined by a selected time scale, see [2, 3].

We assume that the core flow inside is the Poiseuille flow (except for boundary layers). A formal
asymptotic solution with double-deck structure of boundary layer was constructed using the boundary
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layer expansion method and the averaging method. To illustrate the results obtained, a numerical
simulation of the flow in the thin boundary layer was carried out.

The study was implemented in the framework of the Basic Research Program at the National
Research University Higher School of Economics (HSE University) in 2020 and was supported by
Russian Science Foundation grant № 19-71-10003.
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Air-coupled ultrasonic inspection of anisotropic composite plates

Glushkov E.V., Glushkova N.V., Miakisheva O.A.
Institute for Mathematics, Mechanics and Informatics, Kuban State University, Krasnodar
e-mail: evg@math.kubsu.ru, miakisheva.olga@gmail.com

Carbon fiber-reinforced polymer composite materials (CPRF) are widely used in various engineer-
ing applications due to their advantage over other structural materials. Various dynamic and static
loads and harsh environmental conditions cause degradation of their mechanical properties resulting
in increased service costs and possible structural failure. One of the methods of non-destructive
ultrasonic inspection of such structures is the use of contactless air-coupled transducers as a cheaper
alternative to the laser Doppler vibrometry. To optimize their design and modes of use, computer
simulation of wave generation in anisotropic laminate plates immersed in acoustic medium (air or
fluid) is required.

The present work is focused on the study of the source-generated guided waves (GWs) propagating
along the plate. Their characteristics depend on the material properties of the samples and so can be
used as a convenient tool for material characterization and structural health monitoring. To simulate
the excited ultrasonic GWs, an analytically based computer model for the source beam interaction
with a fluid-loaded anisotropic laminate plate has been developed. The Green’s matrix for the 3D
source-fluid-plate system has been derived in terms of inverse Fourier transform integrals for elastic
structures of various complexities, starting from the classical isotropic elastic layer up to generally
anisotropic laminate composite materials.

The numerical examples show how the classical traveling Lamb waves transform into leaky GWs
due to fluid loading, while the appearing undamped Scholte–Gogoladze waves carry some part of
source energy along the plate to infinity instead of the Lamb waves. The manifestation of the back-
ward mode and zero group velocity (ZGV) effects under fluid loading as well as the transformation
of GW angular diagrams due to the plate’s anisotropy are discussed. For the bulk acoustic waves
reflected from and transmitted through the composite plate, the angular and frequency dependences
of the reflection and transmission coefficients are also analyzed.
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GPU-based optimizations of the boundary integral-equation method
to solve direct and inverse diffraction problems

Leonid I. Goray
Alferov University, Khlopin str. 8/3, let. ‘A’, St. Petersburg, 194021, Russian Federation;
Institute for Analytical Instrumentation, Rizhsky pr. 26, St. Petersburg, 190103, Russian Federation
e-mail: lig@pcgrate.com
Alexander S. Dashkov
Alferov University, Khlopin str. 8/3, let. ‘A’, St. Petersburg, 194021, Russian Federation
e-mail: dashkov.alexander.om@gmail.com

The diffraction grating problem with one-periodical gratings (2D structures) with arbitrary con-
ductivity is considered. The oblique-incident time-harmonic radiation is assumed. Several significant
optimization techniques were introduced in the literature, in particular, short-wave problems can be
effectively solved using the Boundary Integral Equation Method ([1], Ch. 12). Nonetheless, the meth-
ods are not superb in terms of speed for randomly-rough surfaces and inverse problem solutions. In
a particular case, a graphical processing unit (GPU) utilization suggested for performance improve-
ment. The optimization is done via the transfer of most time-consuming numerical operations to
GPU including calculus of Green’s functions and their derivatives. The GPU-based code is written
with CUDA [2] and Open CL [3] technologies.

The accelerated method was tested on direct and inverse diffraction problems in the X-ray wave-
length range. The rough surface statistics is required to rigorously compute the scattering intensity
using PCGrateTM software [4]. We have generated rough boundaries with the Gaussian distribution
of heights and Gaussian-like correlation function. To calculate specular reflectances using the direct
electromagnetic solver, we employ the scattering matrices approach and the Monte Carlo simula-
tions to average the statistics owing to individual surfaces over an ensemble of realizations. The
inverse diffraction problem was solved using a genetic algorithm. The accelerated method has shown
improvements up to several times.
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Exponential dichotomy of linear cocycles over irrational rotations

Ivanov A.V.
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russian Federa-
tion
e-mail: a.v.ivanov@spbu.ru

We study a skew-product map

FA : T1 × R2 → T1 × R2 (1)

defined for any (x, v) ∈ T1 × R2 by

(x, v) 7→ (σω(x), A(x)v),
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where σω(x) = x+ ω is a rotation of a circle T1 with irrational frequency ω and

A : T1 → SL(2,R)

is a measurable function with respect to the Haar measure. It is supposed that the transformation
A has a special form. Particularly, given a C2-function f : T2 → R of the two-torus, define sets

D+ = {z ∈ T2 : f(z) > 0}, D− = {z ∈ T2 : f(z) < 0}

and for any x ∈ T1 consider its intersections S±(x) = D±∩I(x) with a segment I(x) = {(s, x+ωs), s ∈
T1} ⊂ T2. Represent S±(x) as

S±(x) =

N(x)⋃
k=1

∆±k ,

where ∆±k are connected components ordered in a natural way with respect to increase of the pa-
rameter s. Then the transformation A is assumed to be of the form

A(x) = R(ϕN(x)) ◦ Z(αN(x)) ◦R(ϕN(x)−1) ◦ Z(αN(x)−1) ◦ . . . ◦R(ϕ1) ◦ Z(α1),

where
R(ϕ) =

(
cosϕ sinϕ
− sinϕ cosϕ

)
, Z(α) =

(
eα 0
0 e−α

)
and

ϕk = µ

∫
∆−k

|f |1/2dl, αk = µ

∫
∆+
k

|f |1/2dl, µ� 1.

Such linear cocycle appears as a model in the problem of reducibility for the Schrödinger equation
with quasiperiodic potential f in the adiabatic limit [1].

In the present work, using the ideas similar to [2], we show that there exists sufficiently large
µ0 > 0 and a subset Eh ⊂ (µ0,∞) such that
1. for any µ1 < µ0 the Lebesgue measure leb ((µ1,∞) \ Eh) = O (e−cµ1) with some positive constant c;
2. for any µ ∈ Eh the system (1) possesses the exponential dichotomy.
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Two-component optical vortices at zero group velocity dispersion

Kalinovich A.A., Sazonov S.V., Bryantsev D.S., Komissarova M.V., Zakharova I.G.
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In recent decades, soliton structures have attracted the attention of researchers. Among them,
solitons with phase singularities are especially important. They are also called vortex solitons.
Such solitons are characterized by azimuthal instability, which usually leads to their decay into many
irrotational sub-solitons. A number of works in the field of nonlinear optics devoted to the study of the
formation and propagation of vortex solitons in various media have revealed some regularities [1, 2].
It was found that their stability is achieved in the presence of several competing processes, some of
which trying to localize the pulse and others trying to expand it. Media with required characteristics
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may be those with third and fifth order nonlinearities. Besides that media with nonlinear modulation,
liquid crystals, and waveguide arrays can possess the required characteristics.

In this paper, using numerical simulation, we study the formation and propagation of vortex
solitons in a medium with competing group velocity dispersion (GVD) and third-order dispersion.
A system of equations, describing the considered process in the case of group and phase synchronism,
looks as follows:

i
∂ψ1

δz
= −β

(1)
2

2

∂2ψ1

∂τ2
+ α1ψ

∗
1ψ2 +

c

2n1ω
∆⊥ψ1, (1)

i
∂ψ2

δz
= −β

(2)
2

2

∂2ψ2

∂τ2
− iβ

(2)
3

6

∂3ψ2

∂τ3
+ α2ψ

2
1 +

c

4n2ω
∆⊥ψ2, (2)

where β(1)
2 , β(2)

2 are the coefficients associated with GVD and third-order dispersion in a nonlinear
medium. Firstly we consider anamalous GVD β

(1)
2 < 0. At that, β(2)

3 > 0. The initial profile is given
in vortex form

ψ1,2(x, y, τ, z = 0) = ψ10,20(x+ imy)e−x
2−y2−τ2 , (3)

where m is topological charge of vortex.
During the study of the existence of stable vortex-soliton solutions, we consider cases when

β
(2)
2 = 0; β(2)

2 > 0, |β(2)
2 | � |β

(1)
2 | and β

(2)
2 < 0, |β(2)

2 | � |β
(1)
2 |. If it is possible to find stable solutions

in the above mentioned cases, it is planned to complicate the model, namely, to introduce phase and
group mismatch. Then it is interesting to go beyond the framework of anomalous GVD, considering
transversal inhomogeneity of the medium.

