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FOREWORD

“Days on Diffraction” is an annual conference taking place in May–June in St. Petersburg since
1968. The present event is organized by St. Petersburg Department of the Steklov Mathematical
Institute, St. Petersburg State University, and the Euler International Mathematical Institute.

The abstracts of 139 talks to be presented at oral and poster sessions during 5 days of the
conference form the contents of this booklet. The author index is located on the last pages.

Full-length texts of selected talks will be published in the Conference Proceedings. They must
be prepared in LATEX format and sent to diffraction2019@gmail.com not later than 24 June 2019.
Format file and instructions can be found at http://www.pdmi.ras.ru/~dd/proceedings.php.
The final judgement on accepting the paper for the Proceedings will be made by the Editorial
Board after peer reviewing.

As always, it is our pleasure to see in St. Petersburg active researchers in the field of Diffraction
Theory from all over the world.

Organizing Committee

© ‘Days on Diffraction’, PDMI, 2019
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Uniqueness and reconstruction in time-harmonic passive inverse problems
with applications to helioseismology

Agaltsov A.D.
Max-Planck-Institute für Sonnensystemforschung, Göttingen, Germany
e-mail: agaltsov@mps.mpg.de

In this talk I will report on some recent uniqueness and reconstruction results for time-harmonic
inverse problems from cross correlations of randomly excited waves. The main focus will be on
recovering the solar sound speed, density and attenuation from the cross correlations of acoustic
waves excited by turbulent convection.

The results presented in this talk are obtained in collaboration with T. Hohage and R. G. Novikov.

On the structure of the acoustic field in the sea
containing a developed bubble layer near the surface

Akulichev V.A., Bulanov V.A., Bugaeva L.K.
V. I. Il’ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041, Russia
e-mail: akulichev@poi.dvo.ru, bulanov@poi.dvo.ru, bugaeva@poi.dvo.ru

Under the action of a strong wind and developed surface waves there are powerful bubble layers
that can reach significant depths of tens of meters. Bubbles have a significant effect on the acoustic
properties of water, leading to excessive absorption and dispersion of sound velocity. In a number of
works it is stated that the surface layer of bubbles weakly affects the attenuation of sound in the sea
up to high wind speeds (Weston, Novarini, et al., etc.). Other works (Willy, Schneider, etc.) show
that the contribution of bubbles to sound attenuation is predominant at frequencies from 1 to 8 kHz
in shallow sea.
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Fig. 1: Acoustic field with a frequency f = 1 kHz for a source at a depth of 10 meters in
an isoscale channel with a depth of 42 meters in the presence of a near-surface bubble layer
7 meters thick with a different concentration of bubbles: a) x = 10−7, b) x = 10−5.

The influence of the near-surface layer of bubbles on the sound attenuation in the sea is analyzed
with the use of the latest experimental results for the bubble size distribution function g(R) obtained
at different states of the sea surface. It is shown that the influence of the near-surface layer of bubbles
on the sound propagation can be significant at typical concentrations of bubbles in the near-surface
layers of the sea. The analytical estimation of coherent field attenuation length in the conditions of
the surface of the underwater sound channel was conducted. For a detailed study of the numerical
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simulation we used the approximation of normal modes. It is shown that the influence of the near-
surface layer of bubbles is an additional field decay at moderate distances caused by the attenuation
of the sound energy propagating in the bubble layer. In the future, this energy is attenuated, which
eventually leads to the absence of the contribution of the bubble layer in the exponential law. It
should be noted that the presence of dissipation in the near-surface layer of bubbles with an increase
in the concentration of x > 10−7 can lead to a significant restructuring of the acoustic field structure.

The figure shows a 2D image of the acoustic field for different concentrations of bubbles in the
near-surface layer. Calculations show a strong change in the structure of the acoustic field in excess
of the concentration of bubbles equal to 10−7. For this concentration of bubbles, the acoustic field
in the bubble layer near the surface attenuates at a distance of about 100 m.

This work is performed under the state assignment No. 0271-2019-0009 and partially supported
by RFBR grants No. 17-02-00561_a and the “Far East” No. 18-I-004.

Extreme scattering properties of small objects with compensated loss

Albooyeh M., Simovski C.R., Safari M., Tretyakov S.A.
Aalto University, Finland
e-mail: sergei.tretyakov@aalto.fi

Scattering properties of small passive objects (we will focus on electromagnetic scattering, al-
though most of the results are more general) are limited by the optical theorem and inevitable scat-
tering loss even for lossless objects. We are interested in possibilities to overcome these limitations
and create particles exhibiting extraordinary scattering response. Our approach is to compensate
scattering loss generalizing the concept of parity-time symmetric structures for finite-size scatter-
ers in infinite free space [1]. In particular, we introduce loss-compensated shadow-free scatterers.
We show that compensation of loss for particles in free space does not correspond to a parity-time
symmetric system. Although the forward scattering amplitude and the extinction cross section can
vanish, these particles scatter incident energy into other directions, with controllable directionality.
These loss-compensated scatterers possess extreme electromagnetic properties not achievable for pas-
sive and lossless scatterers. As an example, we study structures consisting of two or three closely
positioned small dipole scatters and consider possible microwave realizations in the form of short
dipole antennas loaded by lumped elements. The proposed particles with extraordinary response
theoretically enable most unusual material properties when used as building blocks artificial media.

References

[1] M. Safari, M. Albooyeh, C. R. Simovski, S. A. Tretyakov, Shadow-free multimers as extreme-
performance meta-atoms, Phys. Rev. B, 97, 085412 (2018).

Localized solutions of two-dimensional linearized shallow water equation
near a shore

Anikin A.Yu., Dobrokhotov S.Yu., Nazaikinskii V.E., Minenkov D.S.
Ishlinsky Institute for problems in mechanics of the Russian Academy of Sciences, 101 Prospekt
Vernadskogo, bld. 1, 119526, Moscow, Russia
e-mail: anikin83@inbox.ru, dobr@ipmnet.ru, nazaikinskii@yandex.ru, minenkov.ds@gmail.com

We discuss localized solutions for the two-dimensional linearized shallow water equation. These
solutions correspond to the piston model of tsunami propagation. An asymptotic formula for the
solution valid in a small neighborhood of the shore is proposed. We analyze this formula and study
how parameters of the source affect a shape of an incoming and reflected wave profiles. This work
was supported by the Russian Science Foundation (project no. 16-11-10282).
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Asymptotic eigenfunctions of the 2D operator ∇D(x)∇ degenerating on
the boundary of the domain and billiards with semi-rigid walls

Anikin A.Yu., Dobrokhotov S.Yu., Nazaikinskii V.E., Tsvetkova A.V.
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia;
Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow
Region, Russia
e-mail: anikin83@inbox.ru, dobr@ipmnet.ru, nazay@ipmnet.ru, annatsvetkova25@gmail.com

We consider a spectral problem

〈∇, D(x)∇ψ(x)〉 = −ω2ψ(x), x ∈ Ω ⊂ R
2,

where Ω is a finite domain with a smooth boundary ∂Ω, D(x) ∈ C∞(Ω) : D(x) > 0, x ∈ Ω,
D(x) = 0, ∇D(x) 6= 0, x ∈ ∂Ω. We construct asymptotic eigenfunctions for large ω that can be
represented with the use of a modified canonical operator ([1]). These eigenfunctions are associated
with analogues of Liouville tori of integrable geodesic flows with a metric degenerating on ∂Ω defined
by a Hamiltonian system with a Hamiltonian D(x1, x2)(p

2
1 + p22). This problem is different from

the problem for integrable two-dimensional billiards ([2]) because the impulse components of the
trajectories on such tori turn to infinity on the domain boundary. Such systems can be called
billiards with semi-rigid walls.

Considered operator ∇D(x)∇ arises in the problem of waves on water captured by a coast, where
D(x) is a basin depth function. In the talk we present a result for three types of the domain Ω
defining an island in the ocean, a limited reservoir or an island in a limited reservoir.

The work was supported by the Russian Science Foundation (project no. 16-11-10282).
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X-ray reflectometry and fluorescence analysis of gratings
working in classical and conical diffraction

Asadchikov, V.E.1, Goray, L.I.2, Dashkov, A.S.2, Roshchin, B.S.1, Muslimov, A.E.1
1A. V. Shubnikov Institute of Crystallography, Leninskii Pr. 59, Moscow, 119333, Russia
2Saint-Petersburg Academic University, Khlopin 8/3, Let. A, St. Petersburg, 194021, Russia
e-mail: lig@pcgrate.com

Using the methods of grazing-incidence X-ray reflectometry and X-ray fluorescence (GIXRR and
GIXRF), we experimentally and theoretically investigated the angular dependences of the specular-
reflected and emitted radiation intensity of the gratings working in conical and classical diffraction
mounts for the incident photon energy ∼ 8 keV and grazing-incidence angle range of 0.1–0.5 deg. The
fluorescence intensity of the CrKα

line (∼ 5.4 keV) was determined and investigated. The diffraction
order efficiency as well as the fluorescence intensity have been found from a numerical solution of the
respective Helmholtz equations [1, Ch. 12]. PCGrate-SX™ v. 6.7 computer code [2] has been used
for solving the direct problem of GIXRR on gratings with polygonal groove profiles obtained from
atomic-force microcopy measurements.
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A variety of the fundamental parameters method [3] was developed for solving the inverse GIXRF
problem on general multilayer gratings — restoring the concentration of analyzed chemical elements
of layers (materials) and the shape of layer boundary profiles, taking into account the possibility
of calculating the strength of electromagnetic fields and the absorbed energy and using the data of
GIXRR.
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Control and inverse for quantum graphs

Avdonin S.A.
University of Alaska, Fairbanks, AK 99775-6660, USA
e-mail: s.avdonin@alaska.edu

Quantum graphs are metric graphs with differential equations defined on the edges. Recent
interest in control and inverse theories for quantum graphs is motivated by applications to important
problems of classical and quantum physics, chemistry, biology, and engineering. For trees, i.e. graphs
without cycles, various types of inverse and control problems were studied in the literature (see, e.g.
[1–4] and references therein), but almost nothing (with several exceptions [5–7]) was done for graphs
with cycles. In this talk we describe exact controllability and identifiability results for the wave and
Schrödinger equations on general compact graphs.

We prove the exact controllability of the systems with the optimal number of controls and propose
algorithms recovering the unknown coefficients of the equations, lengths of the edges, and the topology
of the graph. Our central idea is a proper choice of observations in the form of the directional
derivatives of the solutions to differential equations on graphs at some boundary and internal vertices.
These observations guarantee observability and identifiability of the corresponding systems. Our
approach is based on the boundary control method for inverse problems of mathematical physics,
which uses deep connections between controllability/observability and identifiability of dynamical
systems. Another component of the approach is a new version of the effective leaf peeling method [4].
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On Okamoto-like symmetries of isomonodromic deformation equations

Mikhail V. Babich
St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of
Sciences
e-mail: misha.babich@gmail.com

The group of the birational symmetries of the isomonodromic equations for Painlevé VI case
contain the transformation that mix the parameters that are the differences between the eigenvalues
of the matrices-residues of the deforming system:

∆k → ∆k −
∆Σ

2
, ∆Σ =

∑

i

∆i.

It is the form of the famous Okamoto transformation. I will show how this transformation may be
interpreted as the canonical transformation of the same P VI-Hamiltonian system. The multidimen-
sional analogs of the transformation will be presented.

Third order operators with three-point conditions associated
with Boussinesq’s equation

Andrey Badanin
Saint-Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
e-mail: a.badanin@mail.ru

We consider a non-self-adjoint third order operator on the interval [0, 2] with real 1-periodic
coefficients and multi-point Dirichlet conditions at the points 0, 1 and 2. The eigenvalues of this
operator consist an auxiliary spectrum for the inverse spectral problem associated with the good
Boussinesq equation. We determine eigenvalue asymptotics at high energy and the trace formula for
the operator.

This is a joint work with E. L. Korotyaev.

Types of mode dispersion of optical vortices in twisted optical fibers

Barshak E.V., Alexeyev C.N., Vikulin D.V., Lapin B.P., Yavorsky M.A.
V. I. Vernadsky Crimean Federal University, Pr. Vernadsky 4, Simferopol, Russia, 295007
e-mail: lena.barshak@gmail.com

The orbital angular momentum (OAM)-bearing beams [1], in particular optical vortices (OV) [2],
are commonly recognized as highly perspective carries of information encoded in the orbital degrees
of the freedom of light [3] in optical fibres [4, 5]. Surely, such a OAM-technologies require the analysis
of the dispersion generated from the difference of OV’s velocities.

We have studied the mutual effect of the spin-orbit interaction and the twisted mechanical stress
in the step-index circular fibers to the dispersion of OVs with topological charge |ℓ| ≥ 1. It has been
shown that there is three possible types of mode dispersion: standard polarization mode dispersion
(PMD), new topological mode dispersion (TMD) and hybrid mode dispersion (HMD) (Fig. 1a). It
has been established that for OVs with topological charge |ℓ| = 1 there is only the HMD, while for
|ℓ| > 1 all three types of dispersion exist: PMD, TMD and HMD. It has been established that as
a result of the influence of TMS, the values of PMD, TMD and HMD become different for each
pair of OVs with |ℓ| > 1. Although PMD and TMD are going down to zero, it is not implemented
simultaneously (Fig. 1b).
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(a) (b)

Fig. 1: a) Types of dispersion. b) The spectral dependence of dispersion of the OV with the
azimuthal number |ℓ| = 2. Curve numbers indicate the following types of dispersion: PMD
(1, 2), TMD (3, 4), HMD (5, 6). Core — 3.1% GeO2, 96.9% SiO2; cladding — SiO2; core
radius r = 8.55 mkm; at the λHe-Ne the waveguide parameter V = 10.2 and the normalized
index difference ∆ = 3.3 · 10−3.

The research was supported by V. I. Vernadsky Crimean Federal University, project BΓ10/2018.
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Measuring the dynamic characteristics of Coriolis vibratory gyroscopes
via the Hilbert transform technique
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An operating principle of the Coriolis vibratory gyroscopes (CVG) is based on inertial properties
of elastic standing waves excited in axisymmetric resonators, such as rings or shells [1]. In imperfect
resonators, the effect of splitting the oscillatory frequency takes place with a corresponding standing
wave drift. Some kinds of trimming (balancing) procedures allows one to compensate the imperfect-
ness of CVG resonator characteristics but these procedures must follow the measurement of effects
caused by inhomogeneous distributions and identification of their harmonics amplitude and phase
parameters. Some methods of such identifications are known [2]. They are based on the fact that
the oscillatory process in an imperfect resonator can be represented as a sum of two harmonic os-
cillations with different frequencies. However, for small values of imperfectness of resonators, the
difference between these two frequencies is small and thus we deal with a narrow-band process which
can be studied effectively by the Hilbert transform technique [3, 4]. The Hilbert transform pro-
vides a method for determining the instantaneous amplitude and the instantaneous frequency of a
signal. The results of numerical simulations, both under free and forced vibration regimes, show
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that this method displays good performance and may be effectively used instead of or together with
conventional approaches of studying dynamics behavior of imperfect CVG resonators.
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The wave model of a metric space with measure
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We consider a metric space (Ω, d) with a Borel measure µ on it. Under certain conditions on
the space and on the measure, starting with some family of open sets from the space, using lattice
theory we construct an isometric copy (Ω̃, d̃) of the space (Ω, d), which is called its wave model.
This construction differs from the wave model of the metric space (without a specified measure)
proposed earlier by us. It has direct applications to inverse problems of mathematical physics. For
instance, the wave model can be used to reconstruct a Riemannian manifold with the boundary from
its spectral data.

On algebraic and uniqueness properties of harmonic quaternion fields
on 3d manifolds

M.I. Belishev1,2, A.F. Vakulenko1

1Saint-Petersburg Department of the Steklov Mathematical Institute
2Saint-Petersburg State University
e-mail: belishev@pdmi.ras.ru, vak@pdmi.ras.ru

Let Ω be a smooth compact oriented 3-dimensional Riemannian manifold with boundary. A
quaternion field is a pair q = {α, u} of a function α and a vector field u on Ω. A field q is harmonic
if α, u are continuous in Ω and ∇α = rot u, div u = 0 holds into Ω. The space Q(Ω) of harmonic
fields is a subspace of the Banach algebra C (Ω) of continuous quaternion fields with the point-wise
multiplication qq′ = {αα′ − u · u′, αu′ + α′u+ u ∧ u′}. We prove a Stone–Weierstrass type theorem:
the subalgebra ∨Q(Ω) generated by harmonic fields is dense in C (Ω). Some results on 2-jets of
harmonic functions and the uniqueness sets of harmonic fields are provided.

Comprehensive study of harmonic fields is motivated by possible applications to inverse problems
of mathematical physics.

M.I. acknowledges support by the RFBR grants 17-01-00529-a and 18-01-00269. A.F. was sup-
ported by the RFBR grant 18-01-00269.
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Parametric amplification of a longitudinal wave by shear ones
in an anisotropic layer

Belyayev Yu.N.
Department of Mathematical Modelling and Cybernetics, Syktyvkar State University, Oktyabrskii
pr. 55, Syktyvkar 167001, Russia
e-mail: ybelyayev@mail.ru, ynbelyayev@gmail.com

The six-beam scattering of elastic waves by a crystal film is investigated. Cases of symmetric
diffraction of waves inside the crystal layer are analyzed. In this scattering geometry, the projections
of the wave vectors on the normal to the film surface are pairwise equal to each other up to the sign.
Under certain conditions, quasi-shear waves modulate the structure in the path of quasi-longitudinal
waves. If the period of the modulated structure is close to the length of a quasi-longitudinal wave,
the amplitude of oscillations of the latter is amplified. The mathematical description of this effect
and parametric resonance (see, for example, [1]) are similar. This effect is illustrated by examples of
calculations of the scattering spectra of elastic waves by cubic and tetragonal crystals in a three-layer
model. Calculations are based on the transfer matrix method [2].
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The analysis of bending thin periodically perforated plates
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Cardiff University, Cardiff, CF10 3AT, UK
e-mail: bishoprj@cardiff.ac.uk

We rigorously derive the correct Γ-limit that describes the energy of a thin, periodically perforated
elastic plate as the period of the perforations and thickness of the plate tend to zero simultaneously.
The limit energy functional is obtained via simultaneous homogenisation and dimension reduction
from the fully non-linear elastic energy functional for a 3D perforated elastic plate. The limit of the
bending energy regime studied results in Kirchhoff’s nonlinear model for plates. The form of the
limit homogenised functional depends on the scaling between the period of the perforations and the
thickness of the plate.

Bateman-type non-complexified solution of the wave equation
with two spatial variables

Alexander S. Blagoveshchensky1, Aleksei P. Kiselev1,2,3
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2Steklov Mathematical Institute, St. Petersburg Branch, St. Petersburg, Russia
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The classical Bateman solution of the wave equation with 3 spatial variables

uxx + uyy + uzz − c−2utt = 0, c = const > 0, (1)
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is
u = f

(
α + (x2 + y2)/β

)
/β, α = z − ct, β = z + ct, (2)

where the waveform f(·) is an arbitrary function [1]. This solution is remarkable for several reasons
and was generalized in various directions. Its complexified versions (where, e.g., β is replaced with
β − iǫ, ǫ > 0) allow, with proper choice of the waveform, a description of highly localized solutions
of (1) (see, e.g., [2]). They also provide examples of solutions that have a single singularity at a
running spacial point {x = y = 0, z = ct}, see [3]. Complexified versions are generalized to the case
of a wave equation with an arbitrary number m ≥ 2 of spatial variables [4].

Obvious generalization of the non-complexified solution (2) to m-dimensional case (see, e.g., [5])
does not satisfy the corresponding homogeneous wave equation for even m, it solves a running point
source problem. We present a solution of the homogeneous wave equation uxx + uyy − c−2utt = 0,
which involves an arbitrary function and is an analog of (1). We prove that it has a single singularity
at a running point if f(·) is smooth and compactly supported. The construction is based on the
classical descent method (see, e.g., [6]), the proof employs the results of [7].

The research was supported by RFBR grant 17-01-00529.
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On hyperbolization of an unbounded Schrödinger type operator
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A lot of problems in plasma physics (e.g., resonant absorption of electromagnetic waves in an
inhomogeneous plasma) is governed by a nonlinear Schrödinger type equation as follows [1]:

−2i
∂E

∂t
+
∂2E

∂x2
+
(
−x+ |E|2

)
E −D = 0, (1)

where ∂2E
∂x2 − xE is the unbounded operator, the continuous spectrum of which covers the entire real

axis. Eq. (1) without the Kerr nonlinearity (the term |E|2E) is represented by the Airy functions.
Consequently, Fourier components of E in Eq. (1) are varied according to the eik

3t rule in time. This
fact yields a stiff restriction for a time step (∆t ∼ ∆x3).