The investigation was made using support of the Russian Science Foundation (Grant № 17-11-
01157).
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Asymptotics of saddle-node bifurcation

Kalyakin L.A.
Institute of Mathematics with Computing Center, Ufa Federal Research Center, Russian Academy
of Sciences, Ufa, 450008 Russia
e-mail: klenru@mail.ru

We consider a model differential equation of the second order, with slowly varying parameter,

d2x

dt2
+ β

dx

dt
= (x2 + εt)(1− x), t > 0, 0 < ε� 1. (1)

Under frozen parameter, the corresponding autonomous equation has equilibriums: saddle and stable
nodes. When parameter is deforming, pair saddle-node is joining. Asymptotic solution is constructed
near such dynamic bifurcation. It is discovered that in a narrow transient layer the main term of
asymptotics is determined by Riccati and KPP equations. The main result is determination of the
shift of the transient layers from moment of the bifurcations. Exact statement are illustrated by
numerical experiments [1].
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Fig. 1: Numerical experiments with Eq.(1) for different β. The graphs of the solution asymp-
totically coincide with the parabola −

√
−εt as t→∞.
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On the adiabatic sound propagation in a shallow sea
with a curved underwater canyon

Kazak M.S., Petrov P.S.
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Sound propagation is a cylindrically-symmetric shallow-water waveguide is considered. The bot-
tom relief in cylindrical coordinates (r, θ, z) is described by the function

h(r) =

h0 + ∆H sin
(
π
r − r1

r2 − r1

)
, if r1 < r < r2,

h0, otherwise,
(1)

where r1 and r2 are canyon boundaries, ∆H is the canyon depth and h0 is the depth outside the
canyon. The waveguide consists of the water column 0 ≤ z ≤ h(r) and the penetrable bottom
z > h(r). Sound propagation is described by the Helmholtz equation

1

r
(rPr)r +

1

r2
Pθθ + Pzz +

ω2

c2
P = −1

r
δ(r − rs)δ(θ − θs)δ(z − zs). (2)

The pressure-release condition for acoustic pressure P (r, θ, z) is imposed at the surface z = 0

P |z=0 = 0.

According to the normal mode theory, the sound pressure in the water column can be written in the

form of truncated modal expansion P (r, θ, z) ≈
N∑
j=1

Aj(r, θ)φj(z, r, θ), where φj are mode functions
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obtained from the solution of the acoustical spectral problem [1] and Aj are modal amplitudes. The
latter are obtained (in adiabatic approximation) by solving horizontal refraction equations [1]

∂2Am(r, θ)

∂r2
+

1

r

∂Am(r, θ)

∂r
+

1

r2

∂2Am(r, θ)

∂θ2
+ Am(r, θ)k2

m = −1

r

φm(r, θ, zs)

ρ
δ(r − rs)δ(θ − θs) . (3)

The method of sound pressure field calculation in a waveguide with rotational symmetry is described
in this work. The separation of variables method is applied to the solution of the horizontal refraction
equations. The solution can be represented in the form

Am(r, θ) =

Nθ∑
j=0

Qmj(r)ψj(θ) , (4)

where functions ψj(θ) are obtained from the solution of the the Sturm–Liouville problem in the angu-
lar variable (with the periodicity conditions), and Qm,j(r) are radial modes that can be represented
outside the ring [r1, r2] as

Qmj(r) = αmjJj(kmr), if r ≤ r1 , Qmj(r) = βmjH
(1)
j (kmr), if r ≥ r2 , (5)

where Jj(r) and H
(1)
j (r) are the Bessel and the Hankel functions respectively. The values of the

function Qmj(r) inside the ring can be computed numerically. After that the sound pressure field
can be computed by formulae (3) and (4) (an example is shown in Fig. 1).

The solution properties of horizontal refraction equations in the case of underwater canyon are
described using the ray theory. The relation between the location of the source and the amount
of acoustical energy trapped above the canyon is studied. A correspondence between the indices of
Bessel and Hankel functions in (5) and the horizontal rays trapped in the canyon area is established.

Fig. 1: Contour plot of the sound pressure field (in dB re 1 m). The inner and outer boundaries
of the canyon are shown by dashed lines. Note the localization of acoustical energy over the
canyon.

The reported study was supported by the Russian Foundation for Basic Research under the
contracts № 18-05-00057 a and № 18-35-20081 mol a ved.
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Inverse problem for a linearized model of oxygen transport in brain
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A two-compartment (blood and tissue) model of oxygen transport is considered. It is assumed
that the both compartments occupy the same spatial region Ω ⊂ R3 and have different volume
fractions for the blood and tissue compartments, σ and 1 − σ, respectively. Following [1, 2], the
oxygen transport can be described by the following coupled equations:

−α∆ϕ+ v · ∇ϕ = G+
m∑
j=1

qjfj, −β∆θ = −κG− µ+
m∑
j=1

pjfj, x ∈ Ω. (1)

Here, ϕ and θ are the blood and tissue oxygen concentrations, respectively; µ describes the tissue
oxygen consumption; G = c(θ−ψ) is the intensity of oxygen exchange between the blood and tissue
fractions, where ψ is the plasma oxygen concentration; κ = σ(1 − σ)−1, where σ is the volumetric
fraction of vessels; v is a prescribed continuous velocity field in the entire domain G; α and β are
diffusivity parameters of the corresponding phases; fj are the characteristic functions of the disjoint
subdomains Ωj ⊂ Ω, j = 1, ...,m, which are some neighborhoods of the ends of arterioles and venules.
That is the contribution from arterioles and venules are described by the source functions of equations
(1) with unknown intensities qj, pj, j = 1, ...,m. Notice that, in [1], this contribution is described by
the appropriate boundary conditions.

There are nonlinear monotonic dependencies of the tissue oxygen metabolic rate, µ, on the tissue
oxygen concentration, θ, and of the plasma oxygen concentration, ψ, on the blood oxygen concen-
tration, ϕ. To simplify the model, the following linear approximations: µ = pθ + s and ψ = aϕ+ b,
where a, p > 0, are used.

Equations (1) are supplemented by the following boundary conditions imposed on Γ = ∂Ω:

α∂nϕ+ γ(ϕ− ϕb)|Γ = 0, β∂nθ + δ(θ − ψb)|Γ = 0. (2)

Here, ∂n denotes the outward normal derivative at points of the domain boundary. Nonnegative
functions ϕb, ψb, γ, and δ are given.

The Inverse Problem consists in finding intensities r = (q1, ..., qm, p1, ..., pm) ⊂ R2m and the
corresponding solution y = (ϕ, θ) of the boundary-value problem (1), (2) with the following integral
overdetermination: ∫

Ωj

ϕdx = Qj,

∫
Ωj

θdx = Pj, j = 1, ...,m.

Here, Qj and Pj are the prescribed avereged values of the functions ϕ, θ with respect to subdo-
mains Ωj.

The unique solvability of the inverse problem is proven, an algorithm to find solutions is proposed,
and conducted numerical experiments are discussed.

This work is supported by the Russian Foundation of Basic Research (project № 20-01-00113 a)
and by the Klaus Tschira Foundation.
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On the mode parabolic equation method for the elastic media

Kozitskiy S.B.
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Mode parabolic equations appeared as a convenient tool for solving 3D problems of acoustics.
Various parabolic equations for elastic media have been derived in some articles. As a rule, they
have different restrictions. Previously, we have derived a system of mode parabolic equations taking
into account the weak elasticity of the bottom [1].

In this work we develop approach to derivation of a system of mode parabolic equations (MPEs)
for the 3D layered elastic media without limitation of the weak elasticity, based on the generalized
multiscale expansions method. As a small parameter ε a ratio of a typical wavelength to a typical
size of horizontal inhomogeneities has been chosen. We introduce slow variables X = εx and Y =
ε1/2y, and postulate decomposition for the elastic modules Eef = λ + 2µ = E0(X, z) + εE1(X, Y, z),
µ = µ0(X, z) + εµ1(X, Y, z). Also for density we have ρ−1 = γ0(X, z) + εγ1(X, Y, z). With the above
expressions and parabolic anzats for the displacements U = (u, v, w)T , we expand the equations of
elastodynamics [2] and collect terms at the same powers of ε.

At O(ε0) we obtain elastic self-adjoint eigenvalue problem L(k)Φ = 0 which is equivalent to the
one in the work [3] (Φ = (ϕ, ψ)T and k is eigenvalue):

(γ0φz)z + γ0

(
ω2c−2 − k2

)
φ− ikγ0ν2ψ + ikδν3α0γ0[(ikφ+ ψz)− ikδ(φz − ikψ)] = 0 ,

(γ0ψz)z + γ0

(
ω2c−2

s − k2
)
ψ + ikγ0ν1φ− ikδν3α0γ0[(φz − ikψ) + ikδ(ikφ+ ψz)] = 0 .

Variables P0 = −E0(w0z + iku0) = A(X, Y )φ(X, z) and S0 = −µ0(u0z − ikw0) = A(X, Y )ψ(X, z)
describes compressional waves and shear waves of vertical polarization. Also α1 = [1 − k2δ2]−1,
c2 = γ0E0, c2

s = γ0µ0, ν1 = γ0zγ
−1
0 + 2µ0zE

−1
0 , ν2 = γ0zγ

−1
0 + 2µ0zµ

−1
0 , ν3 = γ0zγ

−1
0 + µ0zzµ

−1
0z . Here

we introduced function δ(X, z) = 2γ0µ0zω
−2 and often ‖kδ‖ � 1. So we can use perturbation theory

to obtain eigenvalues and eigenfunctions from the problem with µ0z = 0 and γ0z = 0. Countable
solutions of the eigenvalue problem (Φj, kj) are orthogonal to each other, normalized and indexed by
j = 1, 2 . . .. At O(ε1/2) we get eigenvalue problem for the elastic waves of horizontal polarization.

At O(ε) we obtain inhomogeneous eigenvalue problem for variables P1, S1, with right part de-
pending on P0, S0. Compatibility conditions of this problem take a form of MPEs. In the case of
one-mode representation for Pi, Si as a result we derived system of adiabatic MPEs for j = M, . . . , N

2ikjα1jAj,X + ikj,Xα2jA+ α3jAj,Y Y + α4jAj = 0 .

Here αij have cumbersome form, but when µ0z = 0 and γ0z = 0 for i = 1, 2, 3 we have αij = 1. Also
we can derive elastic MPEs with interacting modes from multi-mode representation for Pi, Si in the
same way as in the work [1].

An advantage of the presented approach for the derivation of the elastic MPEs is in possibility
to use small parameter δ to obtain solutions of the elastic eigenvalue problems by the perturbation
theory and to estimate values of coefficients αij.
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Resonance scattering of the dipole radiation
by a cylindrical density duct in a magnetoplasma
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The problem of the interaction of electromagnetic waves with magnetic-field-aligned density ir-
regularities, known as density ducts, in a magnetoplasma has a long history and has been studied by
many authors. The interest in this problem has been motivated by the observations of whistler wave
guidance by density ducts in the near-Earth space [1] and formation of field-aligned plasma structures
in heating ionospheric [2] and laboratory [3] experiments. The possibility of resonance interaction of
electromagnetic waves with such plasma structures is of primary importance for their diagnostics and
leads to the necessity of a detailed study of conditions under which the scattering of electromagnetic
waves from plasma density irregularities can exhibit resonance behavior. Most papers on the subject
deal with the resonance scattering of plane electromagnetic waves by density ducts (see, e.g., [4] and
references therein). It is the purpose of the present work to study the resonance scattering from a
cylindrical density duct irradiated by the field of a localized electromagnetic source that is placed in
a background magnetoplasma outside the duct.

We consider an electric dipole source which is parallel to the duct having decreased plasma density
with respect to the background medium. It is shown that such a source, depending on its frequency,
can excite plasmon resonances as well as resonances at the plasma frequencies of the outer and inner
regions of the duct. Conditions have been found under which the dipole source also excites forward
and backward eigenmodes of the duct, which give rise to complex waves at certain frequencies. It
turns out that this circumstance can result in appearance of the previously unrevealed resonances
of the scattered field, which are related to formation of standing-wave structures in the duct at the
corresponding frequencies. We analyze how manifestation of this phenomenon depends on the source
parameters and the azimuthal indices of the observed resonances. Numerical results will be reported
for conditions typical of decreased density ducts in the ionospheric plasma.

Acknowledgments. This work was supported by the Ministry of Science and Higher Education
of the Russian Federation within the framework of the state assignment to University of Nizhny
Novgorod.
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Interferometric localization of moving noise source
by using of high-frequency signals

Kuznetsov G.N., Kuzkin V.M.
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The results of an experimental and analytical study of the method for estimating the coordinates
and noise source radial velocity by using of single cylindrical small-size vector-scalar antenna are
presented. Frequency-time processing was used, consistent with the spatial interference structure
formed by moving source by signals: directed and reflected from a free surface. Dependences on
the bearing time, radial velocity, distance and depth of the source are obtained. A qualitative and
quantitative explanation of the experimental data is given.

To estimate the range and depth, a two-beam model of interference structure of sound field is
used. In accordance with the principles of interferometric processing, sound energy is focused on the
hologram, which accumulates over a sufficiently long period of time. In addition, the radial velocity
is estimated simultaneously with distance detection and estimation. The use of a vertically oriented
vector-scalar antenna, despite its small diameter (18 cm), allows us to perform real-time bearing.
Thus, the developed method makes it possible to estimete all parameters of a moving source taking
into account long-term accumulation, i.e. with a significantly higher signal-to-noise ratio.

The work was supported by RFBR (grants № 19-29-06075 and № 19-08-00941). The research of
D.Yu. Prosovetskii was supported by grant of President Russian Federation (№ MK-933.2019.8).

Spectral properties of a class of functional difference equations
with meromorphic potential and applications

Mikhail A. Lyalinov
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Russia

We study functional difference (FD) equations of the second order with a potential belonging to
a special class of meromorphic functions. Essential and discrete spectrum as well as the behavior
of eigenunctions are considered. To this end, a FD equation is reduced to an integral equation that
admit an efficient study. Some applications to a Schrödinger operator with a singular potential
having support on a conical surface are also addressed.

Symmetric guided waves in an isotropic inhomogeneous waveguide

Martynova V.Yu., Moskaleva M.A., Raschetova D.V.
Department of Mathematics and Supercomputing, Penza State University, Penza, 440026, Russia
e-mail: 79273698109@ya.ru, m.a.moskaleva1@gmail.com, dariaraschetova@gmail.com

Symmetric electromagnetic waves in a shielded plane dielectric slab was introduced and studied
recently in [1], where the permittivity is anisotropic and homogeneous. In this report we study
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propagation of symmetric electromagnetic wave in a shielded plane dielectric slab characterised with a
scalar inhomogeneous permittivity. We use the operator pencils theory to study the wave propagation
problem [2].

Let Σ := {(x, y, z) : 0 6 x 6 h, (y, z) ∈ R2} be a slab having perfectly conducted walls

σ0 := {(x, y, z) : x = 0, (y, z) ∈ R2}, σh := {(x, y, z) : x = h, (y, z) ∈ R2},

that located in the Cartesian coordinates Oxyz.
We study the propagation of a monochromatic electromagnetic wave (E,H)e−iωt, where ω is the

circular frequency and E,H are the complex amplitudes, along the layer Σ.
The vector-valued functions E,H have the form

E = (ex, ey, ez)
> · ei(γyy+γzz), H = (hx, hy, hz)

> · ei(γyy+γzz), (1)

where

ex ≡ ex(x), ey ≡ ey(x), ez ≡ ez(x),

hx ≡ hx(x), hy ≡ hy(x), hz ≡ hz(x),

and γy, γz are unknown real spectral parameters (propagation constants of the guided wave), ( · )>
is the transposition operation. The field (1) is called symmetric guided waves [1].

The layer Σ is filled with nonmagnetic isotropic homogeneous medium characterised by the per-
mittivity

ε ≡ ε0ε(x).

We also assume that inside the layer µ = µ0 > 0 is the permeability of free space.
Maxwell’s equations in the harmonic mode have the form

rot E = iωµH, rot H = −iωεE. (2)

The main problem is to find coupled eigenvalues (γy, γz) = (γ̂y, γ̂z) for which there exists a
nontrivial field (E,H)e−iωt, where the functions E, H given by (1) satisfy Maxwell’s equations (2)
and the tangential components of the electric field vanish at the boundaries x = 0, x = h. In
addition, the energy finiteness condition must be fulfilled:∫ h

0

(ωµε|E|2 + |H|2)dx <∞.
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Wave effects in stochastic reaction-diffusion model of quorum-sensing
in bacterial populations
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In recent decades, significant attentions have been given using methods and techniques of math-
ematical modelling and computer simulation to predict behavior of complex biological systems.
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Specifically, bacterial populations demonstrate ability to a multicellular organization and regulation
of their reactions depending on changes in environment conditions. One of the possible mechanisms of
bacterial communication can be realized by the so-called “quorum-sensing”, which can cause reducing
efficiency of antibacterial medicines.

The bacterial communication characteristics have been previously described mathematically by a
system of ODEs taking into account bacterial population growth and delay effect, including positive
and negative feedback in biological system [1]. Moreover, description of heterogeneous space distri-
bution of signaling molecules produced by bacteria enables us to express model in a form of system of
reaction-diffusion PDEs [1]. However, experimental data suggest the appearance of time-dependent
fluctuations of signal substances providing quorum sensing during the process of nucleation and
growth of bacterial population [2]. Therefore, we can modify the basic model in view of stochastic
dynamics of bacterial population during the observation time. In the present study, we develop the
stochastic reaction-diffusion modification of the bacterial communication model with a focus on the
application of a numerical approach for computer simulation.

The mathematical model is described by an initial-boundary value problem for a system of
parabolic PDEs: {

∂U/∂t = DU∆U − γUU − γL→ULU + FU(x, U),

∂L/∂t = DL∆L− γLL+ FL(x, U), 0 ≤ x ≤ l, 0 ≤ t ≤ tob,
(1)

where for the one-dimensional model U(x, t) and L(x, t) are the concentrations of special substances
produced by bacteria (N -acyl homoserine lactones, shortly AHL, and Lactonase, respectively) in
mol/l, l is linear size of the domain solution in µm, tob is observation time in h. Model parameters
are reported in details in [1] including typical production terms of FU(x, U) and FL(x, U) defined
with use of normal distribution of bacterial cells as well as Hill’s law. A set of boundary conditions
as well as initial conditions are imposed to complete the mathematical problem statement:

U(0, t) = 0, U(l, t) = 0, L(0, t) = 0, L(l, t) = 0; U(x, 0) = 0, L(x, 0) = 0. (2)

In order to solve the problem (1)–(2) numerically, we constructed a computational scheme based
on implicit finite-difference method. The iterative procedure due to presence of non-linear reaction
terms was proposed to be implemented for each time layer. The algorithm for the stochastic process
simulation of bacterial nucleation and growth was included into the general scheme. The program
application was designed in Matlab to perform series of computational experiments and examine the
wave behavior of the time-dependent characteristics for bacterial communication process.
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Toda lattice for semi-bounded initial data and classical moment problem
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We define the solution of semi-infinite Toda lattice for wide class of unbounded initial data. By
using some ideas of Moser for finite-dimensional case, we derive the evolution of moments of spectral
measure of Jacobi operator associated with Toda lattice via the Lax pair.
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Exchange pulse corresponding to phase synchronism
in a flexible plate loaded by gas
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A problem of excitation of a sonic pulse in a system comprised by an elastic plate and a gas is
studied. The source is localized in time and space, so the problem is non-stationary. It is known that
such a system can have a phase synchronism point in the spectral domain, i.e. the values of frequency
and wavenumber belonging both to the dispersion diagram of the plate and the gas. We demonstrate
that such a point leads to appearing of an “exchange pulse” [1], that is a quasi-monochromatic long
pulse in the gas.

In the talk, we write down an integral representation of the sonic field and discuss a method
of asymptotic evaluation of the 2D Fourier integral. We demonstrate the term responsible for the
exchange pulse.

The work is motivated by an experiment made by one of the authors, who recorded sound pro-
duced by kicking of a thin (about 3 cm) layer of ice on a pond. The ice plays the role of the plate,
and the gas is the air. The experimental signals generally support the theory presented in the talk.