To avoid such a computational problem two ideas are suggested. The first one is the heuristic
substitution

E = Ueit(x+(1/µ2−µ)/2) (2)
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which leads to a semi-bounded operator in x coordinate. Another one is a hyperbolization procedure
[2]: adding of the second derivative of an unknown function in time with a special small parameter.
It permits us to obtain explicitly the Green function for the linear part of the operator considered:

4µ2∂
2U

∂t2
+ 2i

∂U

∂t
+
∂2U

∂x2
− it

∂U

∂x
+

(
1

µ2
− µ− t2

4
+ |U |2

)
U −Deit(x+(1/µ2−µ)/2) = 0. (3)

As a result one can use a split-step procedure [3], where exact solutions both for a linear part and a
nonlinear one exist. Another advantage is the essentially increased time step.
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Continuous operator method application for direct and inverse scattering
problems
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It is known [1] that numerous problems in scattering theory can be modeled by integral equations
of the first kind Ax = f , where A is a compact operator. For instance, boundary problems for the
Helmholtz equation lead to such equations. In order to solve such problems we employ a continuous
operator method [2], proved well in solving ill-posed problems for linear and nonlinear equations
[3, 4]. We will demonstrate the method by solving the Dirichlet problem for the Helmholtz equation

1

4π

∫

∂D

eik|x−y|

|x− y|ϕ(y)ds(y) = f(x), x ∈ ∂D, (1)

where D is a bounded closed domain. An approximate solution of equation (1) is sought in the form

of a function ϕn(y) =
n∑

k=0

αkψk(y), where ψk(y) are fundamental functions defined on ∂D.

An approximate system of equations is associated with equation (1)

n∑

j=0

αj
1

4π

∫

∂D

eik|xl−y|

|xl − y|ψj(y)ds(y) = f(xl), l = 0, 1, . . . , n, (2)

where xl, l = 0, 1, . . . , n, are the collocation points. The integral in the left hand side of the equation
(2) is replaced by a cubature formula. Within the continuous operator method, the following system
of ordinary differential equations is associated with equation (2)

dαl(t)

dt
= (βl)




n∑

j=0

αj(t)
1

4π

∫

∂D

eik|xl−y|

|xl − y|ψj(y)dy − f(xl)


 , l = 0, 1, . . . , n, (3)
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where βl = ±1, l = 0, 1, . . . , n. The signs are chosen so that the logarithmic norm of the right hand
side of the system (3) is negative. The system (3) is solved numerically. Similar approach is used for
solving inverse scattering problems, in particular — the nonlinear problem of signal detection.
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Decomposition of eigenfunctions of the continuous spectrum
of a locally perturbed discrete Schrödinger operator

by eigenfunctions of the continuous spectrum
of an unperturbed operator
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We consider the representation of generalized Chebyshev polynomials corresponding to the lo-
cal perturbation of the discrete Schrödinger operator as linear combinations of classical Chebyshev
polynomials of the second kind. Explicit formulas relating the coefficients of this expansion to the
perturbation parameters of the discrete Schrödinger operator are obtained. This report is a contin-
uation of the authors’ work (see [1]).
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Internal gravity waves in stratified medium with shear flows: analytical
solutions and asymptotics

Bulatov V.V., Vladimirov Yu.V.
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Among the large variety of observed wave processes of various physical nature in the ocean and the
atmosphere of the Earth, a special place causes the interaction of excited waves with hydrodynamic
flows. Under real oceanic conditions, it is necessary to consider internal gravity waves propagating
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against the background of medium currents with a vertical velocity shift. The scale of the change
in speed along the vertical is of the same order as the maximum speeds of the internal gravity
waves. If the scale of change of currents horizontally is much larger than the lengths of internal
gravity waves, and the scale of temporal variability is much greater than the periods of internal
waves, then the natural mathematical model is the case of stationary and horizontal homogeneous
mean shear flows. The problem of the internal gravity waves fields from an oscillating point source
of disturbances in a stratified medium with an average shear flow is solved. A model distribution
of the shear flows in depth is considered and an analytical solution of the problem is obtained in
the form of the characteristic Green function, which is expressed in terms of the modified Bessel
functions of the imaginary argument. Expressions for the dispersion relations are obtained by using
of Bessel functions Debye asymptotics. Integral representations of solutions are constructed. The
dependences of the wave characteristics of the excited fields on the main parameters of the used
stratification models, shear flows, and generation modes are investigated [1–6]. The research was
carried out in the framework of the Federal target program AAAA-A17-117021310375-7.
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Solutions of the nonlinear nonautonomous Klein–Fock–Gordon equation.
Choice of ansatz
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Methods of finding of exact analytical solutions of the stationary nonlinear nonautonomous Klein–
Fock–Gordon (KFG) equation

Uxx + Uyy + Uzz = p(x, y, z)F (U). (1)

are suggested [1, 2]. Here v is constant, p(x, y, z) and F (U) are arbitrary functions of the argu-
ments, the subscript means the derivative with respect to the corresponding variable. We are finding
solutions of the eq. (1) in the form of complex function

U = f(θ). (2)

The argument θ(x, y, z) is called ansatz. It is proved that (2) will be the solution of (1) if f(θ)
satisfies to the nonlinear ordinary differential equation of the first or second order, and θ(x, y, z) is a
root of the special algebraic equation [3]. Function of f(θ) can be found in the form of integral for
arbitrary F (U). For some F (U) the corresponding integrals can be inverting and then f(θ) is in an
explicit form.

It is proved that θ(x, y, z) can be chosen as an root of the algebraic equations which define family
of surfaces of curvilinear coordinates. So the general ellipsoidal coordinates set family of ellipsoids
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and one and two sheets hyperboloids. These families of coordinate surfaces are described by the
equation

x2

a2 + θ
+

y2

b2 + θ
+

z2

c2 + θ
= 1. (3)

The geometrical type of the family determines root θ(x, y, z) of the equation (3). In general case this
is a cubic equation. It is proved that any root (θ1, θ2, θ3) of the equation (3) can be chosen as ansatz
for solution (2). Moreover, it is proved that ansatz are also roots of the equations of the following
coordinate surfaces: elliptic and hyperbolic paraboloids, cones, flattened ellipsoids of rotation, two
sheets hyperboloids of rotation, confocal paraboloids of rotation, etc.

The found solutions of the equation (1) demonstrate that it is possible to find exact analyti-
cal solutions of the nonlinear nonautonomous KFG equation in various orthogonal coordinates. It
considerably expands the class of problems of mathematical physics in which perhaps successful
application of the KFG equation.
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Performance improvements of the boundary integral-equation method
for diffraction gratings using classic concurrency approaches
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The oblique-incident (off-plane) radiation scattering from one-periodical gratings (2D structures)
with arbitrary conductivity is considered. A border profile of the grating can vary. Incident plane
waves are assumed to be time-harmonic. The initial consideration of the diffraction problem is the
solution of Helmholtz equations for a 2-dimensional case, that is coupled by transmission conditions
at the interfaces between different materials.

Even though a number of techniques such as caches for exponential and kernel functions, differ-
ent approximations and discretization schemes were suggested by the authors ([1], Ch. 12), many
diffraction problems still remain time-consuming tasks. In particular case, concurrency methods
can be considered to increase the performance for solving diffraction problems. The parallel scheme
exploits parallelization for both planar incident waves and grating plane sections on different lev-
els. The paralleling technique is implemented using semaphores and mutexes using Windows API
technology [2].

The numerical experiments were performed for a number of gratings in the extreme ultraviolet
soft-x-ray wavelength ranges. The results show achieved improvements in the performance up to four
times (Fig. 1). The developed technique allows one much faster solving grating synthesis tasks by
parameters variations. The obtained solutions can find their applications in dispersive elements in
spectral instruments, beam splitters, etc.
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Fig. 1: Execution times of sequential and concurrent implementations for solving diffraction
task vs the number of values of the trapezoid ridge of the lamellar Au grating.
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Reconstruction of solution to a hyperbolic equation from boundary data
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We deal with the problem of determining solution to the equation

∂2t u−∆u+ σ∂tu = 0

considered in Ω × R (Ω ⊂ R
3, σ is a real parameter). The solution u is to be recovered in some

part of the cylinder Ω × R from Cauchy data u, ∂νu given on S × I, where S ⊂ ∂Ω is a part of the
boundary, I ⊂ R is a time interval. We provide a reconstruction algorithm for this problem based on
analytic expressions. The equation in consideration may describe acoustic waves or electromagnetic
waves in a conducting medium. Our result may have applications in geophysics (ground-penetrating
radar) and photoacoustic tomography with limited data.

The research was supported by the grant RFBR 17-01-00529-a.

On range condition of the tensor x-ray transform in RRR
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Consider the problem of the range description of the tensor x-ray transform. Specific issue is to
minimize the number of differential equations that describe the range.

In this paper a geometrical interpretation of the range condition and related John differential
operator is given. As a corollary, it is proved that the range of the m-tensor x-ray transform in R

n

can be described by
(
n+m−2
m+1

)
differential equations.
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Diffraction of flexural-gravity waves from a vertical cylinder
of non-circular cross section
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Diffraction of uni-directional hydroelastic waves by a vertical cylinder of non-circular cross section
frozen in an ice cover of infinite extent is studied within the linear wave theory. The problem is
formulated in a polar coordinate system (r, θ, z) where the z-axis points vertically upwards. The
plane z = −H corresponds to the sea bottom, and the plane z = 0 corresponds to the ice-fluid
interface. The rigid cylinder extends from the sea bottom to the ice-fluid interface. The cross section
of the vertical cylinder is described by the equation r = R[1 + εf(θ)], where R is the mean radius of
the cylinder and ε is a small non-dimensional parameter of the problem.

The problem of flexural-gravity waves diffraction by a circular cylinder was solved by both the
vertical mode method and the Weber integral transform in [1] for water of finite depth. Here we
present the solution of this problem for a non-circular vertical cylinder. The problem is formulated
for a velocity potential φ(r, θ, z, t) (see [1]),

φrr +
1

r
φr +

1

r2
φθθ + k2φ = 0 (−H < z < 0, r > R[1 + εf(θ)]), (1)

φz = 0, (z = −H, r > R[1 + εf(θ)]), (2)

∂φ

∂n
= 0 (r = R[1 + εf(θ)]), (3)

φ ∼ eikr cos θ (r → ∞), (4)

φz = wt(r, θ, t) (z = 0, r > R[1 + εf(θ)]), (5)

mwtt +D∇4w = −ρφt(r, θ, 0, t)− ρgw(r, θ, t) (r > R[1 + εf(θ)]), (6)

w = 0,
∂w

∂n
= 0 (z = 0, r = R[1 + εf(θ)]), (7)

where w(r, θ, t) is the deflection of the ice cover, n is the unit outward normal vector to the surface
of the cylinder, m = ρihi is the mass of the ice cover per unit area, hi is the ice thickness, ρi is the
ice density, D = Eh3i /[12(1− ν2)] is the rigidity coefficient for an elastic plate of constant thickness,
E is the Young module of the ice, ν is the Poisson ratio, and ρ is the water density. In this study,
the edge of the ice plate is clamped to the cylinder which is given by the condition (7).

An asymptotic technique for the diffraction problem [2] and the vertical mode method [1] are
combined to obtain an approximate solution of the hydroelastic diffraction problem (1)–(7).

The support of the first author by a grant (BIDEB-2219) from TUBITAK (The Scientific and
Technological Research Council of Turkey) is acknowledged.
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The aim of this work is to use specialized artificial neural networks to generate time series that
reproduce the properties of real human electroencephalograms (EEG). The focus of the study is
on manifestations of nonlinearity and deterministic chaos in EEG signals. The study deals with
the question open place of modeling in the study of complex systems and processes. Particular
attention is paid to the definition of indicators of the studied time series. The goal is to make
meaningful judgments about the intrinsic properties of the generated EEG signals compared to real
signals. Here we present and evaluate simulation results with the help of specialized artificial neural
networks, namely, multilayer perceptrons with chaotic neurons. We call a chaotic neuron a neuron
with the activation function generated by known mappings from the region of nonlinear chaotic
dynamics. In the framework of this study, quantitative indicators that were chosen to compare the
real EEG signal with the model EEG signal include: Hjorth mobility, Hjorth complexity, information
entropy, algorithmic complexity, and largest Lyapunov exponent. The conclusion is that under certain
conditions, neural networks with chaotic neurons can reproduce properties of real EEG signals fairly
well in terms of most widely used quantitative indicators. But at the same time, for some other
quantitative indicators, the similarity between generated and real signal is not sufficient. In other
words, the concept of an artificial neural black box has some limitations due to the complexity of
real human electroencephalograms.

Asymptotic solutions to the Cauchy problem with localized initial data
for linear systems of evolution equations with real characteristics

Dobrokhotov S.Yu.
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, 101-1 Prospekt
Vernadskogo, 119526, Moscow, Russia;
Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Oblast, 141701, Russia
e-mail: dobr@ipmnet.ru

We consider the Cauchy problem for the system of differential and pseudodifferential equations

ihut = L
(
x,−ih ∂

∂x
, h
)
u, u|t=0 = V 0

(x− ξ

µ

)
, x ∈ R

n, t ∈ [0, T ].

Here 0 < h ≤ µ≪ 1 are small parameters, ξ is a constant vector in Rn, L(x, ih∇, t, h) ism×mmatrix-
valued differential or pseudodifferential operator acting to m−D vector functions with components
u1(x, t), u2(x, t), . . . , um(x, t), V (y) is a smooth m − D vector function with components decaying
faster than C/(1+ y2)(n+1)/2 as |y| → ∞. Also we assume that the matrix-valued symbol L(x, p, t, h)
of the operator L(x, ih∇, t, h) is a smooth function of all arguments and all eigenvector (“effective
Hamiltonians”) Hj(p, x, t), j = 1, . . . , r ≤ m, of the matrix-function L(x, p, t, 0) are real-valued
smooth functions and Hj(p, x, t) 6= Hl(p, x, t) for p 6= 0 and x ∈ R

n, t ∈ [0, T ]. The considered
problems include the wide class of many important physical equations (with constant and variable
coefficients) like the Schrödinger equation, the linearized Navier–Stokes equations, the wave equations
and hyperbolic systems of Petrovskii type, the Maxwell equations, etc.

We discuss the general approach to construction of asymptotic solution to this problem in a form
of the modified Maslov canonical operators constructed on the Lagrangian manifolds Λj

t = gtHjΛ0
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where gtHj are the Hamiltonian flows associated with the Hamiltonians Hj and the initial Lagrangian
manifold Λ0 = {(p, x) ∈ R

2n
px : p = α ∈ R

n
x, x = ξ}. Generally speaking the manifolds Λj

t could be not
smooth and standard Maslov scheme (suggested in 1965) for construction of asymptotic solutions
to considered problem is not applicable in many important situations (for instance in the case of
the wave equation). We show that the obtained recently new integral representation for the Maslov
canonical operator in the singular charts [1] allows one to extend the definition of the canonical
operator to such irregular cases and apply the standard Maslov scheme (algorithm) to the problems
under consideration. We discuss the relationship between this construction and Van Vleck formula
in quantum mechanics and asymptotic solutions of different equations presented in the papers [2–21].

This work was done together with V. E. Nazaikinskii and was supported by RSF grant 16-11-
10282.
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moving along the bottom of the basin
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We consider the linear problem of the excitation of surface waves by a localized source moving
along the bottom of the basin in a one-dimensional case. We suppose that the source is bottom
perturbation moving at a variable speed and the time of the movement is finite. Thus, one of the
mechanisms for the generation of landslide tsunami waves can be described [1–3]. In the shallow
water approximation the elevation of the free surface is described by a pseudodifferential equation in
dimensionless variables [4]

h2
∂2η

∂t2
+ L̂η = h

∂2

∂t2

[
1

cosh(|p̂|D(x))
D1

(x− ξ(t/t1)

µ
, t
)]
, η|t=0 =

∂η

∂t

∣∣∣
t=0

= 0 , (1)

where L̂ = L
( 1

p̂+
3

p̂
2
,
2
x, h
)
, L = |p| tanh

(
|p|D(x)

)
+ O(h2), p̂ = −ih ∂

∂x
, h and µ are small parameters,

ξ(t/t1) is the trajectory of the source, t1 is the time of the movement, D(x) is the basin depth, the
function D1(y, t) describes the shape of the bottom perturbation.

We construct the asymptotic solution of the equation (1). It is shown that under the condition
that the speed of the source does not exceed the characteristic speed of long waves, the profile of
a wave excited on the liquid surface is determined by the acceleration of the moving center of the
bottom perturbation, and its length is the product of the characteristic speed of long waves and the
time of source movement. During movement, the source generates a perturbation of the free surface,
the principal term of the asymptotic expansion of this perturbation in dimensional variables has the
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form

η̃(x, t1) =
∑

+,−

[
QẌD(

ct±x
c

)

c2
+
Q̇( ct±x

c
)

c

]
, (2)

where XD = ξtt is the acceleration of the source center, Q is the 2D volume of the source, c is the
characteristic speed of long waves. After the end of the movement, the answer to the problem is the
solution of a homogeneous equation (1) with initial conditions (2). The influence of dispersion effects
on the resulting surface wave is discussed.
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Homogenization of the periodic Schrödinger-type equations
with the lower order terms
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In L2(R
d;Cn), we consider a selfadjoint matrix strongly elliptic second order differential operator

Bε = Aε +
d∑

j=1

(
aj(x/ε)Dj +Djaj(x/ε)

∗
)
+Q(x/ε) + λI, ε > 0.

Here the principal term Aε = b(D)∗g(x/ε)b(D) is given in a factorized form, where g is a periodic,
bounded, and positive definite m × m matrix-valued function, and b(D) =

∑d
l=1 blDl, where bl are

m × n matrices. It is assumed that m ≥ n and that rank b(ξ) = n for ξ ∈ R
d \ {0}. The aj are

periodic matrix-valued functions; in general, they are unbounded. The potential Q is a distribution
generated by some periodic measure (with values in the class of Hermitian matrices). The parameter
λ is subject to some restriction ensuring the positive definiteness of the operator Bε.

We study the behavior of the operator e−itBε , t ∈ R, for small ε. The following sharp order error
estimate is obtained:

‖e−itBε − e−itB0‖H3(Rd)→L2(Rd) ≤ C1(1 + |t|)ε. (1)

Here B0 is the effective operator with constant effective coefficients. We show that under some
additional assumptions on the operator (which are formulated in terms of the spectral characteristics
near the bottom of the spectrum), this result can be improved:

‖e−itBε − e−itB0‖H2(Rd)→L2(Rd) ≤ C2(1 + |t|)ε.

Finally, we confirm that (1) is sharp with respect to the type of the norm: in the general case the
estimate ‖e−itBε − e−itB0‖Hs→L2

= O(ε) is not true if s < 3. The supporting examples are given.
The results are applied to study the solution uε of the Cauchy problem for the Schrödinger-type

equation i∂tuε = Bεuε + F. Applications to the magnetic Schrödinger equation with a singular
electric potential and to the two-dimensional Pauli equation with singular potentials are given.
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Enhanced existence time of solutions to the fractional
Korteweg – de Vries equation
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We consider the fractional Korteweg – de Vries equation ut + uux − |D|αux = 0 in the range
of −1 < α < 1, α 6= 0. Using basic Fourier techniques in combination with the normal form
transformation and modified energy method, we extend the existence time of classical solutions in
Sobolev space with initial data of size ε from 1/ε to a time scale of 1/ε2.
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Multi-element waveguide systems are used in many applications ranging from the laboratory
radio-frequency plasma sources [1] to optical transmission systems for classical and quantum infor-
mation technologies [2, 3]. It has been shown that a simple accurate method for solving the problems
of diffraction, excitation, and propagation of electromagnetic waves in the presence of an open single-
element waveguide is that based on expansion of the field in terms of orthogonal eigenwaves of such a
guiding structure [4]. Although methods for constructing an orthogonal system of eigenwaves of open
cylindrical waveguides have long been known [4, 5], a similar approach for an open multi-cylindrical
waveguide is yet to be developed.