The work is supported by RFBR grant № 19-29-06048.
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On regularization of the Heun functions
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Heun differential equation was introduced by Karl Heun in 1889 [1]. Its general form is a Fuchsian
equation with four regular singular points in the complex z-plane, which are usually chosen to be
z = 0, 1, a, and ∞. Solutions of the Heun equation generalize many known mathematical functions
and appear in many fields of modern physics, see [2, 3].

Evaluation of the functions is based on local power series solutions near the point z = 0 derived
by the Frobenius method. In [4] a procedure based on power series expansions and analytic con-
tinuation is suggested to define solutions in the whole complex plane with branch cuts. However,
the Frobenius method generally gives two independent local solutions provided that two roots of the
so-called indicial equation are not separated by an integer. For the equation under consideration, the
exceptional cases occur at integer values of exponent-related parameter γ of the equation, when one
of the local solutions should include a logarithmic term (see [4]). This also means singular behaviour
of the Heun functions as functions of γ. In the present work we suggest a method of regularization
and redefine Heun functions in some vicinities of the integer values of γ, where the new functions
depend C∞-smoothly on γ.
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About the importance of numerical models for quality assessment
of guided wave-based structural health monitoring systems
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Structural Health Monitoring (SHM) systems based on guided waves are nowadays used for the
detection, localization and assessment of damages in plate-like structures. Actively introduced waves
are interacting with possible damages within the structure, enabling feature extraction of sensed
wave signals. Their application in industrial environment is up to now limited. One of the reasons
for this restricted application is the lack of a well established method of quality assessment for
such SHM systems. The transfer of quality assessment methods from neighbouring methods like
ultrasonic testing in non-destructive evaluation proves to be partially possible for a limited number
of applications but cannot be transferred to the majority of guided wave-based SHM applications,
which monitor larger areas of a structure.
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Within this publication, the authors list the current challenges of quality assessment for guided
wave-based SHM systems. They present latest research results on how to tackle these challenges.
Here they put a special focus on the great opportunities as well as possible difficulties and potential
solutions for the usage of simulation of guided waves for the quality assessment of guided wave-based
SHM systems.

High contrast approximation for penetrable wedge diffraction
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The important open canonical problem of wave diffraction by a penetrable wedge is considered
in the high-contrast limit. Mathematically, this means that the contrast parameter, the ratio of a
specific material property of the host and the wedge scatterer, is assumed small. The relevant material
property depends on the physical context and is different for acoustic and electromagnetic waves for
example. Based on this assumption, a new asymptotic iterative scheme is constructed. The solution
to the penetrable wedge is written in terms of infinitely many solutions to (possibly inhomogeneous)
impenetrable wedge problems. Each impenetrable problem is solved using a combination of the
Sommerfeld–Malyuzhinets and Wiener–Hopf techniques.

The resulting approximated solution to the penetrable wedge involves a large number of nested
complex integrals and is hence difficult to evaluate numerically. In order to address this issue, a subtle
method (combining asymptotics, interpolation and complex analysis) is developed and implemented,
leading to a fast and efficient numerical evaluation. This asymptotic scheme is shown to have excellent
convergent properties and leads to a clear improvement on extant approaches.

Fig. 1: The geometry of the penetrable wedge problem where Ω2 (resp. Ω1) indicates the
wedge scatterer (resp. host) region and ΦI is the incident plane wave.
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Generation of vector Bessel-type beams via geometrical phase elements
for transparent material processing applications
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Zeroth order Bessel beams are widely used in laser micromachining of transparent materials. The
small diameter of central core and elongated focus enables to generate high aspect ratio voids. The
simplest way to generate this beam is to induce a conical shape phase with an axicon. However,
the quality of the axicon tip is very crucial to generate smooth Bessel beams since it is known that
a blunt axicon tip induces large intensity modulation in propagation direction. Alternative Bessel
beam generation method is to use a Diffractive Optical Elements (DOEs) that do not suffer from
previously mentioned problem [1].

Non-diffracting hugher order Bessel beams and their modified versions are also more widely used
nowadays in industry for transparent material micro processing purposes - cutting, drilling etc., due
to generation of high aspect ratio micro voids. More and more applications of such beams involve
manipulation of their transverse intensity profile andor polarization to create unique tools for novel
micro processing applications, for example, asymmetric and multi-peak transverse profiles create
directional strain and crack in modified area for glass cutting, while other intensity patters may be
used to create complex structures in multiphoton polymerization applications [2].

In this work we start with generation of a zeroth order Bessel beam with Geometric Phase
Optical Elements (GPOEs) (manufactured by Workshop of Photonics) acting as a diffractive beam
shaping element. Having absolute control of induced beam phase, we have modified mask phase
so that half of it had additional phase shift or spatial transposition resulting in creation of fanciful
induced beam phase patterns. With the use of laser beam propagation numerical modeling we
show that these new phase masks can create various beam transverse intensity patterns such as
asymmetrical central core, generation of multiple peaks or even large rings that are highly demanded
for various laser micromachining applications. We have chosen couple of most perspective beam
shapes and manufactured GPOEs to generate them. The experimentally generated beams were
compared to numerical simulations. As the GPOEs are able to work with high power pulses we have
also investigated induced transparent material modifications.

Lastly, we demonstrate experimental generation of higher order vector Bessel beams which are
notable for their ring-shaped transverse intensity profile together with multi-peak transverse polar-
ization components, where ring diameter and number of peaks in separate polarization components
depends on beams order. These unique beams were realized using axicon together with higher order
s-plates — spatially variant waveplates based on femtosecond laser written nano gratings in fused
silica glass substrates. Induced nanogratings withstands high intensity laser radiation without chang-
ing its spatial structure which allows us to use nanograting based elements for ultra-short high-power
pulsed laser beam shaping. Generated higher order vector Bessel beams and their separate polar-
ization components were used to inscribe modifications in transparent materials and to investigate
beam‘s applicability for ultra-fast laser micro processing purposes.
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Tailoring of functional coatings and thin films to desired applications requires a precise control of
both collective and individual attributes of sub-elements of the coating. Usually this can be achieved
by the control of the microstructure and its inner workings (architecture) at the nanoscale. Nano-
engineering of the clusters of nanoparticles deposited on a glass substrate gives rise to novel optical
elements, which are acting as various mode filters, converters of topological charge or of the chirality
of the incident beam etc. A good example of such optical elements are the so-called geometrical
phase elements (GPE). Their applications are ranging nowadays from devices like metalenses to
special optics and also from wavelengths in the ultraviolet to the THz diapason. The reason behind
such flexibility is due to variety of different production approaches - lithography based, glancing
angle deposition, patterning processes, deposition of sculptured coatings etc. and due to the varying
orientation and individual properties of sub-elements of the GPE.

Gaussian beam and higher modes can be introduced by making the position of their source
complex (moving it to the complex point). This concept has lead later to the introduction of so-
called complex source beams. We build here upon our previous development of complex source
vortices (CSV) and introduce an analytical expansion of scalar CSVs into spherical multipoles. We
extend it to the vector CSVs and study in detail cases of rather complex polarisation topologies. This
expansion enables us to introduce a closed-form analytical Mie theory. We use the analytical Mie
theory of vectorial comlex source vortices to study properties of a cluster of three nanoparticles.

Here, we report on a novel approach in the engineering of such GPE’s using precisely engineered
clusters of nanoparticles. We study in detail optical properties of such nanoclusters and investigate
how individual properties of nanoparticles are influencing the collective response of a GPE. As a
proof of concept we design a functional coating, which acts as a diffractive optical element for laser
beam shaping applications. Lastly we investigate ineraction of such coating with CSVs.
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The transformation of modes near the points of degeneracy arises in many applied problems. One
example is a slowly irregular waveguide, where the phase velocities of the two modes coincides at
some distance along the axis of the waveguide or are close to each other. The waves in the waveguide
can be of a different nature: acoustic, elastic, or electromagnetic, etc. Other examples come from
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non-stationary problems of quantum mechanics, where two energy levels approach each other at some
point in time. The study of such problems is usually based on the specifics of the applied problems.

We intend to state the problem of degeneracy points in a general form, which will enable us to
classify such problems, and to find asymptotic solutions near the points of degeneracy and a tran-
sition matrix describing the mode transformation. The problems studied are governed by ordinary
differential equations or partial differential equations. Their main feature is that one variable, say x,
has a separate meaning compared to others, if any. An example is time in non-stationary quantum
problems or coordinate along the axis in the case of waveguides. Another important feature is the
presence of a small parameter ~. Here we investigate the asymptotics of solutions of the equation

K̂(x, ~)Ψ(x, ~) = −i~Γ
∂Ψ(x, ~)

∂x
, K̂(x, ~) ≡ K(x) + ~B(x), ~� 1, (1)

where K̂, B and Γ are self-adjoint operators, K̂(x, ~) − K̂(0, ~), B, Γ and Γ−1 are bounded. The
operator K̂ may be a matrix or a differential operator with coefficients dependent on x, which does
not contain the derivatives with respect to x. We assume that the spectral problem

K(x)ϕj(x) = βj(x)Γϕj(x), (2)

has at least two eigenvalues βj(x). The leading term of asymptotics of solutions of (1)

Ψj = ϕj(x)e
i
~
∫ x βj(x′)dx′

is expressed in terms of eigenvalues βj and eigenfunctions ϕj of the spectral problem (2). This
approach fails if eigenvalues have a degeneracy point β1(x∗) = β2(x∗) ≡ β∗.

The transformation of modes in the case of a two-dimensional eigenspace corresponding to a
double eigenvalue was studied in [1]. Here we study the case typical only for non self-adjoint operators
Γ−1K̂: the eigenspace corresponding to β∗ is one-dimensional; the operator Γ−1K̂ can be reduced to
the Jordan block in this subspace. The idea for our approach to a non self-adjoint case was taken
from [2]. Our results here are a generalization of results obtained for applied problems in [3, 4].
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Broadband sound scattering by intense internal waves

Pereselkov S.A.1, Rybyanets P.V.1, Kaznacheeva E.S.1, Badiey M.2, Kuzkin V.M.3
1Voronezh State University, Universitetskaya pl. 1, Voronezh, Russia
2University of Delaware, Newark, USA
3General Physics Institute of RAS, 38 Vavilova str., Moscow, Russia
e-mail: pereselkov@yandex.ru, badiey@udel.edu, kumiov@yandex.ru

The oceanic environment, due to the waveguide dispersion and multimode nature of propaga-
tion, has the property of self-organizing of the interference pattern (interferogram) of a broadband
source. The stable sets of localized bands is formed in the frequency-distance (time) coordinates.
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The interferometric processing of the source field is proposed by based on this mechanism. The
proposed interferometric processing implements a coherent accumulation of spectral intensity along
localized bands by using of 2D Fourier Transformation. At the output of the integral transformation,
the spectral density, which can be called a Fourier Hologram, is localized in focal spots caused by
interference of sound field modes of different numbers.

The results of interferometric processing of a full-scale experiment (SWARM’95) of broadband
sound scattering on intense internal waves, when they led to horizontal refraction (the first trace) and
modes coupling (the second trace) of the acoustic field of the source, are presented. 2D Fourier Trans-
formation of interferograms to holograms registered two non-overlapping localized regions caused by
direct and scattered acoustic signals. By filtering these regions and applying inverse 2D Fourier
Transformation to them, interferogram corresponding to unperturbed waveguide and interferogram
corresponding to hydrodynamic perturbations are reconstructed. This approach allowed us to recon-
struct the transfer function of the unperturbed waveguide and the temporary variability of the ocean
environment. The velocity of propagation of intense internal waves is estimated by using holograms of
the perturbed field. The algorithm for transmitting the unperturbed module of the source spectrum
at the background of inhomogeneities of the oceanic environment is described and approved.

The theoretical proofing for this remarkable property of Holograms to transmit unperturbed
source images through inhomogeneous random media is based on the representation of the resulting
interferogram as a linear superposition of direct and scattered fields. The obtained results may be of
interest for underwater communication at presence of uncontrolled inhomogeneities of the ocean envi-
ronment and for their monitoring. Proposed interferometric processing gives us new understanding of
those areas in ocean acoustics where broadband sound scattering can be considered as hydrodynamic
perturbations.

The work was supported by RFBR (grants № 19-29-06075 and № 19-38-90326).

An inverse problem for the acoustic wave equation
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We consider initial boundary value problem for the acoustic wave eqaution

1

ρc2
uftt = div

(1

ρ
∇uf

)
− σut in Ω2T = Ω× (0, 2T ),

u|t=0 = 0, u|t=0 = 0 in Ω,

1

ρ
uν |ΓT = f ∈ F, ΓT = Γ× [0, T ], Γ = ∂Ω,

where positive density ρ and speed of sound c from C1(Ω), σ ∈ L∞(Ω). Control space F = C∞0 (ΓT ).
The solution is uf .

Inverse problem: to find all coefficients in Ω by the inverse data

uf |Γ×[0,2T ], f ∈ F and ρ|Γ

under assumption of big enough T. More precisely

T > 2T ∗, T ∗ = sup
x∈Ω

dist(x,Γ),

where distance is understood in the sense of Riemannian metric |dx| /c(x). For solving the inverse
problem, we use the Boundary Control Method [1, 2] in the version, that close to the paper [3]. We
use also the theory of the Dirichlet-to-Neumann map associated with operator div(1/ρ∇), [4].
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Variations of normal modes in shallow-water geoacoustical waveguides
caused by the bathymetry perturbation
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Consider a shallow-water environment with the water depth h, sound speed profile c = c(z) and
density ρ = ρ(z), where z is the depth variable. Sound field formed in such a waveguide by a source
of the frequency f can be represented as a decomposition over the so-called normal modes, i.e., the
solutions of the 2D Helmholtz equation of the form exp(kjx)φj(z) (x is the horizontal variable).
Horizontal wavenumbers kj and modal functions φj(z) can be obtained by solving acoustical spectral
problem of the form [1] 

d2φj
dz2

+
ω2

(c(z))2
φj = k2

jφj , z ∈ ]0, h[ ∪ ]h,H],

φj|z=0 = 0 ,

φj|z=H = 0 ,

φj|z=h− = φj|z=h+ ,
1

ρ

dφj
dz

∣∣∣∣
z=h−

=
1

ρ

dφj
dz

∣∣∣∣
z=h+

,

(1)

where ω = 2πf , and H is a sufficiently large value of depth chosen is such a way that we can
neglect sound waves propagating below z = H. In (1) the second equality expresses the pressure-
release condition at the sea surface, and fourth and fifth equalities are continuity conditions for sound
pressure and particle velocity at z = h, where the functions c = c(z) and ρ = ρ(z) have a finite-
jump discontinuity (the superscripts ‘+’ and ‘−’ signify the values above and below the interface,
respectively).

In realistic models of shallow-water waveguides water depth is normally a function of one or two
horizontal variables, i.e. h = h(x) or h = h(x, y), and it is important to take the dependence of kj
and φj(z) on h into account. In fact, kj is usually a smooth function of h, and therefore we can
consider an expansion

kj(h) = kj(h0) +
∂kj
∂h

∣∣∣∣
h=h0

∆h+
∂2kj
∂h2

∣∣∣∣
h=h0

∆h2

2!
+ . . . , (2)

where kj(h) is perturbed value of the modal wavenumber, and ∆h = h − h0 is the water depth
perturbation. Equation (2) can be considered a second-order perturbation theory for the Sturm–
Liouville operator in (1), where the perturbation is caused by the change in the water-bottom interface
depth.
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In our work we derive explicit formulae for ∂kj
∂h

and ∂2kj
∂h2

and the respective derivatives of the
mode functions φj(z). We also investigate the accuracy of the approximation (2) and discuss its
applications in 3D models of sound propagation in shallow water.

The reported study was supported by the Russian Foundation for Basic Research under the
contracts № 18-05-00057 a and № 18-35-20081 mol a ved.
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The problem of diffraction of a plane wave uinc = exp
(
ik(xα0 + z

√
1− α2

0)
)
by the periodic grid

S =
∞⋃

n=−∞

Sn,

Sn = {(x, z) : z = H,nL ≤ x < nL+ a; z = 0, nL+ a ≤ x < (n+ 1)L},

is considered.
For two-dimensional Dirichlet problem, the current ψ() at the boundary satisfies the following

integral equation:

uinc(x) =
i

4

∫
S

H1
0 (kR)ψ(x′)dS

where R = |x− x′|, x,x′ ∈ S.
We will search for the current in the form of a quasi-periodic function

ψ(x+ L, z) = exp(ikLα0)ψ(x, z).

Then the problem is reduced to solving the integral equation on one segment borders:

uinc(x) =

∫
S0

K(x,x′)ψ(x′)dS

where

K(x,x′) =
i

2π

∫ ∞
−∞

exp(ik((x− x′)α + |z − z′|
√

1− α2))

1− exp(ikL(α− α0))

dα√
1− α2

.

The integral equation is reduced to a system of algebraic equations using the method proposed by
the author at last year’s DD session. Analysis of the accuracy dependence of the solution by the
crushing grade is conducted.

The case of a finite grid is also considered. The issue of influence of the size of the object on the
scattering diagram, as well as the estimation Kirchhoff approximation accuracy and the influence of
the deviation of the shape of the boundary from perfect is discussed.
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Since the beginning of the 1960s, a high-frequency asymptotic construction of paraxial beams
solutions of the Helmholtz equation

uxx + uyy + uzz + k2u = 0, k > 0, (1)

localized near the z-axis has been known. It is based on approximate replacement of u by

ũ = eikzW, (2)

where W satisfies the Leontovich “parabolic equation”

2ikWz +Wxx +Wyy = 0. (3)

Solutions of (3) with a Gaussian-type localization near the z-axis were addressed in countless publi-
cations (see, e.g., [1, 2]). In the early 1970s, the question has arisen of the existence of exact solutions
of equation (1) having the same high-frequency asymptotic behavior. Attempts to explicitly con-
struct them do not stop (see, e.g., some references to earlier research in [3]). Such solutions satisfying
(1) in the free space and not involving backward propagating waves are known yet only as compli-
cated superpositions of plane waves (see [3–6]). We generalize these results without relying on the
assumption of a Gaussian-type localization. Our analysis is applicable, e.g., to solutions introduced
in [7].
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Radiation pattern of borehole GPR slot antenna
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Ground penetrating radar (GPR) finds a vast field of application, including borehole EM probing.
One of the problems arising is the design of antennas with azimuthal directivity [1]. We suggest a
solution that consists in the use of a cylindrical transmitter antenna with a longitudinal slit fed
by a pulsed current source. Angular dependence of the emitted radar pulse is achieved due to
creeping wave attenuation in the shadow region. Similar diffraction effects assure directivity of
the receiver antenna. For a rough estimate of the pulsed GPR directivity, we study the model
problem of harmonic wave radiation at the pulse central frequency. The obtained analytical solution
demonstrates a pronounced radiation pattern for practical values of operating frequency and antenna
dimensions. In our talk, along with a sketch of theory, we give an account of the proposed borehole
slot antenna first field tests. The prototypes of the transmitter and receiver antennas were made of
thin-wall steel pipes enclosing commercial Loza-V GPR units [2]. Our experiments confirm feasibility
of the proposed solution.