In this paper, a method for constructing an orthogonal system of eigenwaves of an open waveguide
cluster, which consists of identical parallel circular cylinders, is presented. The case where the
cylinders are filled with a gyrotropic medium and located in free space has been considered. The
fields are expanded in terms of azimuthal harmonics in the individual coordinate system of each
cylinder. In this representation, the fields in the outer region of the cylinders are the superpositions
of the fields of waves that are scattered from and incident on the cylinders. Each azimuthal harmonic
of both the scattered fields and the fields in the inner regions of the cylinders is represented as
described in [5]. The continuity conditions for the tangential field components at the surfaces of the
cylinders allow one to obtain a system of equations, which yields the coefficients of the eigenwaves of
the considered waveguide cluster. The dispersion relation is derived for determining the longitudinal
wave numbers of the discrete-spectrum waves which are guided by the cluster. It is also shown that
there exist the continuous-spectrum waves of two kinds with different polarizations. It is established
that these waves of both kinds and the discrete-spectrum waves are mutually orthogonal. The norms
of the continuous-spectrum waves have been obtained in closed form. A relatively simple approach
is also proposed for calculation of the norms of the discrete-spectrum waves.
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The results obtained can be useful in studying the diffraction, excitation, and propagation of
electromagnetic waves in the presence of optical transmission lines and open plasma or metamaterial
waveguides.

This work was supported by the Russian Science Foundation (project No. 18–72–10046).
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Solution of the electrostatic problem for a core-mantle particle
with non-confocal spheroidal boundaries of the layer
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Light scattering by small non-spherical particles can be met in various fields of science. In nano-
optics one often uses the Rayleigh approximation based on solution of the electrostatic problem and
calculation of the particle polarizability. This problem, being a particular case of the wave problem
under the condition of zero wave number [1], is suitable for analysing the light scattering methods.

In this work we consider the electrostatic problem for a two-layer particle with the mantle having
non-confocal spheroidal boundaries. The fields inside the mantle are expanded in terms of spheroidal
harmonics related to the outer and internal boundary systems. To match these two expansions, we
utilize the earlier obtained relations between the spheroidal harmonics of the Laplace equation written
in the systems with different focal distance [2]. Further, we apply both the separation of variables
(SVM) and T -matrix (TMM) methods and find that the solutions they provide are equivalent.

We study the range of applicability of our approach by numerically analysing the T -matrix. We
find that in contrast to the often used spherical basis TMM and SVM methods [3, 4], our approach
practically does not have limitations as concern the non-confocal spheroid parameters.

The polarizability of a small particles, being determined by the dipole component of an analogue
of the scattered field, is proportional to the element T11 of the electrostatic T -matrix which is a
product of the infinite matrices whose elements are either explicit expressions, or finite sums. We
suggest an approximate way to calculate the core-mantle spheroid polarizability, when all the fields
are represented just by one-term expansions. Our numerical computations have demonstrated that
this approximation has the accuracy of about 1%.

The work was partly supported by the grants from GUAP for 2019 and RFBR 18-52-52006.
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Dissipative localized structures of light in laser media with fast saturable absorption — laser
solitons — are attractors and have increased stability due to a dynamic balance of energy influx
and energy outflow in dissipative media or systems. Their dynamics are described by the general-
ized Ginzburg–Landau complex equation for a slowly varying envelope of electric field strength E
(quasi-optical approximation, radiation is locally close to a monochromatic plane wave with linear
polarization)

∂E

∂z
−
∑3

n=1
cn
∂2E

∂x2n
= f(|E|2)E. (1)

Here x1 = x and x2 = y with the transverse Cartesian coordinates x and y, x3 = τ = t − z/vg is
the running time in the framework moving along axis z with group velocity vg, and t is time. The
coefficients cn are complex, Re cn > 0. For zero frequency detuning, function f of intensity I = |E|2
is real:

f(I) = −1− a0
1 + I

+
g0

1 + I/β
. (2)

In the right-hand side of equation (2), a0 is the small-signal resonance absorption, g0 is small-signal
gain, and β is the ratio of saturation intensities for gain and absorption.

The important elements of the solitons’ topology are three-dimensional vortex lines, on which
the field strength vanishes and, when traversing in a closed loop, the radiation phase changes by
2πm, where the integer m is the topological charge. The vortex lines are directed towards increasing
phase in a small vicinity of the line. They can be either open or closed. Their interesting property
is that the longitudinal component (along the line) of the flow of electromagnetic energy can change
its direction along the line to the opposite (alternating lines) or not to change it (non-alternating
lines). Closed vortex lines can be knotted or unknotted, unlinked or linked.

The tangle laser solitons found in [1–3] exist in overlapping regions of parameters. Therefore, when
the latter change, hysteresis phenomena occur. We demonstrate that the hysteresis is reversible, that
is, when parameters return to their original values, the radiation structure is restored if, during the
hysteresis cycle, there is no change in its skeleton topology. Otherwise, the final structure differs
from the original by simpler topology (reduced topological indices), decrease of the radiation energy
and increase of the medium energy.
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Consider the difference Schrödinger equation

ψ(z + h) + ψ(z − h) + v(z)ψ(x) = Eψ(z), (1)

where z is a complex variable, v is an analytic function, h > 0 is a translation parameter, and E is a
spectral parameter. As h→ 0 analytic solutions to this equation have semiclassical behavior as well
as solutions to the differential Schrödinger equation

−h2ψ′′(z) + v(z)ψ(z) = Eψ(z). (2)

For equation (1), the points where v(z) − E = ±2 play the same role as the turning points for the
equation (2) do. So we call them turning points too. Using ideas of the complex WKB method, we
obtain for equation (1) asymptotics of a transition matrix relating solutions having simple semiclas-
sical behavior in complex domains separated by two coalescing turning points. A similar result was
obtained by V. Buslaev and A. Fedotov for the Harper equation, i.e., equation (1) with v(z) = cos(z),
but this never was published.

The values of the integrated density of states in the spectral gaps
of the Harper operator
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2Chebyshev Laboratory, 14th Line, 29B, Vasilyevsky Island, St. Petersburg, 199178, Russia
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We study spectral properties of the Harper operator acting on L2(R) by the formula

(Hψ) (x) = ψ(x+ h) + ψ(x− h) + 2 cos(2πx)ψ(x), x ∈ R, (1)

where h > 0 is a translation parameter. This operator was intensively studied by many mathe-
maticians because of its intriguing spectral properties and, in particular, the Cantor structure of the
spectrum for irrational values of h, see, e.g., [1].

B. Helffer and J. Sjöstrand, and, later, V. S. Buslaev and A. A. Fedotov studied the geometrical
structure of the spectrum of the Harper operator in the case when h can be represented by a contin-
uous fraction with sufficiently large elements, see review [2] and references therein. In this case, in
the semiclassical approximation, the renormalization methods of B. Helffer and J. Sjöstrand, and of
V. S. Buslaev and A. A. Fedotov allow to describe step by step sequences of smaller and smaller gaps
in the spectrum, i.e., to get a description similar to one of the classical Cantor set.

It is well known that, in the spectral gaps of one-dimensional differential Schrödinger operators
with 1-periodic potentials, the integrated density of states takes integer values. For the Harper
operator (1), the possible values of the integrated density of states in the spectral gaps are determined
by the Gap Labeling theorem, see, e.g., [3]. They may be equal to positive linear combinations of h
and 1 with integer coefficients. We compute the values of the integrated density of states in the gaps in
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the case considered by B. Helffer and J. Sjöstrand, and by V. S. Buslaev and A. A. Fedotov. Though
we use semiclassical constructions, we compute the exact values of the integrated density of states.
Therefore we heavily use the monodromization renormalization method suggested by V. S. Buslaev
and A. A. Fedotov.
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Recovery of time dependent coefficients from boundary data
for hyperbolic equations

Ali Feizmohammadi
London University College London, Gower Street, London, WC1E 6BT, UK
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We study uniqueness of the recovery of a time-dependent magnetic vector-valued potential and
an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet
to Neumann map of a hyperbolic equation. The Cauchy data is observed on time-like parts of the
space-time boundary and uniqueness is proved up to the natural gauge for the problem. The proof
is based on Gaussian beams and inversion of the light ray transform on Lorentzian manifolds under
the assumptions that the Lorentzian manifold is a product of a Riemannian manifold with a time
interval and that the geodesic ray transform is invertible on the Riemannian manifold. This talk is
based on recent work with Joonas Ilmavirta, Yavar Kian and Lauri Oksanen.

Breast ultrasound tomography problem: 3D simulation

Filatova V.M., Pestov L.N.
IKBFU, Kaliningrad, Russia
e-mail: vifilatova@kantiana.ru, lpestov@kantiana.ru

The work is devoted to the problem of determining small sound speed fluctuations in glandular
tissue for specific 3D breast model [1, 2] Fig. 1.

Fig. 1: Breast acoustical model (3D).
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Our approach, proposed in [3, 4], is based on visualization of inclusions and unknown inner
boundary between fat and glandular tissues and determination of sound speeds in inclusions using
kinematic argument. The results of numerical modeling in 3D are presented. This work is supported
by the Russian Science Foundation under grant 16-11-10027.
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The energy flux analysis of the wave processes in the cylindrical shell
with spring-type boundary condition on the outer surface

Filippenko G.V.
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Saint Petersburg State University, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russia
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The problem of free oscillations of an infinite circular cylindrical shell with spring-type boundary
condition on the outer surface, analogous to Winkler foundation for a plate, are studied. The
shell is considered of Kirchoff–Love type. The statement of the problem is considered in the rigorous
statement. The dispersion equation is found on the base of exact analytical solution. The propagating
waves are analyzed. Energy analyses are studied with special attention to the specific points of
dispersion curves. The comparison of different mechanisms of energy transmission in the shell is
fulfilled. The energy fluxes and its components as functions of parameters of the shell are discussed.
The possible fields of applicability of the gained effects are established.

Multideck structures of boundary layers in compressible flows

Gaydukov R.K.1, Danilov V.G.1,2

1National Research University Higher School of Economics, Moscow, Russia
2Moscow Technical University of Communications and Informatics, Moscow, Russia
e-mail: roma1990@gmail.com, vgdanilov@mail.ru

The multideck (double- and triple-deck) structures of the boundary layer are encountered in vari-
ous problems of flow of an incompressible viscous fluid along various surfaces with small irregularities
for large Reynolds numbers. However, they have not been studied well in the case of compressible
flows. The triple-deck structure was also considered for compressible flows along a hump, but only
in the stationary case, and the double-deck structure has not been studied in detail for compressible
fluids.

Our goal is to use the results of our approach [3] to construct asymptotic solutions of fluid flow
problems in the compressible case. Namely, we consider a compressible viscous fluid flow along a
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semi-infinite plate with small periodic or localized (hump-type) irregularities on the surface for large
Reynolds numbers, see Fig. 1. We assume that the upstream flow is plane-parallel with velocity
U0 = (u∞, 0) and density ρ∞.

We construct formal asymptotic solutions with multi-deck structure for the understudy problems
in stationary [1, 2] and nonstationary cases, and we obtain that the equations for the terms of
asymptotic solutions are similar to the incompressible case [3]. Moreover, if we let M → 0 (M is the
Mach number) in the obtained equations, then we obtain equations for the incompressible case [3].

Numerical simulation of a flow in the near-wall region shows that its behavior is similar to that in
the incompressible case (because the density enters the equations as a coefficient): if the amplitude of
irregularities is less than critical, then we observe a laminar flow, otherwise we observe a vortex flow
which becomes one stationary vortex after some (large) time (see Fig. 2). The critical amplitude
varies irreversibly with upstream density and upstream velocity, but the flow character remains
unchanged.

Fig. 1: The plate: periodic irregularities (left fig.) and localized hump (right fig.).

Fig. 2: The flow in the near-wall region : vortex dynamics (left fig.) and after some time —
stationary vortex (right fig.) [2].
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Period-doubling biurcations in the generalized FitzHugh–Nagumo system
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We study a FitzHugh–Nagumo-like system of three ODEs with one fast variable corresponding
to the membrane potential and two slow gating variables:

εẋ = x− x3/3− y − z,

ẏ = a+ x,

ż = a+ x− z,

where ε is a small parameter and the parameter a is assumed to be slightly less than one.
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The system possesses a unique equilibrium, which is stable for sufficiently large a. However,
decrease of a leads to the supercritical Andronov–Hopf bifurcation at a value aH = 1 − 1

4
ε + O(ε2)

(see e.g. [1]). Immediately after the bifurcation the amplitude of the newborn stable periodic orbit is
small and lies below the threshold of spiking. In contrast, for a≪ aH the system exhibits large-scale
periodic oscillations: continuous spiking known as “canards”.

In [1] the author found numerically that dynamics near the slow surface can effectively become
three-dimensional. As a result, the initial periodic state may lose stability already before the canard
transition via a sequence of period-doubling bifurcations. Studying numerically the period doubling
cascades for small but fixed values of the parameter ε, M. Zaks observed that the cascade follows the
Feigenbaum law with the Feigenbaum constant 4.67, which is typical for dissipative systems. On the
other hand for smaller values of ε the process switches to the Feigenbaum constant of a conservative
map.

In this paper we derive the asymptotic formula for the Poincaré return map and calculate the
parameter values for the first period-doubling bifurcation. We also discuss more general 3d model
with a similar bifurcation scenario.
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On the non-existence of low-frequency traveling A0 mode
in a fluid-immersed elastic plate
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e-mail: evg@math.kubsu.ru, nvg@math.kubsu.ru, miakisheva.olga@gmail.com

As is well known, the traveling Lamb waves that carry wave energy along a free elastic plate
become guided leaky waves if the plate is immersed into acoustic fluid of lower density (e.g., a metal
or composite plate in air or water). Since their phase velocities are greater than the sound velocity
in the fluid, they re-emit wave energy into the environment during propagation and, therefore, cease
to be able to transfer the energy to infinity in an ideally elastic plate. Instead, two new traveling
Scholte–Stoneley waves (referred to as A and S modes) appear at the fluid-solid interfaces. Their real
wavenumbers are greater than that of the bulk acoustic wave in the fluid, and, consequently, their
velocities are less than the sound velocity in the entire frequency range. Therefore, they propagate
without the leakage of wave energy delivering it to infinity, while the wavenumbers of the former
Lamb waves shift from the real axis into the complex plane, wherein their imaginary parts specify
the attenuation decrements due to energy leakage.

The only exception is the fundamental antisymmetric A0 mode. Its dispersion curve comes out
vertically from the origin so that there is always a low-frequency range in which it passes over the
straight dispersion line of the acoustic bulk wave, as in the case of the Scholte–Stoneley waves. In
this range, its phase velocity is also less than that in the environment, and it is expected that its
wavenumber must be real to describe the propagation without energy leakage. However, attempts
to find the corresponding real root of the characteristic equation of a fluid-loaded plate have failed.
In many papers, the authors just leave this place empty without comments or remain the curve for
the fluid-free plate.

We decided to study in detail the frequency-dependent root movement in the complex plane.
Normally, the root of every leaky Lamb mode has a counterpart on the unphysical sheet. It turned
out that at low frequencies both such A0 roots lay on the unphysical sheet, and one of them comes
out into the physical sheet only when its real part becomes less than the acoustic wavenumber, i.e.,
after crossing a vertical cut that selects the sheets. Since the cut path can be arbitrarily traced from
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the branch point to infinity, various scenarios of the A0 root appearance on the physical sheet are
possible. It even can exist in the entire frequency range if the cut is deflected to the left going from
the branch point to the origin along the real axis and then upward. But in any case, the physical
A0 root remains complex yielding a guided leaky wave not carrying energy to infinity. Note that the
total wave field generated by a source does not depend on the choice of the cut path.

The work is supported by the Russian Science Foundation (Project No. 17-11-01191).

Weighted Radon transforms and their inversion

Fedor Goncharov
CMAP, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
e-mail: fedor.goncharov.ol@gmail.com

In this talk, we consider the problem of inversion of weighted Radon transforms for general
weights. We discuss old and new theoretical results on this problem and also present new numerical
results of our iterative inversion algorithm of [1].
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Vectorial focus wave modes with elliptic and parabolic cross-section
at planar interface between two dielectrics
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Focus wave modes (FWM) are solutions of scalar Helmholtz equation, which are localized and
can ideally propagate long distances without spreading due to diffraction and dispersion. This type
of pulsed beams is understood in terms of superposition of individual monochromatic Bessel beams
with a given angular dispersion. Here, we extend the concept of FWM’s to another two classes of
nondiffracting beams — parabolic Weber-type and elliptic Mathieu beams. We aim to construct a
scalar analogues to the classic FWM’s and investigate their propagation inside a dielectric mate-
rial, when their temporal durations can be up to few cycles. Furthermore, due to the large spatial
angles introduced by the angular dispersion required for those durations, vectorial theory is intro-
duced. We overcome this problem by introducing vector parabolic and elliptic nondifracting beams
with controllable axial polarization, which can be either linear, circular and radial or azimuthal.
Those newly obtained vector monochromatic beams are substituted into expressions for nondiffract-
ing and nondispersive pulsed beams and, as a result, spatio-temporal distortions are successfully
compensated. Lastly, we dive into problems arising while applying these vectorial pulsed beams for
laser-microprocessing applications. Finally, we briefly report here on generation and implementation
of the considered pulsed beams in scenarios involving a laser-micromachining of transparent dielectric
materials [1].
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Linear homogeneous isotropic viscoelastic constrained reduced Cosserat
medium as an acoustic metamaterial

Grekova E.F.
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St. Petersburg 199178, Russia
e-mail: elgreco@pdmi.ras.ru

We consider a special kind of a linear reduced Cosserat medium, where each point of the medium is
characterized by a translational displacement u and micro-rotation θ, but no stresses in the medium
work on ∇θ and, in addition, there is a constraint relating the micro-rotation and the translational
field:

θ = ∇× u/2. (1)

In such a medium couple stress is zero, stress tensor τ is asymmetric, but its antisymmetric part is
determined by the balance of moment, and not by constitutive equations (due to the existence of the
kinematic constraint). Equations of such a medium [1] are

∇ · τ S = ρü+ I(∇∇ · ü−△ü)/4. (2)

Our motivation is to investigate the simplest viscoelastic, though specific, model, including rotations.
In case of the reduced viscoelastic non-constrained Cosserat continuum we see a rich variety in wave
behaviour. We consider the constrained isotropic model, where the number of parameters is limited,
and it is easier to investigate the dispersion relation analytically. For this case the equations in
displacements in the Fourier domain look as

−(λ(1+ iκω)+ 2µ(1+ iνω))kk ·u+µ(1+ iνω)k× (k×u) = −ω2ρu+ Iω2kk ·u/4− Iω2k2u/4, (3)

where ω is the frequency, and k is the wave vector. The longitudinal wave is the same as in the
classical medium, and the shear wave has a dispersion relation

µ(1 + iνω)

ω2
=
ρ+ Ik2/4

k2
=
I

4
+

ρ

k2
, (4)

1

k2
= c2s

1 + iνω

ω2
− I

4ρ
. (5)

If we represent k = K + iκ, we obtain

K4 −K2
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2
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zK
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where

z =
(
c2s −

I

4ρ
ω2
)2

+ ν2c4sω
2 > 0. (7)

We investigate dispersion properties of this medium and its difference with the classical elastic and
reduced Cosserat continua (elastic and viscoelastic). For non-zero viscosity K(ω) has a decreasing
part at large ω, therefore this material is a double negative acoustic metamaterial in this domain.

The author acknowledges support of the Russian Foundation for Basic Research (grant 17-01-
00230).
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On the solution of the problem of low-frequency acoustic
signal propagation in a shallow-water waveguide
with three-dimensional random inhomogeneities

Gulin O.E., Yaroshchuk I.O.
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Based on the local mode method, the problem of the propagation of tonal acoustic signals of
a frequency f < 1 kHz in a shallow water waveguide typical for the shelf zones of an ocean is
considered in the presence of three-dimensional random fluctuations of the sound speed in the water
column. Three-dimensional linear acoustics equations with random coefficients are reformulated
into causal equations of the first order, for which, by analogy with the two-dimensional case, the
solution can be written in quadratures in a convenient exponential representation. As applied to
the problem of fluctuations of the speed of sound in a waveguide, a solution is written in the one-
way propagation approximation (forward scattering), on the basis of which it is possible to perform
statistical modeling. In the particular case, an example illustrating the statistical calculations of the
average transmission loss of the signal frequency of 500 Hz is presented.

Beyond the Bakushinskii veto part II: Discretisation and white noise

Harrach, B., Jahn, T.N.
Institute for Mathematics, Goethe University, Frankfurt am Main, Germany
e-mail: harrach@math.uni-frankfurt.de, jahn@math.uni-frankfurt.de

Potthast, R.
German Weather Service, Offenbach am Main, Germany
e-mail: roland.potthast@dwd.de

We deal with the solution of an ill-posed equation Kx̂ = ŷ for a given compact linear operator
K on separable Hilbert spaces. Often, one only has a corrupted version yδ of ŷ at hand and the
Bakushinskii veto tells us, that we are not able to solve the equation if we do not know the noise level
‖yδ− ŷ‖. But in applications it is ad hoc unrealistic to know the error of a measurement. In practice,
the error of a measurement is usually estimated through averaging of multiple measurements. In [1] we
introduced the natural approach to solve such a problem: Consider noisy but multiple measurements
Y1, . . . , Yn of the right hand side ŷ. Furthermore, assuming that the noisy measurements are unbiased
and independently and identically distributed according to an unknown distribution, the natural
approach would be to use (Y1 + . . .+Yn)/n as an approximation of ŷ and the estimated error σn/

√
n

(where σn is the square root of the sample variance) together with a deterministic regularisation
method. We showed that the approach converges in probability for the discrepancy principle and in
L2 for a priori strategies.