Consider an infinite cylindrical antenna with a longitudinal slit ϕ < α = d/a, excited by a
harmonic potential 2Ue−iωt and immersed in a homogeneous dielectric medium ε > 1; see Fig. 1.
We calculate wave field distribution at distances comparable to the cylinder diameter. In contrast to
rigorous theory [3], the method of successive approximations yields simple analytical formulas. All
EM field components can be expressed via Hz = H(r, ϕ) satisfying the Helmholtz equation

∂2H

∂r2
+

1

r

∂H

∂r
+

1

r2

∂2H

∂ϕ2
+ k2ε(r)H = 0, ε(r) =

{
ε, r > a
1, r < a

. (1)

with boundary conditions on the metal antenna wall and continuity of the tangential field components
requirement in the slit sector:

(a) :
(∂ +

H

∂r

)
=
(∂ −H
∂r

)
, (b) :

+

H −
−

H = −4π

c
I(ϕ) , |ϕ| > α;

(c) :
1

ε

(∂ +

H

∂r

)
=
(∂ −H
∂r

)
, (d) :

+

H =
−

H , |ϕ| < α

(2)

Fig. 1: Schematic plot of a slot borehole antenna. Fig. 2: Geometry of the narrow gap.

Here, I(ϕ) is surface current density in the conductive wall r = a. In addition, the solution of
Eq. (1) must be regular at r = 0 and satisfy the radiation condition at infinity. These requirements
uniquely determine the wave field H(r, ϕ) for a given current I(ϕ).
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The excited wave field inside the cylinder and in the surrounding medium can be represented as
Fourier series

H(r, ϕ) =
∞∑

m=−∞

Xm Ym(r) eimϕ; Ym(r) =

{
Jm(kr)

J ′m(ka)
, r < a ;

√
ε
H

(1)
m (kr

√
ε)

H
(1)
m

′
(ka
√
ε)
, r > a

}
. (3)

automatically satisfying the contact condition (2c). The other conditions yield an overdetermined
equation set

∑
m

Xme
imϕ = 0, |ϕ| > α;

∑
m

AmXme
imϕ =

{
−4π

c
I(ϕ), |ϕ| > α

0, |ϕ| < α

with Am =
√
ε
H

(1)
m (ka

√
ε)

H
(1)
m

′
(ka
√
ε)
− Jm(ka)

J ′m(ka)
.

(4)

In a strict formulation, determination of the Fourier coefficients Xm from the infinite system of
equations (4) is similar to the Riemann–Hilbert problem of the theory of analytic functions [3]. An
elementary solution can be found by the perturbation method. Following Sommerfeld [4], consider
the case of a narrow gap α � 1. Obviously, the screen curvature can be neglected (see Fig. 2),
and for d � λ the wave field in the gap vicinity can be calculated in quasi-static approximation:
~E = − grad Φ(x, y), ∆Φ = 0. Boundary conditions for harmonic function Φ(x, y) are: given wall
potentials Φ(0, y) = ±U , |y| > d, and contact boundary conditions:

+

Φ(0, y) =
−

Φ(0, y), ε
+

Φx(0, y) =
−

Φx(0, y), |y| < d. Spatial potential distribution is determined as a function of complex variable
z = x+ iy: Φ(x, y) = 2

π
U Im

(
Arsinh z−a

d

)
, whence

Eϕ(a, ϕ) = −i
∞∑
−∞

Xm e
imϕ ≈ 2U

π
√
d2 − a2ϕ2

, |ϕ| < α. (5)

From here, by successive approximations, we find the Fourier coefficients

X(0)
m =

i

2π

∫ π

−π
Eϕ(a, ϕ) e−imϕdϕ =

iU

πa
J0(mα),

X(1)
m =

(
1− α

π

)
X(0)
m −

1

πAm

∑
n 6=m

AnX
(0)
n

sin(n−m)α

n−m
.

(6)

(a) (b)

Fig. 3: Radiation pattern for f = 200 MHz (a) and f = 600 MHz (b); tube diameter 20 cm.

Substitution of the refined coefficients (6) into the Fourier series (3) provides approximate ful-
fillment of the boundary conditions and quantitative description, with practical accuracy, of the
antenna radiation dependence on frequency, medium dielectric permittivity, cylinder diameter, and
gap width. The main physical phenomena that determine the radiation pattern of a tubular slot
antenna are diffraction of the emitted wave on the outer surface of the cylinder and resonant field
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amplification in the inner cavity at selected frequencies. The calculated wave field patterns exhibit
pronounced radiation directivity and frequency dependence (Fig. 3) that must be taken into account
when designing a pulsed borehole GPR.

The authors dedicate this publication to the memory of V.V. Kopeikin who proposed the idea of
using slot antennas for borehole GPR. We are grateful to D.E. Edemskij for useful discussions. This
work was supported by the Russian Foundation for Basic Research, grant № 18-02-00185.
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GPR probing of smoothly layered subsurface medium:
3D analytical model
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Despite the growing possibilities of computers and modern numerical techniques, the problem of
subsurface sensing with a ground penetrating radar (GPR) requires the development of analytical
approaches revealing fundamental laws of electromagnetic pulse propagation in non-uniform natu-
ral environments and simplifying the solution of direct and inverse problems. While direct wave
propagation through material environments with gradually changing parameters is successfully de-
scribed by geometric optics or Wentzel–Kramers–Brillouin (WKB) method of quantum mechanics,
but backward reflected waves in such medium can be exponentially small and lie beyond the accuracy
of these methods. In that respect, coupled-wave WKB method describing partial reflections from
smooth permittivity gradients looks particularly promising.

An analytical technique, based on the coupled-wave WKB approximation transformed to time
domain, has been developed for 1D case in [1]. In this case a non-uniform half-space z > 0 is
characterized by a real-valued relative permittivity profile ε(z) and a vacuum magnetic permeability
µ0. The source is placed at z = 0 and transient field E(s, z) is generated by known probing pulse
f(t) which defines a non-homogeneous boundary condition at z = 0. This method allows one to
write down an integral equation for the reflected pulse g(t) — the half-space response to the input
electromagnetic pulse. Moreover, such a statement yields the 1D inverse problem solution ε(z) for a
given probing pulse f(t) and measured reflected pulse g(t).

Further development of the coupled-wave WKB approach [2] includes more difficult 1.5-D sce-
narios when the medium is still assumed to be horizontally stratified, but the transmitted source
is described by a current line stretched along the air-ground interface, producing a two-dimensional
(2D) transient electromagnetic field. In this geometry we can take into account spacing between
transmitter and receiver antennas. We still assume here a uniform current distribution along the
thin wire antenna. The Fourier–Laplace transform allows one to reduce the time-domain boundary
value problem to an ordinary differential equation, which is similar to 1D case. This semi-analytical
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approach shows good results in comparison with accurate FDTD solutions for different medium
parameters and antenna offsets.

In this work, we extend our results on more realistic scenarios, taking into account the finite length
and non-uniform current distribution in the transmitter GPR antenna. To finish up the obtained
solution, one has to derive current distribution in the antenna lying on the ground surface, which
implies solving an integro-differential equation. In order to avoid excessive computational difficulties,
we propose a physically justified analytic model following from the results of our GPR experiments
[3]. Figure 1 illustrates qualitative agreement of this model with the pulse waveform in a resistively
loaded dipole antenna measured in classical experiments [4].

(a) (b)

Fig. 1: a) Measured current pulse in a resistively loaded GPR antenna [4]; b) model GPR
pulse [3].

This work has been supported in part by RFBR grant № 18-02-00185.
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On matching of integral representation for whispering gallery wave
propagating along smooth surface in RRR3 and a source of the wavefield

Popov M.M.
St. Petersburg Department of the Steklov Mathematical Institute, Fontanka emb. 27, St. Petersburg,
191023, Russia
e-mail: mpopov@pdmi.ras.ru

In the previous paper [1], an integral representation of whispering gallery waves was proposed. It
consists in the following.

Denote by the vector function ~r(s, γ) in R3 a flow of geodesic lines on the surface associated
with the whispering gallery wave propagating on the surface (s is arc length of geodesic line, γ is a
parameter specifying the line).

For each geodesic line from ~r(s, γ) a specific asymptotic solution of wave equation is constructed:
it is localized in a narrow vicinity of the geodesic line and remains free of any singularity on caustics
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along the line. The global wavefield of the whispering gallery is presented by superposition (or
integral over γ) of these solutions. Thus at this point it resembles the method of Gaussian beam
summation method [2, 3].

Present report is devoted to a problem of matching of the integral representation for the whis-
pering gallery wave and a source generating this wave.
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Non-stationary excitation of a trapped mode in a string on an elastic
foundation with a moving linear oscillator
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We consider unsteady oscillations of an infinite string on an elastic foundation with a non-
uniformly moving discrete oscillator. The governing equations are

u′′ − ü− u = −P (t)δ
(
x− `(t)

)
, (1)

Mu(`(t), t)̈ = −P (t) + p(t)−Ku(`(t), t). (2)

In such a system, in the case of a constant speed of the oscillator, a trapped mode can exist under
certain conditions. Applying an unsteady external excitation to this system leads to the emergence
of string vibrations localized near the inhomogeneity. Earlier, Gavrilov and Indeitsev solved a similar
problem for a moving pure inertial inclusion [1].

In the case of a non-uniform motion of the inclusion, using successively the method of stationary
phase and the method of multiple scales, we show that the expression for the amplitude of localized
oscillation is

W = C0

√
MΩ2

0 −K
Ω0(M2Ω2

0 −KM + 2)
, (3)

where C0 is an arbitrary constant, Ω0 is the trapped mode frequency.
The results are verified by independent numerical calculations based on the solution of the Volterra

integral equation of the second kind. We got a good agreement between the analytical and numerical
solutions.
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Asymptotic solution of the Cauchy problem for the wave equation
with fast oscillating coefficient and localized initial conditions

Sergeev S.A.
Ishlinsky Institute for Problems in Mechanics RAS, Moscow, Russia
e-mail: sergeevse1@yandex.ru

We consider the Cauchy problem for the wave equation with fast oscillating coefficient
∂2

∂t2
u = C2

(
Θ(x)

ε
, x

)
∆u, x ∈ Rn, u|t=0 = V

(
x

µ

)
, ut|t=0 = 0.

Such equation arises, for example, in the underwater acoustic problems for the sound propagation.
The initial function V (x/µ) is localized near point x = 0 and 0 < µ � 1 is the small parameter.
Vector-function Θ(x) = (θ1(x), . . . , θm(x)), m ≤ n, where θk(x) are smooth real-value functions and
gradients ∇θk(x) are linear independent for all x. Function C2(y, x), y ∈ Rm is 2π-periodical with
respect to each variable yj and also smooth with respect to all variables. Also the following condition
holds 0 < cm ≤ C2(y, x) ≤ cM . Parameter ε is also small: 0 < ε� 1.

We need to construct the asymptotic solution for the initial problem. It is obvious such asymptotic
depends on the ratio ε/µ.

Using the adiabatic approximation in the operator form, we reduce the initial equation to the
homogenized equation with smooth coefficients. Using the technique of the modified Maslov canonical
operator, we construct the main part of the asymptotic solution for the Cauchy problem for this
equation.

Depending on the ratio ε/µ we can replace the homogenized equation by another one, which
has simplier form. If ε ∼ µ3/2 then such equation has the form of the linear Boussinesq equation.
If ε ∼ µα, α > 3/2, then we can consider the wave equation. The main parts of the asymptotic
solutions for these equations and the homogenized equation are the same.

This work was supported by the Government Budget theme № AAAA-A17-117021310377-1 and
RFBR grant № 18-31-00148 mol a.

Representation of Green’s functions as integrals on dispersion diagrams

Shanin A.V., Korolkov A.I., Makarov O.I.
Moscow State University, Leninskie Gory, 1-2, Moscow, Russia
e-mail: korolkov@physics.msu.ru

Several 2D problems of finding Green’s function are studied in the talk. They are the problems
on square and triangular lattices, and model vector problems in anisotropic materials. In all cases,
the Green’s function can be found in the form of 2D Fourier integrals and then rewritten as plane
wave decompositions. The dispersion diagrams, that are the sets of all (possibly complex) waves in
the system, play an important role in building the representations.

In the talk we demonstrate that the dispersion diagram is a complex manifold in the space of two
complex wavenumbers. Thus, the dispersion diagram is smooth everywhere, and it can be equipped
with a complex structure. The plane wave decomposition can be treated as a contour integral of
some analytic 1-form on the dispersion diagram.

The interpretation of plane decompositions of Green’s functions as contour integrals on the dis-
persion diagram are useful in building the Sommerfeld integrals for more complicated diffraction
problems [1].

The work is supported by the RFBR grant № 19-29-06048.
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Complex WKB method for difference Dirac equation
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We study analytic solutions to the difference Dirac equation(
mc2 + v(z) cd∗

cd −mc2 + v(z)

)(
u1(z)
u2(z)

)
= E

(
u1(z)
u2(z)

)
, z ∈ C, (1)

where m, c ≥ 0 are parameters, (du)(z) = u(z + h)− u(z) with h > 0, v is an analytic function, and
E ∈ C is a spectral parameter.

As h → 0, we describe the asymptotics of the analytic solutions to (1) in the framework of the
complex WKB method for different classes of potentials v. We consider the following three classes:

• functions analytic in a bounded domain in the complex plane;

• trigonometric polynomials;

• functions analytic in a neighborhood of R and decaying as |z|−1−τ for a fixed τ > 0 (|z| → ∞).

As a matrix problem, the asymptotic formulae for the solutions contain the Berry phase that was
discussed in [1].

This work was supported by RFBR grant № 17-51-150008.
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3D mathematical model for the simulation of piezo-induced guided waves
in an elongated plate-like structure
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Structural health monitoring (SHM) is a field combining methods and applications, intended for
continuous monitoring of a health state of a structure and estimation of a remained life-cycle due to
revealed damage. Acousto-ultrasonic SHM methods based on usage of the guided waves are nowadays
studied thoroughly and considered to be effective and reliable. These methods usually employ surface
mounted or in-built piezoelectric transducers for guided waves excitation and sensing. Still, before
the broad implementation of the guided wave-based SHM systems into real-life objects, a number of
theoretical problems are to be solved. For this purpose, effective and reliable mathematical models
simulating guided waves excitation, propagation and scattering in elongated structures are necessary.

A semi-analytical hybrid approach for simulation of the guided waves excitation by a partially
debonded piezoelectric transducer in the two-dimensional case was presented in [1]. The model
allows calculating complex-valued eigenfrequencies and analysing characteristics describing elastic
waves propagation in a layered structure for the different health state of transducers. It was shown
in [2] that 2D model is limited, and its accuracy is worse at higher frequencies. Additionally, some
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physical values cannot be calculated within the 2D model, because they depend, for example, on the
total electroded area. Therefore, it is essential to develop a full 3D coupled mathematical model for
simulation of the piezo-induced wave-field in a layered structure.

In this paper, we present a 3D mathematical model for the simulation of a dynamic interaction
of a piezoelectric transducer and an elastic waveguide. For this purpose, the mathematical model,
obtained in [1], is enhanced to the three-dimensional case. The piezoelectric structure is modelled
using the frequency domain spectral element method, which is effective for simulation of dynamics
of a complex-shaped transducer. The elastic wave propagation in a layer is modelled by the semi-
analytical boundary integral equation method [3], which allows simulation of the separate Lamb
wave modes propagation and calculation of the wave energy, transferred from the transducer to the
structure. The coupling of these two methods is based on the continuity of displacements and stresses
in the contact area. Employment of the collocation method and Galerkin method together with the
first order splines and axis-symmetric [3] functions for traction vector interpolation is discussed. The
convergence is analysed and the developed method is compared with the standard FEM software.

The research is supported by the grants of the President of the Russian Federation for state
support of young Russian scientists (project № MK-470.2020.1) and the Russian Foundation for
Basic Research (project № 18-501-12069).
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Localized oscillation in a linear mass-spring chain on an elastic foundation
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We obtain the necessary and sufficient conditions for existence of localized natural oscillation in
an infinite linear mass-spring chain with nearest-neighbor interactions lying on an elastic foundation.
It is assumed that the chain has spatially uniform properties everywhere except of a single defect.
The governing equations are

ün = (un+1 − 2un + un−1)− αun, n ∈ Z, n 6= 0, α > 0; (1)

mü0 = (u1 − 2u0 + u−1)− βu0, m ≥ 0, β Q 0. (2)

Some particular cases of this spectral problem were considered before in [1].
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Synoptic eddy influence on the accuracy of the solution of the acoustic
ranging problems
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Acoustical ranging problems have important practical applications in underwater acoustics. Their
accurate solution is crucial for the positioning of underwater vehicles. However, various inhomo-
geneities of the bottom relief and sound speed in the water column can affect the accuracy of acous-
tical ranging [1].

The goal of the presented study is to qualitatively and quantitatively describe an error in the
range estimation caused by the presence of a synoptic eddy on the acoustical path. To this end, we
estimated the influence of the eddy on modal group velocities [2].

Consider as an example a 300 km long acoustical path in the sea of Japan (see Fig. 1) and assume
that a source of navigation signals (SNS) is located on the shelf and that it transmits pulse signals
with central frequency of 400 Hz.

Fig. 1: A 2D waveguide in the Sea of Japan with a synoptic eddy localized between r = 75 km
and r = 130 km (see vertical lines). A contour plot represents sound speed field in the water
column. White solid line shows bathymetry. SNS is depicted by a circle (located on the shelf),
and the receiver is shown by a square.

Arrival time of the signals at the reception point are determined by the variation of modal group
velocities vgr

j = vgr
j (r) (where j is the mode number) along the path. These quantities are shown in

Fig. 2 as the functions of r for mode numbers j = 1, 15, 25, 35.

Fig. 2: Modal group velocities vgr
j = vgr

j (r) as the functions of range r for mode numbers
j = 1, 15, 25, 35 without the eddy (solid lines) and in its presence (dashed lines).
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It is assumed that effective velocities of propagation of pulses in the absence of the eddy are
known, and that the pulses contain the information on transmission time (the clocks at the source
and the receiver are synchronized). Under this assumption it is estimated that the presence of the
eddy can lead to the inaccuracy of range estimation of about 15 m (for the great circle distance
between the source and the receiver of 250 km). The dependence of this error on the depth of the
reception point is also considered.

We also estimate the influence of horizontal refraction on the accuracy of ranging problem solution.
The reported study was supported by the Russian Foundation for Basic Research under the

contracts № 18-05-00057 a and № 18-35-20081 mol a ved.
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Propagation of TM waves in a shielded dielectric layer
with inhomogeneous cubic nonlinearity
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We consider the propagation of a monochromatic transverse-magnetic (TM) wave in the dielectric
layer Σ := {(x, y, z) : 0 6 x 6 h, (y, z) ∈ R2} with perfectly conducted walls [1]. The TM wave has
the form (E,H)e−iωt, where

E =
(
Ex(x)eiγz, 0,Ez(x)eiγz

)>
, H =

(
0,Hy(x)eiγz, 0

)> (1)

are the complex amplitudes; ω is the circular frequency; ( · )> is the transposition operation; γ is an
unknown (real) spectral parameter (propagation constant of a guided wave); Ex,Ez,Hy are unknown
functions [1, 2].

The waveguide Σ is located in the Cartesian coordinates Oxyz. At the boundaries x = 0, x = h,
the waveguide has perfectly conductive walls. Inside the waveguide Σ, the permittivity is described
by the formula

ε = ε1 + a|E|2, (2)

where ε1 ≡ ε1(x) ∈ C1[0, h] is monotonically increasing function, ε1(0) = c > 0, and a > 0 is real
constant. Everywhere µ = µ0, where µ0 is the magnetic permeability of free space [1, 2].