Here we deal with the problem of discretisation and unbounded noise: in practice, we cannot
measure ŷ directly, which is in general an object with infinitely many components, but only linear
functionals l1(ŷ), l2(ŷ), . . . We show how one obtains convergence against the true solution x̂ when
one measures more and more components (linear functionals) again and again.
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Computer simulation of torsional transducer from porous piezoceramics
with twisted rod

Iovane G.1, Nasedkin A.V.2
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Piezoelectric devices are widely used in current technology, converting the electrical energy into
the mechanical energy, and vice versa. Fairly often, the piezoelectric transducers operate at the
resonant frequencies of a certain types. Among such transducers there is a separate class of the
devices operating on torsional modes, or on connected longitudinal–torsional vibration modes.

In the literature we can find a description of different types of the torsional transducers. Such
piezoelectric transducers are typically a combination of elastic and piezoelectric parts with different
geometry, polarization direction, and electrode location. Thus, there are the bolt-clamped Langevin
devices consisting of a pair of piezoceramic discs polarized along a circumferential directions, or a
pair of piezoceramic elements, one of which is radially polarized, and the second part is polarized
by thickness; in different models the hollow piezoceramic cylinder with wire helical electrodes coated
on the side surface is proposed to use. Other authors considered piezoelectric transducers of helical
forms, and including taking into account the nanoscale factors and the surrounding liquid medium.

This paper considers a piezoelectric transducer operating on torsional modes. The transducer
consists of a piezoelectric cylinder rigidly coupled with a elastic twisted rod. Along the central axis
in the cylinder and in the rod there are the cylindrical hollows with the same radius. The piezoelectric
cylinder is made of PZT ceramics, polarized in the circumferential direction. It has two electrodes at
the end surfaces and it is rigidly fixed at the bottom end. When a harmonically varying voltage or
electric current is applied to the electrodes, in the cylinder predominantly torsional oscillations are
generated. The naturally twisted shape of the elastic rod promotes to an additional amplification
of torsional vibrations. The analysis of the piezoelectric transducer was carried out in the ANSYS
finite element package.

A comparison was made of the amplitude-frequency characteristics of the transducer near the
first modes of thickness oscillations for the cases of dense and porous PZT ceramics, for the cases of
twisted and non-twisted forms of an elastic rod, and for the cases when the oscillations are excited
by voltage or by current generators.

The simulation results allowed us to calculate the first electrically active resonance frequencies
and to carry out the harmonic analysis of torsional vibrations of the transducer near to resonance
frequencies. The computational experiments have shown that the torsional vibrations on the first
electrically active resonance frequency are the largest for the transducer made of porous piezoceram-
ics, with the twisted rod, and when the source of oscillations was a current generator.

By changing the geometrical dimensions and the piezoceramic porosity it is possible to vary the
parameters of the transducer within a fairly wide range and obtain optimal performance in various
piezotechnical applications.

This research for second author was supported by the Ministry of Education and Science of
Russia, the project of competitive part of the state assignment, No. 9.1001.2017/4.6, and the project
9.5070.2017/6.7.

Riemann–Hilbert approach to scattering problems in elastic media
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We are developing Riemann–Hilbert (RH) approach to scattering problems in elastic media. The
approach is based on the unified transform method of A. S. Fokas for solving boundary problems
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for linear and integrable nonlinear PDEs. The main topics of this project are 2D elastodynamic
equation in an isotropic quarter-space with the stress free boundary conditions, Helmholtz equation
in quarter space with general boundary conditions and Helmholtz equation in general sector. In this
talk we report the recent results (and difficulties) on RH approach to Helmholtz in general sector.
The second part of the talk will be related to the elastodynamic equation. In the series of papers
of the author and her collaborators the global relation for this problem was reduced to a certain, so
called, supplementary vector Riemann–Hilbert problem with a shift posed on a torus. However, it is
notoriously difficult to solve explicitly such factorization problems and there is a possibility that the
formulated non-local Riemann–Hilbert problem does not admit an explicit solution. A more realistic
expectation, which we are currently trying to fulfill, is to obtain the connection formulae between the
asymptotic parameters of the Rayleigh waves along the horizontal and vertical parts of the boundary.

The talk is based on the joint works with A. Its and Yu. Kaplunov. It is also a part of a large
joint project with Yu. Antipov, A. Its and M. Lyalinov.

Heat kernel for Laplace operator with covariant derivative: expansions,
path integral and gauges

Ivanov A.V.
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Kharuk N.V.
ITMO University, St. Petersburg, Russia
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Previously, in [1] the diagram technique and matrix formalism were constructed to work with the
Sealy–DeWitt coefficients. In this work we study the generalization of the formalism, its connection
with the representation by using the path integral and its dependence on gauge fixing.
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Multibump trajectories of adiabaically perturbed periodic Hamiltonian
systems with pitchfork bifurcations
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We study a Hamiltonian system with a Hamiltonian

H(q, p, εt) =
p2

2
− 1

2
ϕ(εt)q2 +

1

4
q4, ε≪ 1, (1)

slowly depending on time. It is assumed the function ϕ to be a periodic C2-function with period 1,
which satisfy the following condition

(H1): there exist τk ∈ [0, 1), k = 1, . . . , 2m, such that ϕ(τk) = 0, ϕ′(τk) 6= 0.

Systems of type (1) appear in many branches of physics, for example, they describe dynamics
of charged particles in the Earth’s magnetospheric tail, where the Larmor radius of the particles is
larger than the minimum radius of curvature of the magnetic field lines [2].
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One may consider (1) as the simplest example of the slow-fast systems. The Hamilton’s equations
associated to (1) and considered in the extended phase space are

q̇ = p, ṗ = ϕ(τ )q − q3, τ̇ = ε.

Thus, (q, p) can be treated as fast variables and τ as a slow one. The “slow” manifold Γ of this
system is defined by equations p = 0, ϕ(τ )q − q3 = 0 and consists of one point (q, p) = (0, 0) if
ϕ(τ ) ≤ 0 and of three points {(0, 0), (±

√
ϕ(τ ), 0)} in the case ϕ(τ ) > 0. Each time the parameter

τ passes through the point τk the pitchfork bifurcation occurs. When ϕ(τ ) > 0 the origin becomes
a hyperbolic equilibrium of the “frozen” system and possesses the figure-eight separatrix S consisted
of two loops S±.

In the present work, using the ideas similar to [1], we show that the sequence of bifurcations
leads to appearance of multi-bump trajectories of the system. In particular we show that there exists
ε0 > 0 and a subset Eh ⊂ (0, ε0) such that

1. for any ε1 < ε0 the Lebesgue measure leb
(
(0, ε1) \ Eh

)
= O

(
e−c/ε1

)
with some positive constant c;

2. for any ε ∈ Eh the origin is a hyperbolic equilibrium of the system (1);

3. for any natural N and any sequence {ak}Nk=1 with ak = 0 if ϕ′(τk) < 0 and ak ∈ {−1, 0, 1} if
ϕ′(τk) > 0 there exists a multi-bump trajectory which stays during the time between τk and τk+1 in
a small neighborhood of the origin if ak = 0 or follows one of the branches of the “frozen” separatrix
S± if ak = ±1.
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Ocean bathymetry as an inverse problem for the radiative transfer
equation
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We consider the problem of ocean bathymetry by using a side-scan sonar. Process of acoustic
waves propagation on frequencies on the order of tens kHz is described by the integral-differential
radiative transfer equation [1]. The propagation media is semi space which is bounded by a seabottom
surface. The bathymetric function is included in the boundary condition. We obtain the solution
of the initial-boundary value problem in the double-scattering approximation and some assumptions
for the directivity pattern of the receiving antenna:

I±(t) = χ[0,∓∞]

8σdJ0 exp(−µct)
(
u′y1 · y1 + l − u(y1)

)2

c2t3
√

1 + (u′y1)
2
∣∣u′y1(l − u(y1))− y1

∣∣

+ 4σ2
dJ0

+∞∫

−∞

+∞∫

−∞

S±(k)
exp(−µ|y|)

|y| exp(−µ|y − z|) exp(−µ|z|)|z|

∣∣∣∣n(y) ·
y

|y|

∣∣∣∣
2 ∣∣∣∣n(z) ·

z

|z|

∣∣∣∣
2
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(
t− |y− z|

c
− |z|

c
− |y|

c

)√
1 + u′y1

√
1 + u′z1 dy1dz1. (1)
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Here, I± denotes a sonar input signal, c denotes the constant velocity, t ∈ [0, T ], y, z ∈ R
2 denote

points of the seabottom, J0 is the source power, the function u describes changes of the ocean bottom
relief, σd denotes the constant seabottom reflection coefficient, n(y) and n(z) denote external normals,
wave vector k belongs to the unique sphere Ω = {k ∈ R

2 : |k| = 1}, δ is the Dirac delta function
and the function S±(k) is the radiation pattern of the receiving antenna on the starboard and the
portside, respectively.

In paper [2] we found the solution of the inverse problem for the function which described relief
changes from the middle-level l. It was obtained by using a single-scattering approximation.

u′i =
1

y1,i

(
ui−1 − l + 4

√
1 + v20,i−1

(
I(ti)c

2 t3i |v0,i−1(l − ui−1)− y1,i|
8 σd J0 exp(−µcti)

) 1

2

)
, (2)

where ti = 2

√
y2
1,i+(l−ui−1)2

c
, v0,i = u′(ti−1).

In Fig. 1 the seabottom relief and the absolute error are shown. In this paper we analyze an
influence of rereflected signal on the reconstruction of the bathymetry function by using (2).

Fig. 1: Reconstruction of the seabottom relief (u) and absolute error (∆u).
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An eikonal algebra is a C*-algebra related to a metric graph. It is determined by trajectories
and reachable sets of a dynamical system associated with the graph [1, 2]. The system describes the
waves, which are initiated by boundary controls and propagate into the graph with finite velocity.
Motivation and interest to eikonal algebras comes from the inverse problem of reconstruction of the
graph via its dynamical and/or spectral boundary inverse data [3]. Eikonal algebra is determined
by these data. Its structure and spectrum (the set of irreducible representations) is related with the
graph topology. The topology is visualized using the coordinatization of the spectrum via the eikonal
operators which generate the eikonal algebra.
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Time frequency analysis of the sound field modal decomposition
in shallow water in the presence of internal waves
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In the paper analysis of the wideband sound field modal decomposition in shallow water waveguide
using single hydrophones and vertical line arrays (VLAs) are carried out. For this goal time-frequency
analysis (for single hydrophones) in the form of the Warping Transform and standard methods (for
VLA) are applied for the data of measurements obtained in the SWARM’95 experiment, carried out
in the Atlantic shelf of USA (depth ∼80–90 m). This area is characterized by remarkable activity
of nonlinear internal waves moving approximately twice per day in the form of trains, containing
up to 10–12 separate peaks, toward the coast. Low frequency wide-band sources (J15, generat-
ing LFM signals 50–300 Hz, and airgun with band ∼30–250 Hz) were used at the 15 km acoustic
tracks with the angle about 30 degrees between them. Sound signals were recorded by two verti-
cal line arrays (WHOI VLA and NRL VLA). In the presence of moving nonlinear internal waves
significant sound intensity fluctuations took place at the WHOI VLA due to horizontal refraction
(focusing/defocusing in horizontal plane), at the NRL VLA there is no such fluctuations. Warping
Transform is used for mode filtering for all separate hydrophones of VLAs for different time periods,
temporal dependencies of modal amplitudes are compared with the same amplitudes obtained using
VLA decompositions. Dependence of modal amplitudes fluctuations on frequency and mode number
is studied, the correspondence between mentioned methodologies is verified.

Excitation and propagation of whispering gallery waves in shallow water
waveguide in the vicinity of a curvilinear isobath
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4Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok, Russia
e-mail: bkatsnels@univ.haifa.ac.il, petrov@poi.dvo.ru

Sound propagation in an area of a shallow water waveguide with curvilinear isobaths and the
bottom depth increasing towards their curvature center is considered. Such area could be part of
a bay, lagoon or a lake with bowl-like bottom relief, it consists of deep and shallow areas, and a
transition segment between them having curvilinear shape (cylindrically-symmetric in the simplest
case). The possibility of the formation of waves localized in the deeper part in the vicinity of
curvilinear isobaths is studied, the modal structure of such waves is investigated, and criteria for their
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existence and excitation by the source placed both in the deep and the shallow part are derived. In the
latter case they are excited via a mechanism that can be described as tunnelling of waves penetrating
into the deeper part from the outer source.

The modal structure of whispering gallery waves propagating along a curvilinear isobath is studied
using horizontal rays and within the framework of parabolic equation theory.

Hydroelastic waves in ice channel caused by moving load
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1University of East Anglia, Norwich, UK
2Lavrentyev Institute of Hydrodynamics, Novosibirsk, Russia
3Altay State University, Barnaul, Russia
e-mail: t.khabakhpasheva@uea.ac.uk, shishmarev.k@mail.ru, a.korobkin@uea.ac.uk

The ice responses to loads moving along an unbounded ice cover are well studied for water of
both infinite and constant depth by using the linear theory of hydroelasticity [1]. It is known that
the ice response strongly depends on the speed of the load. If the speed is below a certain critical
value, the ice deflection is localized near the load and quickly decays with the distance from the load.
For higher speeds of the load, outgoing waves are formed in the far field if viscous damping is not
included in the model. At the critical speed, the linear theory of hydroelasticity without damping
predicts unbounded ice response. To obtain estimates of the ice response for this speed, either non
linear effects or viscous damping, or both are included in the ice model.

We are investigate waves in ice channel with rectangular cross-section, caused by a load, moving
along the channel. The presence of walls near the moving loads complicates the problem. In contrast
to the ice sheet of infinite extent, there are many critical speeds for a frozen channel [2]. Each critical
speed for an ice cover in a channel corresponds to a mode of hydroelastic wave propagating along
the channel with a certain profile across the channel and its own dispersion relation.

There are several approaches which were developed to investigate the problem of moving loads in
ice channel. We studied linear model with and without damping, steady-state problem, the problem
when the load starts to move instantly, and the asymptotic problem for large time. The self-consistent
theory of hydroelastic waves in frozen channel will be present.

Large time asymptotic solution of three-dimensional problem of hydroelasticity for a channel
covered with ice sheet has been obtain analytically. This solution is valid for long time after the load
started its motion and provides the structure of the ice deflection near and far from the load [4].
The large-time ice response consists of the symmetric part localised near the load and several wave
systems modulated by smooth cut-off functions. The number of waves system behind and in front of
the load depend of the value of the load speed with respect to the critical speeds. The amplitudes of
the waves in the far field were obtained analytically, which simplifies the calculations of ice deflection
and strain distributions at a distance from the load.

The obtained results without account for any damping are in good agreement with the results
obtained earlier within the Kelvin–Voight model of visco-elastic ice [3]. The strains computed without
account for dissipation effects are larger than actual strains. They can be used to estimate conditions
of safe transportation along frozen channels.
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Excitons in the Kronig–Penney model
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A minimal model for excitons in frame of time-dependent density-functional theory (TDDFT) is
considered. For the simplicity the Kronig–Penney potential plays role of the Kohn–Sham potential.
Also the two-band approximation is used. Two different xc kernels is studied — short-ranged contact
xc and long-ranged (soft-Coulomb) xc kernel. Optical properties are discussed. As a result, one or
two bound excitons are produced, depending on the parameters of system.
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Inverse problems for diffusion equations

Yavar Kian
Aix-Marseille Université, France
e-mail: yavar.kian@univ-amu.fr

We consider the inverse problem of determining uniquely some terms appearing in a, linear or
non-linear, diffusion equation from measurements of its solutions at the boundary of the domain. In
the linear case, our equation can be seen as a convection-diffusion equation describing the transfer
of different physical quantities (particles, energy, ...) inside a physical system. Our inverse problem
consists in determining the velocity field associated with the moving quantity as well as information
about the density of the medium. We state our problem in a general setting where the quantity that
we want to determine are associated with non-smooth time-dependent coefficients. In the non-linear
case, we treat the determination of a more general quasi-linear term appearing in the equation. This
is a joint work with Pedro Caro.

Creeping waves in the shadow region with the Neumann conditions
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191023, Russia
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We consider a short wave diffraction problem for the plane wave on the strictly convex smooth
prolate body of revolution. We call this body the scatterer. The wave field satisfies the Helmholtz
equation outside of the scatterer, the Dirichlet and Neumann boundary conditions on the surface
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and also the limiting absorption principle far from the scatterer. The field in the illuminated area is
described by the ray formulae.

The ray method fails near the light-shadow border, where the incident rays are tangential to
the body. We have constructed an asymptotic solution in the Fock’s boundary (surface) layer by
Leotovich–Fock parabolic equation method [1–4]. The constructed solution has been described only
in a small neighbourhood of the point of contact of the incident ray and the scatterer, which belongs
to the light-shadow border. The solution can be continued from this neighbourhood into both the
deep shadow zone and into the vicinity of the limiting ray. The neighbourhood of this point serves
as a birthplace of waves of rather disparate natures. Here creeping waves are generated which travel
from this point into the shadow zone, as well as a field having the character of Friedkander–Keller
waves [5], a wave of Fresnel type in the illuminated part of the penumbra, and a penumbral wave in
the shaded region of the penumbra.

The latter creeping waves are under our investigation in this report where we assume the surface
of the scatterer satisfies the Neumann boundary conditions. We investigate the latter creeping waves
and assume the Neumann boundary conditions on the surface of the scatterer. The results for the
case of the Dirichlet conditions were obtained in [3].
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In [1] the problem of the asymptotics for k → ∞ of the spectrum of the Laplace operator:
−∆u = k2u, defined in a two-dimensional domain bounded by an ellipse with zero Dirichlet condition
on the boundary was considered. This problem corresponds to a billiard dynamical system with
reflections from the boundary of the domain. The closed trajectories of this dynamical system, which
are stable in the linear approximation, correspond to a sequence (series) of asymptotic eigenfunctions
(quasimodes). In this case, such a trajectory is the minor axis of the ellipse. The corresponding
quasimodes are called asymptotic eigenfunctions of the bouncing ball type.

A related problem is the problem of the asymptotics for h→ 0 of the spectrum of the Schrödinger
operator: −h2∆ψ + V ψ = Eψ. (The limiting case of a potential V equal to zero inside the domain
and equal to infinity outside corresponds to the Laplace operator with zero Dirichlet condition on
the boundary of the domain.)

This problem corresponds to a natural Hamiltonian dynamical system. According to [2], the closed
trajectories of this dynamical system, which are stable in the linear approximation, correspond to a
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series of quasimodes. If the closed trajectories of the Hamiltonian system define the librations, then
the corresponding quasimodes are analogues of bouncing ball type eigenfunctions of the Laplace
operator. The difference is that the reflection points in this situation are turning or focal points
on the trajectory. Thus it is necessary to use the integral representation for the quasimodes in
the neighborhood of reflection points (see e.g. [3]). We consider the case when the potential is
symmetric in one variable and using the ideas similar to [4–6] show that in this case the subsequence
of quasimodes associated with corresponding librations could be globally presented in a form of Airy
functions and Gaussian exponents.
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generation in optical microresonators

Kondratiev N.M., Lobanov V.E.
Russian Quantum Center, 121353, Moscow, Skolkovskoye shosse, building 45, business center “Ural”
e-mail: noxobar@mail.ru, vallobanov@gmail.com

In recent years, optical whispering gallery modes (WGM) microresonators have found wide appli-
cation in various fields of science and technology. Due to high quality factor they represent the most
promising platform for the creation of miniature, energy-efficient components for photonics and ra-
diophotonics. A significant breakthrough was the discovery of Kerr frequency combs and dissipative
Kerr solitons (DKS) generation in microresonators [1]. Besides, the coupling of high-Q microres-
onator with a laser provides laser stabilization and its linewidth reduction via the self-injection
locking effect [2, 3]. Recently the generation of DKS was demonstrated by the multi-frequency laser
locked by high-Q microresonator [4]. Interestingly, the single-soliton regime was obtained without
any additional efforts. However there is no full theory of this phenomenon. The self-injection locking
effect appears due to Rayleigh scattering inside the microresonator and subsequent backward wave
provides resonant feedback [2]. However, this backward wave also interacts nonlinearly with the
forward wave and influence frequency comb dynamics. It was shown that such coupling may negate
DKS generation [5].

In our work we study the backward wave influence on Kerr frequency comb generation that may
help to understand nonlinear processes in microresonator in the self-injection locking regime. To
model the microresonator comb dynamics we used the coupled mode equation system (CMES) ap-
proach [1]. We derived the modified CMES from the first principles starting from Maxwell equations.
Equivalent system of coupled Lugiato–Lefever equations (LLE) was also obtained. We showed that
up to some critical finesse value the system dynamics becomes more complex but for higher values it
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becomes independent of this parameter. For the anomalous dispersion regime forward-backward wave
coupling may affect the DKS generation dynamics. Such results are similar to those got with LLE
approach in [5]. We found that in normal dispersion regime the backward wave influence may induce
instabilities providing a novel mechanism of comb generation. In this case some Turing pattern-like
structures and chaotic regimes may be observed. It may be proposed that such mechanism may be
responsible for platicon generation [6].

This work was supported by the Russian Foundation of Basic Research (17-02-00522).
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Water exit and entry
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“Don’t believe what your eyes are telling you. All they show is limitation. Look with your
understanding. Find out what you already know and you will see the way to fly.” By Richard Bach
from “Jonathan Livingston Seagull”.

The problems of a body lifted from a water surface and entering the water surface are studied
by theoretical, numerical and experimental means. It is explained how experimental results and
computations may help in development of theoretical models. Vice versa, theoretical models guide
computations and experiments on water entry and exit. The simplest models of water entry and
exit neglect all effects except of fluid inertia. The models are generalized to account for gravity,
non-linear effects and elasticity of the body by using the Computational Fluid Dynamics simulations
and experimental results without significant increasing complexity of the models. Some results are
counterintuitive but explained by the theoretical models.

Unsteady axisymmetric problem of a circular disc, which initially touches the flat water surface
and is lifted then suddenly is studied experimentally and theoretically. The disc drags the liquid
behind it. Both the external force applied at the centre of the disc and the disc acceleration at the
same place are measured during an initial transient stage of the process. The external force and
the disc acceleration are well related initially by the added mass approach. Later on, the measured
acceleration decays even the applied force continues to increase. The disc displacement and the radius
of the wetted area of the disc are recorded by high-speed cameras. The records reveal that the wetted
area of the disc does not change before the disc acceleration reaches its maximum value. It is argued
that these phenomena are caused by the elastic deflection of the disc during the initial transient stage.
The linearised model of water exit is generalised to account for elastic behaviour of the lifted body.
The results obtained with the generalised exit model well agree with the experimental results, and
they were additionally confirmed by dedicated experiments with circular discs of different rigidity.

The work was done in collaboration with: T. Khabakhpasheva (UEA), K. Maki (UoM), J. Rodri-
guez (UC3M), P. Vega-Martinez (UC3M), S. Seng (BV).

51
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Mathematical modeling of oxygen transport in brain is an important tool to predict dangerous
situations caused by impaired cerebral circulation. Following to conventional models (cf. [1, 2]), the
brain material is considered as a two-compartment (blood and tissue) structure so that the mathe-
matical model consists of coupled equations describing convective and diffusive transports processes
of oxygen and its consumption in tissue. Though such a promising approach allows for conduct-
ing diverse numerical simulations, its theoretical analysis is very poor. A preliminary mathematical
study of a steady-state oxygen transport model was conducted in [2]. However, currently, there is
not exhaustive theoretical results on evolutionary models of oxygen transport. The current work
intends to cover the lack of accurate mathematical analysis of evolutionary models.

To describe the propagation of oxygen in tissue and blood, a homogenization approach, along
with the assumption that the tissue and blood fractions occupy the same spatial region Ω ⊂ R3, is
used. The resulting evolutionary continuum model of oxygen transport has the following form:

∂ϕ/∂t − α∆ϕ+ v · ∇ϕ = G, ∂θ/∂t− β∆θ = −γG− µ, x ∈ Ω, t ∈ (0, T ). (1)

Here, θ is the tissue oxygen concentration, ϕ the blood oxygen concentration, µ the tissue oxygen
metabolic (consumption) rate associated with brain function, G the local exchange at blood-tissue
interface, γ = σ(1− σ)−1 with σ being the volume fraction of vessels, v a given velocity field (in the
vessel network), α and β are diffusion coefficients for blood and tissue. The tissue oxygen metabolic
rate, µ, depends on the tissue oxygen concentration (Michaelis–Menten equation) as follows: µ =
µ(θ) := µ0θ/(θ+ θ0), where µ0 means the maximum value of the oxygen metabolic rate, θ0 the value
of the tissue oxygen concentration when µ = 0.5µ0. The exchange at the blood-tissue interface is
given by the formulas G = A(θ − ψ), ψ = f−1(ϕ) with f := ψ +Bψr/(ψr + C). Here, A, B, C, and
r are positive constants.

The following initial and boundary, on Γ := ∂Ω = Γ1 ∪ Γ2, conditions are imposed:

ϕ(x, 0) = ϕ0, θ(x, 0) = θ0, (2)

ϕ|Γ1
= ϕb, θ|Γ1

= θb, ∂nϕ = ∂nθ|Γ2
= 0. (3)

Here, the boundary functions ϕb and θb are fixed, and the symbol ∂n denotes the normal derivative.
In the current work, the unique solvability of the problem (1)–(3) is proven. The convergence of

an iterative algorithm and stabilization of solutions are proven. The theoretical analysis is illustrated
by numerical examples.

This work was supported by the Klaus Tschira Foundation (Grant 00.302.2016) and Würth Foun-
dation.
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Examples of test calculations by the acoustic mode parabolic equation
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Mode parabolic equations appeared as a convenient tool for solving 3D problems of ocean acous-
tics. In the previous work [1] we have derived by the multi-scale expansions method an adiabatic
mode parabolic equation taking into account the effects of a weak elasticity on the acoustic field. As
a small parameter ǫ a ratio of a typical wavelength to a typical size of horizontal inhomogeneities has
been chosen. The shear modulus was of the order of the small parameter. In this work we extend
the elastic mode parabolic equation (MPE) method to the case of interacting modes [2].

As a result we have derived system of parabolic wave equations for l =M, . . . , N

2iklAl,X + ikl,XA+ Al,Y Y +
N∑

j=M

βljAj exp(θlj) = 0 , (1)

where θlj = i(θl − θj)/ǫ, P =
∑
Alφl exp(iθl/ǫ), kl = θl,X , and βlj is given by formula

βlj = αlj −
k2j
ω2

∫ 0

−H

[
2(γ20µ1z)z + γ20zµ1

]
ϕlϕj dz −

2k2j
ω2

{
µ1γ

2
0(ϕlϕj)z + γ0(γ0µ1)zϕlϕj

}∣∣∣
z=−h0−0

. (2)

Here αlj is the same as in the work [2]. Lame coefficient µ1 = C2
s/γ0.

To investigate the efficiency of equation (1), we performed a series of test calculations devoted
to comparisons of solutions for the ASA wedge benchmark obtained by the source images method
with the ones obtained by the elastic MPE. We observed excellent coincidence of the curves up to
the share waves velocity Cs ≈ 300 m/s and rather good one up to ≈ 400 m/s.

The derived equation can be effectively used in seismoacoustics wave propagation problems, when
the influence of the elastic effects is essential.
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Fig. 1: Comparison of numerical solutions, obtained by equation (1) and by the source images
method for Cs = 350 m/s. Mean square error is 0.4 dB.
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Two-dimensional solitary waves with a near-bottom stagnation

Vladimir Kozlov
Linköping University, Sweden
e-mail: vladimir.kozlov@liu.se

In the case of zero vorticity the first proof of existence of solitary waves in two dimensional channel
of finite depth was given by Lavrentiev 1944 and then another more direct proof was suggested by
Friedrichs and Hyers 1954. In the case of non-zero vorticity the existence of solitary waves on
unidirectional flows is given by M. Groves, E. Wahlen, and independently by V. Hur in 2008. Here I
will talk about existence of solitary waves with a near-bottom stagnation.

This is a joint work with N. Kuznetsov (Russia) and E. Lokharu (Sweden).

Transmutation operator method for efficient solution
of forward and inverse spectral problems

Vladislav V. Kravchenko
Regional Mathematical Center of Southern Federal University, Bolshaya Sadovaya, 105/42, Rostov-
on-Don, 344006, Russia
e-mail: vkravchenko@math.cinvestav.edu.mx

The transmutation (transformation) operators are one of the main theoretical tools of the spec-
tral theory [1–3]. In the talk a new approach is presented for solving the classical forward and
inverse Sturm–Liouville problems on finite and infinite intervals. It is based on the Gel’fand–
Levitan–Marchenko integral equations and recent results on the functional series representations
for the transmutation (transformation) operator kernels [4–8]. New representations of solutions to
the Sturm–Liouville equation are obtained admitting the following feature important for practical
applications. Partial sums of the series admit estimates independent of the real part of the square
root of the spectral parameter which makes them especially convenient for approximate solution of
spectral problems. Numerical methods based on the proposed approach for solving forward problems
allow one to compute large sets of eigendata with a nondeteriorating accuracy. Solution of the in-
verse problems reduces directly to a system of linear algebraic equations. In the talk some numerical
illustrations will be presented.
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Momentum ray transforms

Venky P. Krishnan
TIFR Centre for Applicable Mathematics, Bangalore, India
e-mail: vkrishnan@tifrbng.res.in

Momentum ray transforms are certain weighted transforms that integrates symmetric tensor fields
over lines in Euclidean space with weights that are powers of the integration parameter. This is a
generalization of the standard longitudinal ray transforms which have attracted significant attention
due to its many tomographic applications. We present an algorithm recovering the whole symmetric
tensor field of rank m from its first m+1 momentum ray transforms. We then derive certain isometry
relations between the tensor field and the momentum ray transforms, and use it to derive stability
estimates. Finally, we also consider inversion of certain attenuated momentum ray transforms on
Riemann surfaces.

The talk is based on joint work with Ramesh Manna (TIFR CAM, India), Suman Kumar Sahoo
(TIFR CAM, India) and Vladimir Sharafutdinov (Sobolev Institute of Mathematics, Russia), and
another work with Rohit Kumar Mishra (University of California, Santa Cruz) and François Monard
(University of California, Santa Cruz).
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Radiation from nonsymmetric sources in a magnetoplasma

Kudrin A.V., Petrov E.Yu., Zaboronkova T.M., Zaitseva A.S.
Department of Radiophysics, University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod
603950, Russia
e-mail: kud@rf.unn.ru, epetrov@rf.unn.ru, t.zaboronkova@rambler.ru, zaitseva@rf.unn.ru

Excitation of electromagnetic waves by sources immersed in a magnetoplasma has been an im-
portant research topic for a long time. The theoretical approaches used for the analysis of the wave
excitation in a homogeneous magnetoplasma usually employ either dyadic Green’s functions or the
Fourier transform technique (see, e.g., [1, 2] and references therein). As is known, use of the dyadic
Green’s functions meets certain difficulties related to the fact that in the case of a magnetoplasma,
these functions cannot be expressed in closed form, and are represented by improper integrals in the
wave number space [1]. In view of the above, the Fourier transform technique is more frequently used
for obtaining the fields excited by electromagnetic sources in a magnetoplasma [2]. However, the pro-
cedure of evaluating the corresponding Fourier integrals should be performed anew for each particular
source, which is often not convenient, especially when trying to optimize the source parameters for
ensuring the required radiation characteristics.

The above-mentioned circumstances make the development of methods employing eigenfunction
expansions of the source-excited fields very topical, since such methods can yield more elegant rep-
resentations of the fields. However, as far as the authors are aware, there exists only one published
paper in which such a method was used for the analysis of the radiation from a simple axisymmetric
source in a homogeneous magnetoplasma [3]. It is the purpose of the present work to develop an eigen-
function expansion method for representing the fields of spatially localized, arbitrarily distributed
given electric and magnetic currents immersed in a cold unbounded homogeneous magnetoplasma.
The source-excited fields are expanded in terms of vector azimuthal harmonics, which are then rep-
resented by the integrals over the continuous-spectrum eigenfunctions of two kinds corresponding
to the ordinary and extraordinary normal modes of a magnetoplasma. To find the expansion co-
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efficients, the obtained eigenfunctions are orthogonalized using the “transposed” formulation of the
Lorentz theorem for gyrotropic media [4]. In applying the resultant formulation, the radiation from
given nonsymmetric currents has been analyzed, with the emphasis placed on the sources that are
capable of exciting waves with nonzero orbital angular momentum in a magnetized plasma medium.
In particular, the radiation in the whistler range from a rotating magnetic-field source, which has
the form of two circular current loops with the orthogonal symmetry axes and quadrature currents,
will be discussed in detail.

Acknowledgments. This work was supported by the Ministry of Science and Higher Education of
the Russian Federation (project No. 3.1358.2017/4.6).
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Numerical method for electromagnetic non-polarized symmetric hybrid
wave propagation problem in a non-homogeneous media with arbitrary

nonlinear saturation

Kurseeva V.Yu.
Department of Mathematics and Supercomputing, Penza State University, Penza, 440026, Russia
e-mail: 79273698109@ya.ru

Let Σ = {(x, y, z) : 0 6 x 6 h, (y, z) ∈ R2}, where h > 0 be a waveguide that is located in R3

equipped with Cartesian coordinates Oxyz. At the boundary x = 0 the waveguide Σ has a perfectly
conducted wall. The half-space x > h is filled with isotropic homogeneous medium with constant
permittivity ε = ε0ε1, where ε0 > 0 is the permittivity of vacuum. The waveguide Σ is filled with
isotropic non-homogeneous medium with saturated nonlinearity. Permittivity ε in the whole space
is equal to ε̃ε0, where

ε̃ =

{
ε1, x > h,

ε2(x) + f
(
|E|2

)
, 0 6 x 6 h,

ε2(x) ∈ C1[0, h], f is a monotonically increasing bounded function (f(0) = 0), E is the electric
component of an electromagnetic field. We assume that ε2 > ε1 > ε0. There are no sources in the
entire space and everywhere µ = µ0, where µ0 > 0 is the permeability of vacuum.

We consider propagation of an electromagnetic wave (E,H)e−iωt along the waveguide Σ, where
E, H are complex amplitudes [1], ω is a circular frequency. The complex amplitudes have the form

E =
(
Ex(x),Ey(x),Ez(x)

)⊤
eiγz, H =

(
Hx(x),Hy(x),Hz(x)

)⊤
eiγz, (1)

where ( · )⊤ is the transposition operation; γ is an unknown real parameter; Ex, Ey, Ez, Hx, Hy, Hz

are unknown functions. The field (1) is called non-polarized symmetric hybrid wave [2, 3].
Complex amplitudes (1) satisfy Maxwell’s equations

rotH = −iωεE, rotE = iωµ0H;

the continuity condition for the tangential field components at the boundary x = h; tangential
components of E vanish on the perfectly conducted wall (x = 0); the radiation condition at infinity,
where electromagnetic field exponentially decays as x→ ∞ in the half-space x > h.

56



We look for that values of γ for which there exists nontrivial field (1) satisfied the above listed
conditions. Values of γ that solve the stated problem are called propagation constants. Here in
contrast to [4] we consider a monochromatic field with scalar propagation constant.

This study is supported by RFBR [project number 18-31-00109].
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Gaussian beams for Dirac equation in electromagnetic field

Kuydin V.V., Perel M.V.
Saint-Petersburg State University, Saint-Petersburg
e-mail: kujdin.vladislav@gmail.com, m.perel@spbu.ru

Wave functions of fermions in graphene immersed in electromagnetic field satisfy the Dirac equa-
tion with two spatial coordinates. We obtained solutions of the stationary Dirac equation in semi-
classical approach (using ray method), assuming that the field changes slowly. Special cases for the
magnetic field being in the plane of graphene or orthogonal to one are considered. The semiclassical
solutions of the Dirac equation in (3+1) were found in [1]. The case for the field being orthogonal
to graphene’s plane was obtained in [2]. The same subject is discussed in [3].

The semiclassical solutions can be regarded as a starting point for constructing localized solu-
tions — the Gaussian beams. We got solutions localized near the rays by analogy with Gaussian
beams for the Helmholtz equation.

The research was supported partially by the RFBR grant 17-02-00217.
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Direct and inverse spectral problems for sloshing of a two-layer fluid

Nikolay Kuznetsov
Laboratory for Mathematical Modelling of Wave Phenomena, Institute for Problems in Mechanical
Engineering, Russian Academy of Sciences, V.O., Bol’shoy pr. 61, 199178 St. Petersburg, Russian
Federation
e-mail: nikolay.g.kuznetsov@gmail.com

Direct and inverse eigenvalue problems are considered for a pair of harmonic functions with a
spectral parameter in one of the boundary conditions and the coupling condition on the interface
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separating two fluids of different densities. The direct problem describes sloshing frequencies of free
oscillations taking place in a two-layer fluid occupying an open container. The upper layer is bounded
above by a free surface and below by a layer of fluid of greater density. Both fluids are assumed to be
inviscid, incompressible and heavy, whereas their motion is supposed to be of small amplitude. The
free surface and the interface between fluids are supposed to be bounded two-dimensional domains.

The aim of the so-called inverse problem is to recover some physical parameters from known
spectral data. These parameters are the depth of the interface between the two layers and the
density ratio that characterises stratification.

Spectral Huygens filter for pulsed broadband terahertz radiation

Liu X., Petrov N.V., Kulya M.S., Tsypkin A.N., Grachev Ya.V., Kozlov S.A.
ITMO University, Kadetskaya line 3b, St. Petersburg
e-mail: 912606775@qq.com

Nowadays, modulating and encoding THz waves are hot topics in the field of THz communi-
cation [1]. In this paper, we consider a Huygens filter for a specified frequency lying within a
broad spectrum of a pulsed THz radiation which represents simplest two zones plate. As shown
in Fig. 1(a), an infinite plane wave (Case A) and a Gaussian beam (Case B) are separately used
as the initial source and a mask with a circular aperture is used as a filter to modulate the THz
spectrum ν0 = 0.5 THz is specified as the cutting off frequency to comply with the real experimental
conditions. Fig. 1(b–d) show the numerical results (see [2, 3] for the technique description) under
a plane wave input. Fig. 1(e) and (f) show the evolution of the normalized field intensity of the
Gaussian beam at the intersection between the focal plan z = z0 and the plane y = 0 for 0.5 THz.
The relation between the incident energy and the radiation energy of the aperture is analyzed. An
experimental validation of the technology is performed.

Fig. 1: (a) Working principle diagram. (b) Amplitude distribution of 0.5 THz of plane
wave. (c) Spatial-spectral distribution of plane wave. (d) Spectral distribution of plane
wave. (e) Amplitude distribution of 0.5 THz at y = 0 position of Gaussian beam diffraction.
(f) Normalized amplitude gap as a function of the aperture radius.
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Modeling the interference pattern of bottom reverberation
in the presence of intense internal waves on an ocean shelf

Lunkov A.A.
Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov st., Moscow
119991, Russia;
Bauman Moscow State Technical University, 5, 2nd Baumanskaya, Moscow 105005, Russia
e-mail: lunkov@kapella.gpi.ru

Wideband coherent reverberation modeling is carried out for a shallow water waveguide in the
presence of a solitary internal wave train. Numerical model is based on a normal mode approach.
Horizontal refraction of acoustic waves or mode coupling is taken into account depending on the sce-
nario. A low-frequency monopole sound source and a receiving system are deployed in the monostatic
geometry. This system is assumed to be able to extract bottom reverberation coming from different
directions in a horizontal plane. Environmental data collected during Shallow Water ’06 experiment
provides the input for the proposed model. Numerical simulations demonstrate a strong variability
of the interference pattern of bottom reverberation coming from the area near the internal wave
front. By analyzing the time-angular dependence of the interference pattern fluctuations one can
obtain the shape of the front and its speed. Note that the average intensity of bottom reverberation
at any range to the scattering patch is not sensitive to the hydrodynamic perturbations. The work
was supported by RFBR, 16-32-60194.