Complex amplitudes (1) satisfy Maxwell’s equations

rot H = −iωεE, rot E = iωµH; (3)

tangential components of the electric field E vanish on the perfectly conductive walls. We also impose
an additional local condition on Ex(x) at the point x = 0, see [3, 4] for details.

For the considered problem, a rigorous analytical approach is suggested for the first time. It
is proved that even for small values of the nonlinearity coefficients a, the nonlinear problem has
infinitely many nonperturbative solutions (propagation constants and eigenmodes), whereas the cor-
responding linear problem always has a finite number of solutions. Asymptotic distribution of the
propagation constants is found, zeros of the eigenmodes are determined. Similar results for shielded
plane waveguide with homogeneous isotropic/anisotropic cubic nonlinearity are represented in [3, 4].
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Solution of the two-dimensional Dirac equation with a linear potential
and a localized initial condition
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We consider the Cauchy problem with localized initial data for a two-dimensional massless Dirac
equation with a linear potential U(x) = x1. The solution can be expressed as integral of special
function (functions of parabolic cylinder). We simplify this exact solution asymptotically in some
domains.

Joint work with S.Yu. Dobrokhotov. The work was supported by the Russian Science Foundation
(grant № 16-11-10282).
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Propagation of VLF waves guided by plane density trough
in the magnetosphere
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It is well-known that VLF wave energy transport in the upper ionosphere can be effective due to
whistler waves guided along field-aligned density irregularities, known as density ducts. The ducts
in magnetosphere can be generated by powerful high-frequency heating facilities [1]. Propagation
of whistler waves in a magnetized plasma containing multiple small-scale irregularities of enhanced
electron density was analyzed in [2]. In this report we study the propagation and interaction of
VLF waves guided by plane channel with decreased plasma density relatively to the background
plasma. The duct parameters are typical of upper ionosphere. The magnetized plasma is described
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by dielectric tensor with nonzero off-diagonal elements. We consider the case of resonant magnetized
plasma in which the diagonal elements of a dielectric tensor have the different signs. This condition
in upper ionosphere is satisfied when the frequency of the waves belongs to the interval between the
lower hybrid frequency and the electron gyrofrequency.

The dispersion characteristics and structure of eigen modes guided by slab with decreased plasma
density are analyzed. It is shown that, under specific condition, a time-harmonic external electromag-
netic field may drive the parametric interaction of guided modes. Note that nonlinear interaction of
waves guided by density ducts with parameters typical of low ionosphere have been considered in [3].
The purpose of the present work is to study the interaction of proper modes guided by troughs with
parameters typical of upper ionosphere. The growth rate and the threshold amplitude of the external
field of the parametric instability of modes propagating in the opposite directions are determined.
Numerical results will be reported for some practically interesting cases.

Acknowledgments. This work was supported by the Center national de la recherche scientifique.
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Surface waves generation in Sommerfeld antenna problem
for the Earth radiolocation
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The problem of signal transmission on the basis of electromagnetic wave propagation over a
long distances had become vital since the beginning of the twentieth century in various areas of
scientific activity and engineering. It does still attract attention of many researchers in the field of
radio science, mathematical physics, electric engineering of metamaterials and other areas of modern
science. The key question has always been how to explain the surprising ability for the radio signals
to propagate over a quite long distances within the frame of Maxwell theory of electromagnetism.

In his famous book [1], Arnold Sommerfeld described the analytical solution to the very important
canonical problem of Maxwell theory of electromagnetic wave propagation — a radiation of the
vertical and horizontal point dipole antennas located over the Earth surface. He studied both cases
of the flat and the spherical Earth surfaces. In general for this problem of the flat Earth surface
we have got two dielectric half-spaces with different parameters of the dielectric permittivity and
permeability, and the dipole antenna is located in the upper half-space close to the interface. In the
book [1] the upper half-space is considered to be the air. For the flat surface, he obtained the exact
solution in the form of Sommerfeld integrals representing Hankel transform that is well-known in the
mathematical theory of wave propagation. He also discussed the generation of the surface waves,
the so called Zenneck waves, in the case when the Earth half-space represents a medium of complex
dielectric permittivity ε = ε′ + 4πiσ/ω with very high value of conductivity σ. Here ε′ > 0 is the
real part of the dielectric permittivity, and ω is the frequency. Now it is very well understood that
these waves represent the corresponding residue of a pole for the Sommerfeld integrals of the exact
solution to the problem. They are very similar to the Rayleigh surface waves in elasticity theory
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that propagate along a boundary of elastic half-space. If the point source of the electric dipole
located quiet close to the interface z = 0 between the half-spaces the surface wave is generated
with a significant amplitude. If we neglect the absorption in the radial direction it propagates away
from the source along the xy plane attenuating in the amplitude as one over the square root of the
distance from the source that is opposite to the bulky wave which attenuates as one over distance. It
remains localised exponentially in the orthogonal direction with respect to z. Moreover, the speed of
attenuation of the surface waves is different for both half-spaces with different medium parameters.

However, in radio science activity a real dipole antenna is not a point source. In practice it is
a vibrator antenna that is thin metallic wire of finite length with a gap in the middle with applied
voltage. Thus in this work, for the flat interface using Sommerfeld analytical solution of the point
source problem, we derive integral equations of the Pocklington type (see for example [2]) for the
electric current of the vertical and horizontal vibrator antennas of finite length to describe excitation
of the surface waves. It is worth remarking that recently the approach based on the Pocklington type
integral equation was successfully applied to studying the electromagnetic localized modes of linear
periodic arrays of thin metallic wires (see [3]). In our problem the antenna is located in the upper
half-space that is the air. We pay a particular attention to the special cases when the lower half-space
is the metallic medium with finite conductivity or a dielectric medium with low conductivity. As far
as the electric current of the thin wire vibrator antenna has been computed numerically we evaluate
the near field in the form of Hertz vector integral representations of Sommerfeld exact solution.
In the far field zone, applying the steepest descend method of the short-wave approximation to
these integral representations, for the wave field we obtain asymptotic expansions of the expanding
bulky spherical waves in both half-space as well as the poles contributions of excited surface waves.
Developing the asymptotic analysis we derive approximate formulas for the surface waves excitation
coefficients incorporating the electric current of the vibration antennas. In the numerical analysis
we compare the power of the surface wave generated by both types of vibrator antenna for the two
different types of the lower medium. We also investigate a question on how close the vibrator antenna
could be located with respect to the interface while securing that the long-wave approximation for
the Pocklington integral equation is still valid.
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Asymptotic analysis of plane-wave diffraction by a truncated, sound-hard
wedge by means of the method of parabolic wave-equation
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The scattering of a plane wave at a polygon is a challenging canonical problem in the classical
theory of diffraction (see for example [1]). In this work we deal with a truncated, sound-hard wedge,
that is to say a polygon with a finite and two semi-infinite sides. We tackle this problem with the
aid of the method of parabolic wave-equation, which has been applied to sound diffraction by a finite
strip in [2].

As is well known, the total field consists of the ray-optical field and edge-diffracted fields. Each
of the edge-diffracted rays is represented as a product of a two factors: a fast-oscillating exponential
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function describing wave motion in the radial direction of the respective cylindrical co-ordinate system
and a slowly-varying complex amplitude. The complex amplitudes meet asymptotically the parabolic
wave-equation in their respective ray co-ordinates (here cylindrical ones). As shown for example in
[2], the complex amplitudes are related to their spectra in terms of infinite integrals which are the
little known Fresnel transforms [3]. Then we derive, from the prescribed conditions at the surface
of the truncated wedge, the shadow boundaries of the ray-optics and two auxiliary boundaries, a
system of coupled functional equations for the spectra of the complex amplitudes. On use of some
properties of the spectra and the relationship between the Fresnel and Fourier transforms, we arrive
at a system of two coupled integral equations of the second kind.

It is noted that when the length of the finite side of the wedge increases, the coupling of the two
integral equations decreases, leading to two independent algebraic equations in the limiting case. On
the other side, when the finite side shrinks to zero, the coupled integral equations reduce to coupled
algebraic ones which lend themselves to exact solutions. In both cases we recover the known exact
solutions to wave diffraction by the appropriate conventional wedge in the framework of the method
of parabolic wave-equation.

In the general case, the unknown spectra are expanded in a infinite series containg Hermite
polynomials. By making use of a property of the Fresnel transform [3], the coupled system of two
integral equations are converted into two algebraic equations which are solved numerically in an
efficient manner.
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Diffraction by a jump of curvature: Wavefield at a moderate distance
near the limit ray
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We are concerned with finding formulas describing high-frequency diffraction by a contour with
a jump of curvature. In earlier research [1, 2] we have shown that rigorous boundary-layer approach
allows description of the wavefield near the limit ray in terms of the parabolic cylinder function D−3.
This result is valid in a small neighborhood of the singular point. Now we extend formulas to a wider
area along the limit ray.

The research was supported by RFBR grant № 20-01-00627.

References

[1] E.A. Zlobina, A. P. Kiselev, High frequency diffraction by a contour with a jump of curvature,
Proceedings of the International Conference “Days on Diffraction 2018”, 325–328 (2018).

[2] E.A. Zlobina, A. P. Kiselev, Boundary-layer approach to high-frequency diffraction by a jump of
curvature, Wave Motion, 96, 102571 (2020).

52



Author index

Abrahams, I.D., 31
Alexeyev, C.N., 8
Anikin, A.Yu., 9
Assier, R.C., 31

Babich, M.V., 10
Badiey, M., 34
Baltrukonis, J., 32
Barshak, E.V., 8
Belishev, M.I., 10
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