The asymptotics of the wave field scattered by an impedance sector

Lyalinov M.A.
Department of Mathematics and Mathematical Physics, Saint-Petersburg University, Universitet-
skaya nab. 7/9, 199034, St. Petersburg, Russia
e-mail: lyalinov@yandex.ru, m.lyalinov@spbu.ru

Polyanskaya S.V.
North-West Academy of State Service and Management, Sredniy ave. V.O., 57/43, St. Petersburg,
Russia
e-mail: svpolyan@yandex.ru

This report is a natural continuation of our recent study [1] devoted to the scattering of a plane
incident wave by a semi-infinite impedance sector. We develop an approach that enables us to
compute different components in the far-field asymptotics. The method is based on the Sommerfeld
integral representation of the scattered wave field, on the careful study of singularities of the integrand
and on the asymptotic evaluation of the integral by means of the saddle point technique. In this way,
we describe the waves reflected from the sector, diffracted by its edges or scattered by the vertex as
well as the surface waves. Discussion of the far-field in the so-called singular directions (or in the
transition zones) is also addressed.
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An overview of the methods for linear and nonlinear diffraction
of flexural gravity waves with vertical circular cylinder

Malenica Š.1, Korobkin A.A.2, Khabakhpasheva T.I.2
1Bureau Veritas – Paris, France
2University of East Anglia, Norwich, UK
e-mail: sime.malenica@bureauveritas.com, a.korobkin@uea.ac.uk, t.khabakhpasheva@uea.ac.uk

Interaction of gravity waves with different obstacles received much attention in the past both
in the context of water waves as well as in the context of flexural gravity waves. The potential
flow assumptions are adopted and the problem is formulated in frequency domain for the linear and
higher order interactions. Unlike the problem of water waves where the semi-analytical solution for
the vertical circular cylinder, is well mastered and agreed within the community, the solution for the
problem of flexural gravity waves is proposed in different forms by the different authors.

In the present work an overview of the different methods is given and it is shown that the final
semi-analytical solutions remain the same whatever the method which is employed. The basic con-
figuration together with the corresponding Boundary Value Problem (BVP) for the generic velocity
potential ϕ induced by the cylinder, is shown in Fig. 1, where the operator κ is known horizontal
operator and the constant α and the functions v(z, θ) and Q(r, θ) are specified for each particular
problem and here below we define them in the context of the second order wave body interaction
theory. In addition, in the case of the flexural gravity waves, the additional boundary conditions at
the plate ends should be specified.

Fig. 1: Basic configuration and definitions.

It can be shown that the velocity potential at the cylinder surface can be expressed in the following
form:

ϕmn(a) =
2Cn

µnH
′

m(µna)

{
Hm(µna)

∫ 0

−H

fn(z)vm(a, z)dz

− µn tanh µnH

α

[
1

a

∫ ∞

a

Hm(µnρ)Qm(̺)dρ−DHm(µna)

(
µ2
n

∂2ϕm

∂r∂z
− ∂4ϕm

∂r∂z3

)

r=a
z=0

]}

The quantities ∂2ϕm/∂r∂z and ∂4ϕm/∂r∂z
3 at the connecting line (a, 0) are unknown coefficients

and their values can be deduced from the appropriate edge conditions.
The above expression can be obtained using the different approaches (direct eigenfunction expan-

sion, boundary integral equations method with appropriate Green function, Weber transforms, ...).
The purpose of the present work is to compare the advantages and disadvantages of the different
methods.
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The condition of non-conventional synchronyzation existence
in the chains of weakly coupled autogenerators

Manevitch L.I., Kovaleva M.A.
Semenov Institute of Chemical Physics, Kosygin st. 4, Moscow 119991, Russia
e-mail: manevitchleonid3@gmail.com, margo.kovaleva@gmail.com

The phenomenon of synchronization in the system of two autogenerators was first observed by
Huygens. It was a stationary synchronization, or in modern terminology the synchronization on
Nonlinear Normal Mode (NNM) [1]. Synchronization of this type (conventional synchronization) was
intensively studied, especially during last decades. We have revealed an alternative, non-conventional
synchronization or synchronization on the Limiting Phase trajectory, which corresponds to beatings
as attractor [2, 3]. To prove the existence of LPT-synchronization we used the group Lie theory
which allowed to find additional symmetry (to the temporal shift) and a corresponding integral of
motion. It was shown numerically that one can obscure the LPT synchronization even out of the
symmetry conditions. We propose now a new topological criterion of LPT synchronization existence
in quasilinear chains of self-sustained oscillators. It is based on the analysis of the stationary states
stability in the slow time-scale. Absence of the stationary attractors provides existence of LPT
synchronization. The discussed method does not require closeness of the amplitudes of the oscillators,
while such limit is supposed in the Kuramoto approximation. Our approach is illustrated on several
dynamical problems having important applications.

Aknowledgement. This work was supported by Russian Foundation for Basic Research according
to the research project no. 18-03-00716.
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Resonant state completeness for a ball with attached wires
in magnetic field

Melikhova A.S., Popov I.Y.
ITMO University, 49 Kronverkskiy Pr., St. Petersburg, 197101, Russia
e-mail: alina.s.melikhova@gmail.com, popov1955@gmail.com

Nanostructures like quantum dots with connected wires are widely discussed (see e.g. [1–3]).
Investigation of system’s transmission coefficient is interesting for physical applications and from
theoretical point of view. The transmission coefficient dependence on energy has a resonant nature
and the completeness of resonant states for 3D quantum dot with two 1D wires attached is proved
in [4]. In current paper we consider the resonant state completeness problem for similar (to described
in [4]) system being under influence of the magnetic field. In this case the initial operator can be
defined as follows:

H = H1 ⊕HB ⊕H2,

where Hj, (j = 1, 2) acts as second derivative (since it is defined on the wire); HB is the Schrödinger
operator defined on the ball taking into account the effects of a magnetic field. The model Hamil-
tonian is described in the framework of the theory of self-adjoint extensions of symmetric operators
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via switching on the connection between parts of the system (see e.g. [5, 6]). The resonance state
completeness for such system is examined.
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On homogenization of periodic parabolic systems

Meshkova Yu.M.
Chebyshev Laboratory, St. Petersburg State University, 14th Line V.O., 29B, St. Petersburg 199178
Russia
e-mail: y.meshkova@spbu.ru

The talk is devoted to homogenization of periodic differential operators. In L2(R
d;Cn), we con-

sider matrix elliptic second order differential operator Bε. Coefficients of the operator depend on
x/ε. The principal part of Bε is given in a factorized form Aε = b(D)∗g(x/ε)b(D). It is assumed
that the matrix-valued function g(x) is bounded and uniformly positive definite. Next, b(D) is a first
order differential operator with constant coefficients. The symbol b(ξ) is subject to some condition
which ensures strong ellipticity of the operator Bε. The coefficients of the lower order terms belong
to some Lp(Ω)-spaces. It is assumed that Bε > 0.

For the semigroup e−Bεt, t > 0, we obtain approximation in the L2-operator norm with the error
estimates of the order O(ε) and O(ε2) for fixed time:

‖e−Bεt − e−B0t‖L2(Rd)→L2(Rd) 6 C1ε(t+ ε2)−1/2e−C2t, t > 0; (1)

‖e−Bεt − e−B0t − εK(ε; t)‖L2(Rd)→L2(Rd) 6 C3ε
2t−1e−C2t, t > ε2. (2)

Here B0 is the effective operator with constant coefficients and K(ε; t) is the corrector.
For the operator Aε, an analogue of estimate (1) was proven in [1], and an analogue of (2)

was obtained in [2]. So, our results (see [3, 4]) are generalisation of results by T. A. Suslina and
E. S. Vasilevskaya.

The method of investigation is based on the scaling transformation, the Floquet–Bloch theory,
and the analytic perturbation theory.
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Homogenization of elliptic and parabolic equations in a bounded domain
with the Neumann boundary condition

Meshkova Yu.M., Suslina T.A.
St. Petersburg State University, Universitetskaya nab. 7/9, 199034, Russia
e-mail: y.meshkova@spbu.ru, t.suslina@spbu.ru

Let Γ ⊂ R
d be a lattice. Let 0 < ε 6 1 be a small parameter. Suppose that O ⊂ R

d is a
bounded domain of class C1,1. In L2(O;Cn), we consider a selfadjoint matrix second order differential
operator Bε with the Neumann boundary condition. Formally, the operator is given by the differential
expression

Bε = b(D)∗g(x/ε)b(D) +
d∑

j=1

(
aj(x/ε)Dj +Djaj(x/ε)

∗
)
+Q(x/ε).

Here b(D) =
∑d

l=1 blDl is the (m × n)-matrix first order differential operator. It is assumed that
m > n and that the symbol b(ξ) =

∑d
l=1 blξl has maximal rank for any 0 6= ξ ∈ C

d. A matrix-valued
function g(x) of size m ×m is assumed to be Γ-periodic and such that g(x) > 0; g, g−1 ∈ L∞. The
matrix-valued Γ-periodic functions aj(x) and Q(x) = Q∗(x) of size n×n are, in general, unbounded
(they belong to suitable Lp,loc-classes). The precise definition of Bε is given in terms of the quadratic
form defined on the Sobolev space H1(O;Cn). It is assumed that Bε is positive definite.

We study the behavior of the generalized resolvent (Bε−ζQε
0)

−1, where ζ ∈ C\R+ is a parameter,
Qε

0(x) = Q0(x/ε) and Q0 is a bounded and positive definite periodic matrix-valued function. We
show that this resolvent converges in the L2-operator norm to the generalized resolvent (B0−ζQ0)

−1

of the effective operator B0 with constant effective coefficients. Here Q0 is the mean value of Q0. An
error estimate depending on two parameters, ε and ζ, is found. For fixed ζ, this estimate is of order
O(ε) (which is sharp). Also, approximation for the operator (Bε − ζQε

0)
−1 in the norm of operators

acting from L2(O;Cn) to H1(O;Cn) is found. For fixed ζ, the corresponding error estimate is of
order O(ε1/2).

The method is based on the results for a similar problem in R
d, introduction of the boundary

layer correction term, and a careful analysis of this term.
The results are applied to study homogenization of the initial boundary value problem for a

parabolic equation
Qε

0(x)∂tuε(x, t) = −(Bεuε)(x, t),

in a cylinder O×(0, T ) (where 0 < T 6 ∞) with the initial condition uε(x, 0) = ϕ(x) and the natural
condition on ∂O × (0, T ). Approximations for the solution uε(·, t) in L2(O;Cn) and in H1(O;Cn)
are obtained. This application is based on the representation of the operator exponential via the
contour integral of the resolvent.

The similar problem with the Dirichlet boundary condition was studied in [1, 2]. The results on
the Neumann problem will appear in [3].
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Krein strings with nonsmooth mass density. Forward and inverse
problems

A.S. Mikhaylov1,2, V.S. Mikhaylov1,2

1St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of
Sciences, 7 Fontanka, St. Petersburg 191023, Russia
2St. Petersburg State University, University Embankment 7-9, St. Petersburg 199034, Russia
e-mail: mikhaylov@pdmi.ras.ru, ftvsm78@gmail.com

We consider forward and inverse dynamic problems for Krein strings [1–3] with stepwise mass
density. We solve the dynamic and spectral inverse problems and also consider the effect of the
appearing of a finite speed of wave propagation in this dynamical system for a smooth density.
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Asymptotics of the stationary Schrödinger equation in the Weyl chamber

Minenkov D.S.
Ishlinsky Institute for Problems in Mechanics RAS, Prospekt Vernadskogo 101-1, Moscow, Russia
e-mail: minenkov.ds@gmail.com

The Schrödinger equation with a monotonic potential U in a polyhedral angle (Weyl chamber)
with the Dirichlet boundary condition is studied. The potential has the form U(x) =

∑n
j=1 V (xj),

x ∈ R
n with V ′(ξ) > 0. Semiclassical asymptotic formulas for eigenfunctions can be constructed

using the Slater determinant composed of Airy functions with arguments depending nonlinearly on
xj. Eigenvalues are found from corresponding quantization conditions. Such asymptotics are valid
uniformly for small and large wave numbers.

These results are obtained together with S. Yu. Dobrokhotov and S. B. Shlosman and are sup-
ported by the Russian Foundation for Basic Research – CNRS (Grant No. 17-51-150006).

Fig. 1: Wave function asymptotics in 2D Weyl chamber 0 ≤ x ≤ y with wave numbers 8 and 4.
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Dislocation problem for the Dirac operator

Mokeev D.S.
Saint Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
e-mail: mokeev.ds@yandex.ru

We consider the dislocation problem for the Dirac operator with periodic potential on the real line.
The dislocation is parameterized by the real parameter t. For each parameter value the absolutely
continuous spectrum has band structure and there are open gaps between spectral bands. In each
open gap there are eigenvalue at some parameters. We show that in each open gap there exist
two unique “states” (an eigenvalue or resonance) of the dislocation operator, such that they runs
clockwise around the gap. These states are separated from each other by the Dirichlet eigenvalue
and they make half as many revolutions as the Dirichlet does in unit time. We find asymptotic of
this motion for the cases when states are near the boundary of gaps and when they collide with
Dirichlet eigenvalues. This talk is based on joint work with E. Korotyaev.

Non-uniqueness in the problem of forward motion of bodies
in a two-layer fluid

Oleg V. Motygin
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, V.O., Bol’shoy pr.
61, 199178, St. Petersburg, Russia
e-mail: o.v.motygin@gmail.com

Appearing in the framework of the surface wave theory, the classical linear problem of ship waves
describes forward motion of rigid bodies with a constant speed in an unbounded heavy fluid having a
free surface (see e.g. [1] and references therein). The model was mostly studied for the homogeneous
fluid, but cases of fluid’s stratification have also attracted interest in view of phenomena related to
internal waves. In this work we consider the case when the fluid consists of two layers of different
density and the contours of bodies are totally submerged in one of the layers. The two-dimensional
statement of the corresponding boundary value problem is studied. For an arbitrary given geometry
of bodies, it is known [2] that the problem is uniquely solvable almost everywhere in the quarter
plane constituted by positive values of speed and a parameter characterizing stratification. The
technique of proof describes only basic properties of the (possibly empty) set of exceptional values
and the question of their existence was open — in this work we give a positive answer. We construct
examples of non-uniqueness developing the ideas suggested by [3, 4] for the case of homogeneous
fluid. The approach is based on boundary integral equations of the potential theory, introduction
of two compact self-adjoint operators and investigation of some functionals on their eigenfunctions.
The existence of non-uniqueness examples at isolated values of forward velocity (depending on the
geometry and the ratio of densities) is discovered numerically in both regimes of motion — subcritical
(with superposition of surface and internal waves at infinity downstream) and supercritical (with
surface waves only). For the considered bodies, numerical computation of the wave resistance is
performed for intervals of speed and some features of resistance’s behavior are shown.
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Limiting bulk acoustic waves for the basal plane of cubic crystals

Mozhaev V.G.
Lomonosov Moscow State University, 119991 Moscow, Russia
e-mail: vgmozhaev@mail.ru

Suierkulova Zh.N., Tleukenov S.K.
Gumilyov Eurasian National University, 010008 Astana, Kazakhstan
e-mail: zhamila_kudaibergen@mail.ru, matricant@inbox.ru

The limiting bulk wave is an important notion in the theory of surface and interface acoustic
waves, as well as bulk-acoustic-wave reflections in crystals. The limiting wave is the slowest bulk
wave along the boundary relative to the selected sagittal plane or, in a more general definition, all
bulk waves with energy flux directed along the intersection of the boundary plane and the sagittal
plane are included in this notion. The existence regions for surface/interface waves and the ranges
of incidence angles with qualitatively different patterns of bulk-wave reflections are determined by
limiting bulk waves. The purpose of this presentation is to study the evolution of the threshold
velocities, given by the limiting waves, with the sagittal plane is rotated. Both pure-elastic and
piezoelectric cases are considered. The conditions for finding limiting waves are derived applying
the same procedure as suggested previously for acoustic axes in crystals [1]. Using these conditions,
the angular dependencies of the limiting-wave velocities are calculated for the basal plane of cubic
crystals. These velocity curves explain a jump-like change of the angular existence region of interface
waves found numerically in twisted silicon bicrystals [2].
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The polarization matrix for a junction of elastic rods

Nazarov S.A., Slutskij A.S.
Institute for Problems in Mechanical Engineering, 61 Bol’shoj pr., V.O., St. Petersburg
e-mail: srgnazarov@yahoo.co.uk, slutskij@gmail.com

The dimension reduction procedure on asymptotic analysis of thin bodies associates a two- or
three-dimensional boundary value problem on a junction of thin domains with a family of ordi-
nary differential equations on the graph (the junction “skeleton”) and the transmission conditions
connecting the equations and imposed at the graph vertices corresponding to the junction nodes.
The classical Kirchhoff transmission conditions are obtained by analyzing in detail the boundary
layer phenomenon near nodes. At the same time, for many goals it is not sufficient to possess only
the information obtained on the basis of the primary one-dimensional model which can be derived
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by a simple limit passage from the original multi-dimensional problem. By constructing of two-
or multi-term asymptotic expansions the Kirchhoff transmission conditions are replaced with the
Robin–Steklov conditions involving a certain energy characteristic of the junction zone namely, the
polarization matrix naturally arising in the problem about a boundary layer near a node.

The polarization matrix M is introduced for the problem of elasticity theory governing deforma-
tions of a three-dimensional body composed of half-cylinders at the node Θ bounded by a piecewise
smooth contour. Such problems describe the boundary layer phenomenon near nodes of a junction
of thin elastic rods.

Properties of the polarization matrix are studied. We prove the symmetry of M and the positive
definiteness of M which is proved by “extending” the domain Θ in an appropriate way, i.e., by shifting
the origin of the local coordinates along the axes of the half-strips.

Moutard type transformations for generalized analytic functions
and for the conductivity equation

R.G. Novikov
CNRS (UMR 7641), Centre de Mathématiques Appliquées, École Polytechnique, Université Paris-
Saclay, 91128 Palaiseau, France
e-mail: novikov@cmap.polytechnique.fr

The transformations of the Darboux–Moutard type go back to the publication [1]. Recently, we
have constructed and studied Moutard type transformations for generalized analytic functions (that
is for the Carleman system or Bers–Vekua system) and further for the conductivity equation. This
talk is based, in particular, on works [2–4].
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Numerical modeling of active microcavities with piercing holes using
the Muller boundary integral equations and the Galerkin method

Oktyabrskaya A.O.
Institute of Computational Mathematics and Information Technologies, Kazan Federal University,
Russia
e-mail: alina.oktyabrskaya.21@gmail.com

Spiridonov A.O.
Laboratory of Computational Technologies and Computer Modeling, Kazan Federal University,
Russia
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Karchevskii E.M.
Department of Applied Mathematics, Kazan Federal University, Russia
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Following [1, 2], we reduce the original problem for eigenmodes of active microcavities with
piercing holes formulated on the plane to a convenient for numerical solution eigenvalue problem
for the system of Muller boundary integral equations. All the boundary integral operators in this
system of second kind are weakly singular or have smooth kernels and nonlinearly depend on desired
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parameters [3]. Using the Galerkin method with the trigonometric basis we get a nonlinear algebraic
eigenvalue problem.

For circular microcavities with non-concentric circular holes we obtain explicit expressions for the
matrix elements. On the basis of presented numerical approach we investigate spectra and thresholds
of laser modes of such microcavities. The computational experiments demonstrate that under shift
of holes and increase of their radiuses there exist modes that preserve low thresholds. Our numerical
results coincide well with exact solutions previously obtained by the method of separation of variables
in [4] (see also [5]) for circular microcavities with concentric circular holes.
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Optical engineering of vector pulsed beams with parabolic and elliptic
cross-sections and their propagation through planar interface

Sergej Orlov, Pavel Gotovski, Justas Baltrukonis, Orestas Ulčinas, Titas Gertus
State research institute Center for Physical Sciences and Technology, Industrial Laboratory for
Photonic Technologies, Sauletekio ave 3, LT-10222, Vilnius, Lithuania
e-mail: sergejus.orlovas@ftmc.lt

Beam profile engineering, where a desired optical intensity distribution can be generated by an
array of phase shifting (or amplitude changing) elements is a promising approach in laser material
processing [1]. For example, a spatial light modulator (SLM) is a dynamic diffractive optical element
allowing for experimental implementations of controllable beam profile. Scalar Mathieu beams have
elliptical intensity distribution perceivable as “optical knives” in the transverse plane. On the other
hand scalar Weber beams have a parabolic cross-section, which enables us to call them “optical
showels”. Both families exhibit non-diffracting properties similar to Bessel beams, where a relatively
long focal depth retains unchanging intensity distribution, which makes them a promising approach
in laser processing. Here, we introduce vector versions of those beams with controllable polarization
and investigate numerically their spatial spectra. We use vector Mathieu and Weber beams as a
basis to construct controllable on-axis phase and amplitude distributions with polarization control.
We investigate here aberrations, which occure due to the propagation through a planar interface
between two materials. Furthermore, generate components of vector Mathieu and Weber beams
experimentally using diffractive optics elements. We report on our achievements in the control
over the beam shape and dimensions along the propagation axis. Lastly, we discuss generation of
femtosecond pulsed “knive” and “shovel” type beams using geometric phase elements, made with laser
induced nanograting ripples in fused silica and produced by “Workshop of Photonics”.
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Homogenization of multivalued monotone operators under nonstandard
growth conditions

Pastukhova S.E.
Russian Technological University (MIREA), Moscow, Russia
e-mail: pas-se@yandex.ru

In a bounded Lipschitz domain in R
d, we consider the Dirichlet boundary value problem for an

elliptic multivalued maximal monotone operator Aε for which growth estimates of power type with a
variable exponent are satisfied. This variable exponent pε(x) and also the symbol of the operator Aε

oscillate with a small period ε with respect to the space variable x. We prove a homogenization result
for this problem, thus, obtaining, in the limit as ε → 0, a multivalued maximal monotone operator A,
much simpler than the original one. Namely, A does not depend on the space variable and satisfies
new type growth estimates which are formulated in terms of a convex function f(ξ) instead of the
power function |ξ|pε(x) used in growth conditions for Aε. The function f(ξ) as well as the symbol of
A are found via auxiliary problems stated on the unit cell of periodicity. The Dirichlet problem for
the operator Aε is posed in the variable order Sobolev space W 1,pε(·)

0 (Ω), while the limit problem with
the operator A is posed in the Sobolev space W f

0 (Ω) with generalized Orlicz integrability defined by
the function f(ξ). We extend here the homogenization result [1] obtained previously by V. Zhikov
and S. Pastukhova in the case of single-valued strictly monotone operators.

This result is proved jointly with V. Chiadò Piat.
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Approximate controllability of the wave equation
with mixed boundary conditions

Pestov L.N.
Immanuel Kant Baltic Federal University, 14 A. Nevskogo st., Kaliningrad, Russia
e-mail: lpestov@kantiana.ru

We consider initial boundary-value problem for acoustic equation in the time space cylinder
Ω× [0, 2T ] with unknown variable speed of sound, zero initial data, and mixed boundary conditions.
We assume that Neumann controls are located at some part Σ× [0, 2T ], Σ ⊂ ∂Ω of the lateral surface
of the cylinder. The domain of observation is Σ× [0, 2T ] and the pressure at another part (Ω \ Σ)×
[0, 2T ] is assumed to be zero for any control. We prove the approximate boundary controllability
for functions from the subspace V ⊂ H1(Ω) whose traces have vanished on Σ provided that the
observation time is 2T more than two acoustic radii of the domain Ω. We give an explicit procedure
for solving Boundary Control Problem (BCP) for smooth harmonic functions from V (i.e., we are
looking for a boundary control f which generates a wave uf such that uf (·, T ) approximates any
prescribed harmonic function from V ). Moreover, using the Friedrichs–Poincare inequality, we obtain
a conditional estimate for this BCP. Note that, for solving BCP for these harmonic functions, we do
not need the knowledge of the speed of sound.

This work is supported by the Russian Science Foundation under grant 16-11-10027.
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On some numerical method for solving integral equations
of the theory of diffraction

Philippov V.B.
St. Petersburg Department of Mathematical Institute RAS, St. Petersburg, Russia
e-mail: filippov@pdmi.ras.ru

The purpose of this report is to present an effective numerical method for solving integral equa-
tions of potential theory, allowing one to find approximate solutions to a wide range of boundary
problems in the theory of diffraction. The effectiveness of the method is achieved using some in-
formation regarding the solution, established from formal asymptotic expansions. The method is
illustrated by a scalar 2D example, although it is easily generalised to a higher dimensional scalar
and vector problems.

Let us assume that we have the Fredholm integral equation of the first kind for current ψ(x) on
some boundary S of body:

f(x) =

∫

S

K(x, x′)ψ(x′)dS, x ∈ S, (1)

where f(x) is the function defined by the incident field, the kernel K(x, x′) is expressed through the
free-space Green’s function. It is known that the kernel and the current can have singularities. The
integral equation may also contain large parameters (for example, a large wave number), whereby
the solution is a rapidly oscillating function. So, there is a need to use high-dimensional arrays. All
the singularities entails a shrinking of the sphere by using usual numerical methods and the need to
find individual approaches.

Using some information about a solution obtained from the asymptotical expansion allows some
difficulties to be relieved and hence allows to expand the area of applicability of numerical method.
The unknown function ψ(x) can be represented as the sum of two terms:

ψ(x) = ψ0(x) + ψ1(x),

where ψ0(x) is the geometric-optical part (determined by the incident field), ψ1(x) is the diffracted
part. We can separate, using asymptotic expansion, the singularities and the rapidly oscillating parts
from the current. Assume that function θ(x) will contain this singularities. Then function

ψ̃(x) = ψ1(x)θ
−1(x)

will be bounded, smooth and slowly varying.
So, the kernel and the integrated term in equation (1) will be following:

K̃(x, x′) = K(x, x′)θ(x′), f̃(x) = f(x)−
∫

S

K(x, x′)ψ0(x
′)dS.

We divide the entire integration domain into n parts and replace function ψ̃(x) by its linear approx-
imation in each part of the domain:

ψi(x) = yi + (yi+1 − yi)(x − xi)/h,

where yi = ψ̃(xi).
So, we obtain the following algebraic system of equations:

ai,jyj = bi, i, j = 1, . . . , n,

where

ai,j = h

∫ 1

0

K̃(xi, xj + ht)(1− t)dt, bi = f̃(xi).

We show that for a wide class of problems, one need not choose n to be too large in order to obtain
a solution with a high accuracy. The effectiveness of the method is illustrated by the example of
parabolic antennas.
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Generalized quadratic Helmholtz–Gauss beams
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We consider solutions of the parabolic equation

Uxx + Uyy + 2ikUz = 0 , (1)

which generalise quadratic Bessel–Gauss beams obtained in [1]:

Um(z, r, ϕ) =
C√

q1(z)q2(z)
exp

{
iku(z)r2

}
J|m|/2(kv(z)r

2) exp(imϕ) , (2)

where r and ϕ are polar coordinates in the xy–plane, J is a Bessel function, C is a complex constant,
qj(z) = z − zj − ibj, j = 1, 2, and zj and bj > 0 are real constants,

u(z) =
(
q−1
1 (z) + q−1

2 (z)
)
/4 , v(z) =

(
q−1
1 (z)− q−1

2 (z)
)
/4 .

Following the approach developed in [2], we seek generalizations of (2) in a form

U(z, r, ϕ) =
C√

q1(z)q2(z)
exp

{
iku(z)r2

}
H(Z,R,Φ) , (3)

where the amplitude function H = H(Z,R,Φ) depends on the variables Z, R, and Φ defined by
Z = ln(q1(z)/q2(z)), R = v(z)r2, Φ = 2ϕ, we come to a secondary parabolic equation for H having
a form

R(∆̂H + k2H) + 2ikHZ = 0 , (4)

with periodic conditions H(Z,R,Φ + 4π) = H(Z,R,Φ), where the operator

∆̂ =
1

R

∂

∂R
R
∂

∂R
+

1

R2

∂2

∂Φ2

is the Laplacian on a two-sheet complex surface. Taking any solution of the Helmholtz equation

∆̂H + k2H = 0 , (5)

we arrive at the amplitude function independent of Z. We call functions (3) which are localized with
respect to transverse variables, generalized quadratic Helmholtz–Gauss beams. Functions (2) are
special cases of such beams with H = J|m|/2(kR) exp(imΦ/2). Another obvious solution of (5) is a
plane wave H = exp(ikR cosΦ) which corresponds to the simple astigmatic Gaussian beam. Also we
present other nontrivial solutions of (5), giving novel beam-like solutions of (1) in the 3D physical
space.

We are indebted to prof. A. P. Kiselev who initialized this research.
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The digital holography has opened an access to modeling and synthesizing the intensity and phase
of the electromagnetic field wave [1, 2], which serves as an alternative to analog methods. The article
presents a result of reconstruction digital hologram carrying information about refractivity of the
sample for qualitative and more accurate analysis of the properties of objects during deformation
and also determining the shape of objects, visualizing phase distributions with high spatial resolution.

Numerical reconstruction of a digitally recorded hologram is carried out in accordance with the
scalar diffraction theory in the Fresnel approximation for the Rayleigh–Sommerfeld diffraction inte-
gral. Restored diffracted field Q(ξ, η) in the image plane (ξ, η) at a distance d from the hologram
plane can be represented in the paraxial approximation as follows:

Q(ξ, η) =
1

iλd
exp

(
i
2π

λ
d

)∫ ∞

−∞

∫ ∞

−∞

o2(x, y)I(x, y) exp
[
i
π

λd

[
(ξ − x)2 + (η − y)2

]]
dxdy. (1)

From equation (1) it can be seen that the resulting field is determined by a two-dimensional Fourier
transform of the product of intensity distribution in the hologram I(x, y), complex amplitude of the
reference wave o2(x, y) and quadratic phase function of spatial wave propagation:

w(x, y) = exp
[
i
π

λd
(x2 + y2)

]
. (2)

Note that integral (1) is a convolution integral for the first two factors and function (2). Intensity
I(x, y; d) and phase ϕ(x, y; d) of reconstructed images can be obtained from the complex field Q(ξ, η)
calculated at a distance d using the following relations:

I(x, y; d) = |Q(x, y)|2,

ϕ(x, y; d) = arctan

(
Im (Q(x, y))

Re (Q(x, y))

)
= arg (Q(x, y)) .

(3)

Phase values ϕ(x, y; d), which was obtained by this formula correspond to a discontinuous function
with a region of variation within the interval [−π, π]. One of the well-known phase unwarping
algorithms can be applied to restore a continuous unfolded image of phase values. This method was
used to determine defects in the welded joint of two of the same type fibers. Special fiber-optic blanks
were made, on one of which an obvious displacement of the welded joint was created, and the other
was created at normal conditions. Defects of the welded joint is also observed with digital hologram
for case when displacement of optical fibers is not visible with optical microscope.
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The phenomenon of materials destruction is one of the most studied one, as it is of fundamental
importance for any equipment and structures. However, there are many mechanisms that can be
considered as the main cause of destruction. These mechanisms have different physical nature:
fluctuations and statistics as in Zhurkov’s model, cf. [1], as well as the surface effects in the Griffith
model, cf. [2].

At the same time, there are a number of facts that show that the external environment in which
the destruction occurs is of fundamental importance for the destruction modeling. Usually, this
external environment is not always taken into account when calculating the strength. However, in
vacuum, as a rule, the strength of material is higher than that in air, and the placement of the tested
samples in different liquid media can change the strength, both upwards and downwards.

One of the first who detected this phenomenon was A. F. Ioffe while carrying out experiments
with saline columns. But so far, this effect has no general unambiguous explanation.

A number of studies show that the fracture is accompanied by that the surface of samples is
covered with micropores and microcracks. The sharp edges of these cracks cause the dissociation
of water and other gases with the formation of highly active radicals [3]. Hydrogen is the most
dangerous among them [3].

The surface influence can be described by means of boundary conditions however as shown by
experimental studies, the destruction begins with small defects and pores on the surface. That is,
we have singular boundary conditions.

Secondly, layer-by-layer experimental scanning shows that the hydrogen is unevenly distributed
throughout the body of the sample. There is a thin surface layer in which its concentration is about
100 times higher than in the inner region of the metal.

The description of the interaction of hydrogen with the metal matrix is given in the framework
of the bi-continuum model in which the inner medium models the diffusion mobile hydrogen.

Diffusion process is slow. The destruction process requires describing the behavior of hydrogen
under the action of external dynamic loads. For this, a wave approach was used to analyze the
equations of a mathematical model. The report provides an assessment of the possible influence
of nonlinear effects on the propagation of a solitary wave of the concentration of diffusion mobile
hydrogen.

The support by the Russian Foundation for Basic Research, projects 17-08-00783, 18-31-00329
and 18-08-00201, is acknowledged.
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Asymmetric modified Fabry–Perot cavities for increase the sensitivity
of gravitational wave detectors
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The high sensitivity of modern laser detectors of gravitational waves requires a high value of
circulating power (about 1 MW) in the optical cavities of the detector to increase the probability of
observation of gravitational waves from the merger of double black holes or neutron star systems. But
the high power of energy in these experiments, as well as the presence of a large number of high-Q
optical modes, can lead to an undesirable effect of parametric oscillatory instability, which limits the
light power circulating in the shoulders of the interferometer (standard Fabry–Perot cavities with
spherical mirrors) [1, 2]. In addition beam splitter in optical system of gravitational detectors has
non-sufficient size, it makes to use non-symmetric light beams in arms (light spot on input mirror is
slightly smaller than on end mirror).

To solve these two problems, it is proposed, firstly, to use an optical cavity with non-spherical
mirrors [3, 4], which will lead to a sufficiently effective suppression of high-order optical modes and, in
turn, increase the threshold of parametric instability. Secondly, it is proposed to use an asymmetric
cavity with different mirrors, which will reduce the size of the laser spot at the output of the cavity
with a slight increase in the diffraction losses of the main optical mode.

Numerical calculations of asymmetric Fabry–Perot cavities with non-spherical mirrors with a
rarer spectrum and higher losses of high-order optical modes were carried out, which can be obtained
by optimizing the surface profile of mirrors, for example, described by the function:

A(r) = x0 · exp
(
−η
(
1 + α · η + β · η2

))
, where η =

r2

2 · Rc · x0
, (1)

(at α = β = 0 and x0 → ∞, it passes into the profile of the spherical mirror r2

2·Rc
with the radius

of curvature Rc) and the subsequent shift of the cavity eigenmodes along the optical axis by some
optimal distance, which leads not only to a decrease in the light spot on one mirror, but also to a
further increase in the diffraction losses of high-order optical modes inside such a cavity. Numerical
simulations are carried out for the standard characteristics of Fabry–Perot cavities in the Advanced
LIGO detectors: length L = 4000 m, the radius of curvature of the mirrors Rc = 2076 m, the
wavelength is λ = 1.064 µm [5].
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On theory of surface wave propagation on smooth strictly convex surfaces
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Theory of surface waves such as whispering gallery and the creeping waves in the short-wave
approximation is well developed in 2D cases when they propagate along the smooth strictly convex
curves in plane, see e.g. [1, 2] and bibliography therein. In the case of surfaces embedded in 3D
those waves propagate along geodesic lines where they have torsion and form caustics of different
structures, that gives rises to problems in the theory of surface wave propagation.

We propose one approach to surface wave propagation theory which allows overcoming above
mention problems. The approach is based on extension of the locality principle well known in
the short-wave propagation and diffraction theory and it reassembles Gaussian beams summation
method [3].

The proposed theory includes the following basic steps:
1. Construction of the field of geodesic lines associated with the generated wave field under consider-
ation: whispering waves on concave side of the smooth strictly convex surface (Σ) or creeping waves
on convex side of Σ.
2. For each geodesic line we construct a short-wave asymptotic solution of Helmholtz equation lo-
calized in small neighborhood of this geodesic line in the tangent bundle of Σ respectively. It is
important that this asymptotic solutions have no singularities at focal points of the geodesic lines.
3. The total wave field on the Σ we present as the superposition (or integral) of those local solutions.

Thus to calculate the contribution of the surface wave at any observation point we need to cover
same vicinity of the point by a fan of geodesic lines. Then to sum up at this point contributions of all
asymptotic solutions related to the fan of geodesic lines, compare with Gaussian beam summation
method [3].
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Microlocal analysis of a Compton tomography problem
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Here we present a novel microlocal analysis of a new toric section transform which describes a two
dimensional image reconstruction problem in Compton scattering tomography and airport baggage
screening. By an analysis of two separate limited data problems for the circle transform and using
microlocal analysis, we show that the canonical relation of the toric section transform is 2–1. This
implies that there are image artefacts in the reconstruction. We provide explicit expressions for the
expected artefacts and demonstrate these by simulated reconstructions.

This is joint work with James Webber (ECE, Tufts University).
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Fully symmetric guided electromagnetic waves
in a shielded slab filled with anisotropic dielectric
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Let us consider the slab Σ := {(x, y, z) : 0 6 x 6 h, (y, z) ∈ R
2} located in the Cartesian

coordinates Oxyz, which has infinitely conducting walls σ0 and σh at x = 0 and x = h, respectively.
We study propagation of a monochromatic electromagnetic wave (E,H)e−iωt inside Σ, where ω

is a circular frequency. Vector-fields E, H have the form

E =
(
ex(x), ey(x), ez(x)

)⊤ · ei(γyy+γzz), H =
(
hx(x), hy(x), hz(x)

)⊤ · ei(γyy+γzz), (1)

where γy, γz are unknown real parameters, ( · )⊤ is a transposition operation.
Guided waves of the form (1) in the slab Σ we call the fully symmetric guided waves (FSGWs).

This type of waves includes transverse-electric and transverse-magnetic guided waves and can be
considered as their generalisation. In addition, idea of FSGWs in some sense is similar to the concept
of hybrid guided waves in a circle cylindrical waveguide [1].

The slab Σ is filled with non-magnetic anisotropic homogeneous medium characterised by the
following permittivity tensor

ǫ = ǫ0



ǫx 0 0
0 ǫy 0
0 0 ǫz


 , (2)

where the diagonal entries are real and, in general, pairwise different [2, 3]. We assume that µ =
µ0 > 0 is the permeability of free space. Without loss of generality ǫx > max{ǫy, ǫz}. Indeed, making
appropriate coordinate rotation, any of the diagonal entries in (2) can be put into the ǫx-position.
In the general case, we impose the constraints ǫx > max{ǫy, ǫz}, ǫy 6= ǫz and γy 6= 0, γz 6= 0.

In the linear case, parameters ǫx, ǫy, and ǫx as well as γy, γz can be complex numbers.
Tensor (2) is chosen as, one the one hand, it is the simplest case in which the FSGWs arise, on

the other hand, it models many real materials: in [2] there are presented a number of real cases in
which the diagonal tensor (2) can be used.

The main problem, which we call the problem P , is to determine pairs (γy, γz) for which there
exists a nontrivial field (E,H)e−iωt such that the field (1) satisfies Maxwell’s equations

rotE = iωµH, rotH = −iωǫE, (3)

where tangential components of the electric field vanish at the walls σ0, σh.
Any pair (γy, γz) that solves the problem P is called the coupled propagation constants and denoted

by (γ̃y, γ̃z).
The dispersion equation with respect to γy and γz is derived and studied. Dispersion curves and

eigenfunctions are plotted.
The work was supported by the Russian Science Foundation under grant 18-71-10015.
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Numerical simulation of sound scattering on a partly rough
pressure-release surface via boundary element method
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The problem of sound scattering on the surface of water is an old problem that is successfully
solved using a statistical approach and approximate methods. However, finding a solution to the
wave equation with an arbitrary certain realization of the boundary still remains a difficult task
that cannot be solved by analytical methods. This task becomes relevant in connection with the
improvement of experimental and computational techniques for finding the shape of the surface of
the water.

We discuss how the scattering of sound at the infinite boundary can be calculated by the model
with a finite number of boundary elements. Geometry of our problem contains an infinite plane
boundary with a finite area of deformation. We use Helmholtz integral equation on closed surface.
Part of the surface is an artificial boundary so the boundary condition there is obtained from decom-
position of pressure field in the exterior domain. The boundary condition contains integration over
finite surface only, thus the problem can be solved via boundary element method.

The computational scheme is checked on tasks for which the answer is known, its operation is
demonstrated in cases with shading and multiple reflection phenomena.
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Spectrum of Schrödinger operators with guided potentials
on periodic graphs
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We consider discrete Schrödinger operators with periodic potentials on periodic graphs perturbed
by guided positive potentials, which are periodic in some directions and finitely supported in other
ones. The spectrum of the unperturbed operator is a union of a finite number of non-degenerate
bands and eigenvalues of infinite multiplicity. We show that the spectrum of the perturbed operator
consists of the “unperturbed” one and the additional guided spectrum, which is a union of a finite
number of bands. We estimate the number and the positions of the guided bands in gaps of the
unperturbed operator in terms of eigenvalues of Schrödinger operators on some finite graphs. We
also determine sufficient conditions for the guided potentials under which the guided bands do not
appear in gaps of the unperturbed problem.
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On homogenization for a locally periodic elliptic Dirichlet problem
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Let Ω be a domain in R
d with sufficiently smooth boundary, and let Aε be a matrix strongly elliptic

operator on Ω given by the expression Aε = − divA(x, x/ε)∇ with Dirichlet boundary condition.
The function A is Lipschitz in the first argument and periodic in the second one, and therefore
the coefficients of Aε rapidly oscillate if ε is small. It is well known that the resolvent (Aε − µ)−1

converges, in some sense, as ε → 0. We present the first terms of approximations in the uniform
operator topology on L2(Ω)

n (which is the strongest type of operator topology) for (Aε − µ)−1 and
∇(Aε − µ)−1. Particular attention will be paid to the rates of approximation.

Asymptotic solution of the explicit difference scheme for the wave
equation with localized initial data

Sergeev S.A.
Ishlinsky Institute for Problems in Mechanics RAS, Moscow;
Moscow Institute of Physics and Technology (State University), Dolgoprudny
e-mail: sergeevse1@yandex.ru

We consider the Cauchy problem for the wave equation with localized data

utt = c2(x)uxx, u|t=0 = V (x/µ), ut|t=0 = 0, x ∈ R,

where V (y) is a smooth fast-decaying function with derivations and the parameter µ ≪ 1 is the
parameter of the localization, function c(x) is smooth and bounded. The asymptotic solution of this
problem can be constructed with the help of the Maslov’s canonical operator.

On the other hands, the solution of this problem can be obtained via the numerical methods
due to solving the difference scheme. The difference scheme can be written as a pseudodifferential
operator due to shifting operator Tu = eh

∂
∂xu, where h≪ 1 is a step of discretisation in the scheme.

Thus the difference scheme can be also studied with the help of the Maslov’s theory and the
asymptotic solution of the difference scheme can be studied. In such approach we have two small
parameters: h and µ and the asymptotic solution depends on the ratio h/µ.

In papers [1, 2] the asymptotic solution for such equations were obtained for wide class of the
initial conditions. The asymptotic solution is presented in the combined form: asymptotic with
respect to small parameters and with respect to the smoothness [3, 4].

Recently in [5] another approach to the asymptotic solution for wave equation was presented. It
is based on the vertical Lagrangian manifolds and it was shown that the the leading term of the wave
can be described in terms of the caustic points of the manifold, which are is the leading wave front.

In the present speech we investigate these two methods for the building the main part of the
asymptotic solution of the difference scheme in the vicinity of the leading wave front. It is shown
that on the lattice of the difference scheme these two methods provide the same answers.

We compare the numerical solution and asymptotic solution of the difference scheme. Even the
explicit scheme is unstable one can provide interesting results of such comparison depending the ratio
between the step of the difference scheme h and parameter of localization µ.

This work was supported by the Russian Science Foundation (project 16-11-10282).
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On the simulation of pulse acoustic signals in the shallow water
with slope of the bottom
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We pose the problem of the propagation of the pulse acoustic signals in the waveguide in the
shallow water with slope of the bottom. We assume that either the sound speed is uniform in the
area or the presence of the thermocline.

We present asymptotic solution to this problem based on the ray theory and Maslov’s canonical
operator. We analyze the 3D geometry of the rays and their projection onto the horizontal plane in
both cases.

It is known that in the case of the constant sound speed the envelope of the rays is hyperbola.
In the case of the of the thermocline it is shown that such hyperbolas are stretched.

Asymptotic analysis of harmonic waves propagation in a viscoelastic layer
in the cases of fractional Voigt and Maxwell models

Sergeeva N.V., Wilde M.V.
Saratov State University, 83, Astrakhanskaya str., 410012, Saratov, Russia
e-mail: sergeevanv@info.sgu.ru, mv_wilde@mail.ru

The problem of propagation of harmonic waves in an infinite layer is thoroughly investigated on
the basis of elastodynamics theory, which do not take into account the dissipation of the energy
because of the internal friction. To describe the latter, a model of a viscoelastic material can be
used. Since the different types of internal friction depending on the properties of the material,
temperature and other factors are known, there are different types of viscoelastic models. In paper [1]
the asymptotics of the roots of dispersion equations for viscoelastic layer described by Rabotnov’s
model [2] were obtained. Nowadays, various dynamic problems for viscoelastic bodies are considered
with the use of fractional calculus. In paper [3] it is shown that Rabotnov’s model is equivalent to
the rheological model which is referred to as Koeller’s model. There are the other types of fractional
viscoelastic models [4], for example fractional Voigt model and fractional Maxwell model.

In this work, the method developed in [1] is applied to 3D fractional Voigt and Maxwell models,
which are constructed as the generalization of one dimensional models [4]

σ(t) = mε(t) + b
dγε(t)

dtγ
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and

σ(t) + a
dγσ(t)

dtγ
= b

dγε(t)

dtγ
,

respectively. Here σ is the stress, ε is the strain, m, b, a, γ are parameters of the material.
Asymptotics of the dispersion equation roots for small and large frequencies are obtained. Com-

parative analysis of the asymptotic behavior of the dispersion equation roots for these models with
Rabotnov’s model is presented.

The results were obtained within the framework of the state assignments of the Ministry of
Education and Science of Russia No. 9.8570.2017 / 8.9.
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Matrix Klein–Gordon equations for waveguides
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A useful tool for studying wave processes in complicated waveguides is the “waveguide finite ele-
ment method” (WFEM) [1]. An arbitrary waveguide is modeled within this method by the equation

[
D2

∂2

∂x2
+D1

∂

∂x
+D0 −M

∂2

∂t2

]
U(t, x) = F(t, x), (1)

where t is the time, x is the longitudinal coordinate directed along the waveguide, U(t, x) is the vector
of unknowns of dimension N × 1, Dj and M are coefficient matrices, F(t, x) is the vector excitation
function. This equation can be called a matrix Klein–Gordon equation (MKGE), taking into account
an analogy with a well-known scalar Klein–Gordon equation

[
d2

∂2

∂x2
+ d0 −m

∂2

∂t2

]
u(t, x) = f(t, x). (2)

An MKGE can mimic behavior of various physical system. In the talk we demonstrate how such
equations can be built for a liquid planar layer or an elastic plate. Respectively, dispersion diagrams
of MKGEs can be rather complicated.

To simplify the analysis, an MKGE can be restricted onto some linear subspace of smaller dimen-
sion. We demonstrate examples of such a restriction stressing the physical meaning of it.

After simplification, the system becomes locally represented by an MKGE of a small dimension
N . A very important case is N = 2. An MKGE of dimension 2 can be used for modeling interaction
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between subsystems of a larger system. In particular, avoiding–crossings of a dispersion diagram can
be described by such an MKGE. We propose a classification of MKGEs having dimension 2.
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Diffraction of TM polarized EM waves by nonlinear inhomogeneous
Goubau line
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The electromagnetic wave diffraction by homogeneous (see [1] where early and classical results
for circular geometries are summarized) or inhomogeneous (see e.g. [2]) cylindrical dielectric bodies
filled with linear medium has been a subject of intense studies since the late 1940s. However, the
case of nonlinear inhomogeneous filling still constitutes to a big extent an open problem, both in
view of mathematical justification and creation of efficient numerical techniques. A progress here
is associated with recently developed techniques [3–5] for the analysis of nonlinear boundary value
problems for the Maxwell and Helmholtz equations.

In this work, we consider the diffraction of TM waves by an open waveguide, a Goubau line
(perfectly conducting cylinder covered by a dielectric layer), with a nonlinear dielectric cover. Nu-
merical experiments are carried out for the nonlinearity with saturation and Kerr nonlinearity. The
physical problem is reduced to solving a nonlinear boundary value problem for a system of ordinary
differential equations. Numerical results are obtained using a modification of the shooting method
which makes it possible to determine and plot the amplitude of the reflected field with respect to the
amplitude of the incident field. Comparison between the nonlinear problem and the corresponding
linear problem is performed. These simulation results describe the essential relationships between
linear and nonlinear problems. Namely, the nonlinear reflected field can be predicted from that ob-
tained from the linear problem using the perturbation theory method (for small value of nonlinearity
coefficient).
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Forced oscillation of a system with time-varying parameters
possessing a single trapped mode: a resonant case
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We consider a forced oscillations of an infinite-length mechanical system, with time-varying pa-
rameters, possessing a single trapped mode characterized by frequency Ω0(ǫt). The system is a
string, lying on the Winkler foundation, and equipped with a discrete linear mass-spring oscillator of
time-varying stiffness. The discrete oscillator is subjected to harmonic external force with constant
frequency Ω̂. In the case of the passage through the resonance, we obtain the principal term of
the asymptotic expansion describing the motion of the discrete inclusion. To do this we use the
combination of two asymptotic approaches. The first one was suggested in [1] and used in our recent
study [2] to describe the free localized oscillation in the system under consideration. The second
one was used in [3, 4] to describe the passage through the resonance in a single degree of freedom
system. The obtained result was verified by independent numerical calculations based on solution of
the corresponding PDE by means of the method of finite differences. The comparison demonstrates
a good mutual agreement.
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Homogenization of high order elliptic operators with correction terms
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Our talk is devoted to the homogenization problem for high order periodic elliptic operators with
rapidly oscillating coefficients. We consider matrix strongly elliptic operator Aε in L2(R

d):

Aε = b∗(D)g(x/ε)b(D), ε > 0.

Here g(x) is periodic bounded positive-defined matrix-valued function; b(D) is homogeneous matrix
differential operator of order p ≥ 2. Its symbol b(ξ) has maximal rank.

The main approximation term of the operator resolvent Aε was established in [1]. Precisely, the
following estimate holds

∥∥(Aε + I)−1 − (A0 + I)−1
∥∥
L2(Rd)→L2(Rd)

= O(ε), ε → 0,

for some effective operator A0 with constant coefficients. We find a more accurate approximation of
the resolvent (Aε + I)−1, taking the so-called correctors into account.

For simplicity, we consider the 4th order operator Aε (the most important case for applications).
Our main result is the following approximation

(Aε + I)−1 = (A0 + I)−1 + εK1(ε) + ε2K2(ε) +O
(
ε3
)
, ε → 0.
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The principal term of approximation for the resolvent of Aε was found in [1]. The correctors K1(ε)
and K2(ε) are of order O(1), ε → 0, and can be described in terms of the solution of the auxiliary
cell problems.
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It is well known that there is a hypergeometric equation that has a solution in the form of a linear
combination of complete elliptic integrals of the first kind (see. for example [1]). In particular, the
integral

U(α, β|ℓ) =
∫

ℓ

dt

s
,

where ℓ is arbitrary closed path on the elliptic curve

Γ0 : s
2 = t(t− α)(t− β),

satisfies hypergeometric equation

Uαα +

(
1

α
+

1

α − β

)
Uα +

1

4α(α− β)
U = 0.

Let there be a mapping σ of the some hyperelliptic curve Γ to elliptic curve Γ0. Then there exist
mappings of integrals and cycles:

σ∗ :
dt

s
→ dU , σ̂ : L → ℓ,

and then the following equation holds
∫

L

dU =

∫

L

σ∗dt

s
=

∫

σ̂L

dt

s
=

∫

ℓ

dt

s
.

Therefore the hyperelliptic integral U(α, β|L) satisfies the same hypergeometric equation. This
statement allows us to find the differential dU .

If the hyperelliptic curve Γ has a genus g = 2, there exists another mapping to the another
elliptic curve, and in this case the second hyperelliptic integral satisfies new Fuchsian equation. In
particular, the integral

U(α, β, γ|L) =
∫

L

dλ√
(λ2 + γ)(λ2 + γ − α)(λ2 + γ − β)

satisfies the following Heun equation

Uαα +

(
1

α
+

1

α− β
+

1

α − γ

)
Uα +

3α− β − γ

4α(α− β)(α − γ)
U = 0.

Finally, let us remark that there exist hyperelliptic integrals of second kind which also satisfy
some Fuchsian equations.
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On the diffraction of whispering gallery waves
by boundary inflection points
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The problem of interest is that of a whispering gallery high-frequency asymptotic mode prop-
agating along a concave part of a boundary and approaching a boundary inflection point. Like
Airy ODE and associated Airy function are fundamental for describing transition from oscillatory to
exponentially decaying asymptotic behaviors and so e.g. transition from light to shadow near caus-
tics at high frequencies, the boundary inflection problem leads to an arguably equally fundamental
canonical boundary-value problem for a special PDE, describing transition from a “modal” to a “scat-
tered” high-frequency asymptotic behaviour. The latter problem was first formulated and analysed
by M. M. Popov starting from 1970-s [1]. The associated solutions have asymptotic behaviors of a
modal type (hence with a discrete spectrum) at one end and of a scattering type (with a continuous
spectrum) at the other end. Of central interest is to find the map connecting the above two asymp-
totic regimes. The problem however lacks separation of variables, except in the asymptotical sense
at both of the above ends, and has over the years proved not to be explicitly solvable, see [2, 3] for
some latest efforts in this direction and further references therein.

Nevertheless, we argue that certain further progress can be made by the problem’s further asymp-
totic analysis as well as subsequent numerical analysis. In particular, following and developing some
old ideas of [4] together with those of M. M. Popov [1], a perturbation analysis of the problem at
the continuous spectrum end can be performed, ultimately describing the desired map connecting
the two asymptotic spectral representations. Further, the fact that the solutions remain (exponen-
tially) decaying sufficiently far away from the boundary should allow to deform the integrals over
the continuous spectrum into the complex plane. The values of the analytic continuation of the
limit spectral function at certain points appear to describe the intensities of creeping waves emerging
behind the inflection point. The ultimate evaluation of the actual “scattering matrix” may be quite
a delicate numerical problem, and we will also briefly discuss certain ways in that direction including
re-formulation of the problem as a one-dimensional boundary integral equation (cf. e.g. [5]) and its
further regularization.
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Nonintegrability of the energy density of “complex source” wavefields
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Over the last few decades, “complex source” wavefields [1, 2] have gained a great attention as exact
solutions of the wave equation having Gaussian localization properties. Both time-harmonic and non-
stationary cases were studied (see, e.g., a fresh review [3]). Such solutions satisfy the inhomogeneous
wave equation (or, in time-harmonic case, the Helmholtz equation) with a source function supported
by a certain antenna with a circular edge. Here, we address energy density of the “complex source”
wavefield in the vicinity of the edge of antenna and show that it is nonintegrable.
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The regularised weighted mean curvature flow equation
for a coupled physics inverse conductivity problem

Timonov A.
University of South Carolina, USA
e-mail: atimonov@uscupstate.edu

The subject of our consideration is the weighted Mean Curvature Flow (MCF) problem

ut = |∇u|∇ ·
(
a(x)

∇u
|∇u|

)
in QT = Ω× (0, T ],

u = f(x) on ∂Ω× (0, T ],

u = u0(x) in Ω× {0},

where a = σ|∇u| is a positive bounded away from zero function and Ω is a bounded domain whose
boundary ∂Ω has a positive mean curvature. This problem is introduced as an alternative to the
weighted least gradient problem currently used in Current Density Impedance Imaging (CDII). The
latter is one of the nowadays medical imaging modalities based on the coupled physics (hybrid) inverse
problems, in which the interactions between the different physical fields are exploited to enhance
both the contrast and spatial resolutions in the entire domain. A coupled physics inverse problem
consists of recovering the pair (u, σ) from the function f imposed on the boundary ∂Ω and the interior
measurements of a. However, due to the singularity and elliptic degeneracy of the differential operator
in the right-hand side of the MCF equation, this problem is ill-posed in the sense of Hadamard.
Following Evans and Uraltseva–Oliker, the problem is regularised, and a combination of the Rothe
and second-order accuracy finite difference methods is applied to reduce it to a family of systems of
linear equations corresponding to all temporal layers. The regularised successive approximations are
constructed to provide the regularised solutions to the weighted MCF problem. It is demonstrated
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in numerical experiments that for a sufficiently large time the regularized solutions are in proximity
of the equilibrium solution, i.e., the function of the Dirichlet weighted least gradient. However, the
numerical convergence is no more than linear. Therefore, further studies, analytical and numerical,
need to be done to establish the global existence, uniqueness and convergence result for the MCF
problem and to improve the rate of convergence. The work is supported by the National Science
Foundation grant DMS-181882.

On quantitative acoustic imaging via boundary control method
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An initial boundary value problem

ρ(x)∇ ·
(
ρ−1(x)∇p

)
− c−2(x)ptt = 0 in Rn

+ × (0, T ],

∇p · ν = f(x, t) on Γ ⊂ ∂Rn
+ × [0, T ],

p(x, 0) = pt(x, 0) = 0 in Rn
+,

where p is the acoustic pressure, ρ, c are the density and sound speed distributions that are supposed
to be positive and essentially bounded, and ρ is sufficiently smooth, ν is the outer normal vector,
and f is the source function, is introduced as a forward model of quantitative acoustic imaging. Well
describing the propagation and scattering of acoustic waves in fluid media, such as seawater, porous
sediments filled with oil, soft biological tissues, etc., this model may be exploited in underwater
acoustics, geophysical exploration of oil deposits offshore, and ultrasound tomography of female
breast, human skin, and eyes. Considering the forward model as a dynamical system, and the
function f — as a Neumann boundary control, a dynamical inverse problem can be formulated as
follows. Let p satisfies the problem indicated above. Given the scattered acoustic wave field on
Γ for every f(x, t), x ∈ Γ, t ∈ (0, 2T ], determine the pair (ρ, c) or ρ if c is known, or c if ρ is
known, on a certain sub-domain of a region spanned by rays emitted at points belonging to Γ in
the directions orthogonal to Γ. In terms of the dynamical theory, the given data is equivalent to
knowledge of the partial response map R2T : f → pΓ, where pΓ is the trace of the solution to the
forward model problem on the lateral hypersurface Γ × [0, 2T ]. To solve numerically this inverse
problem, a certain modification of the Boundary Control Method (BCM) is applied. In particular,
the amplitude formula, which is the core of BCM, is slightly changed, and the regularisation of the
ill-conditioned Gram system is performed on a spectrum of the Gram matrix. Some preliminary
results of numerical experiments with a test problem, in which both the density ρ and sound speed
c are supposed to be constant, are shown and discussed in order to demonstrate the computational
feasibility of the approach proposed.

Regularisation of a weighted least gradient Robin problem
for conductivity imaging

Timonov A.1, Tamasan A.2
1University of South Carolina, USA
2University of Central Florida, USA
e-mail: atimonov@uscupstate.edu, tamasan@math.ucf.edu

We consider a coupled physics inverse conductivity problem of recovering an isotropic electrical
conductivity σ in a bounded domain Ω from the magnitude of one current density field in Ω. Under
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certain conditions, this problem is reduced to the weighted 1-Laplacian in a conformal Euclidean
metric

∇ ·
(
a(x)

∇u
|∇u|

)
= 0 in Ω

subject to the Robin boundary condition

(σ · ν) + ϕu = f on ∂Ω.

Here, a = σ|∇u| is the magnitude of the current density, which is supposed to be positive, and ν
is the outer normal vector. The inverse problem consists of determining the pair (σ, u) in Ω given
(a, ϕ, f). Since the weighted 1-Laplacian is singular and elliptic degenerate, this inverse problem is
ill-posed in the sense of Hadamard. The variational approach is applied to regularise the problem.
Specifically, a regularised energy functional is introduced as

Gα,ε(v; a) =

∫

Ω

a|∇u|dx+ 1

2

∫

∂Ω

ϕε(v − hε)
2ds+ α

∫

Ω

|∇(v − hε)|dx,

where ϕε, fε are smooth approximations of ϕ, f , hε = fε/ϕε is a harmonic extension from ∂Ω into Ω,
and α > 0, ε > 0. The minimizing sequences for this functional are constructed, the compactness of
which is established. An iterative algorithm is proposed to recover a minimum residual conductivity
σα,ε. The computational effectiveness of this algorithm is demonstrated in numerical experiments.
The work of the first author is supported in part by the National Science Foundation grant DMS-
181882.

Preliminary 2D modelling of the screw pinch plasma
in PROTO-SPHERA
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This work deals with the properties of plasmas produced in the PROTO-SPHERA experiment [1].
The plasma appears as a linear discharge with variable diameter for a length of about 1 m and takes
the shape of a mushroom in front of two annular electrodes (Fig. 1), in agreement with magnetic field
lines shaping by external coils. Previous analysis in 1D [2], revealed that neutral gas dynamics is
relevant in a narrow edge layer, whereas most of the plasma is fully ionized. On this basis, a simplified
2D description is explored neglecting neutrals dynamics. The main 2D feature is a factor of four
variation of plasma radius along the axis. The equatorial section S1 has a radius of about R1 = 0.25 m
while the narrow sections S2 at the end of the linear region have both R2 = 0.065 m. Since total
axial current (10 kA typical) is constant, the pinch force at S2 is much larger than the one at S1.
The question is how this large imbalance reflects on pressure distribution and on plasma flows. The
point is that different cross-sections are connected by magnetic field lines, and any parallel pressure
gradient would have to be balanced either by electrostatic forces (not considered in this work), or by
convective flows.

Larger pinch force at smaller cross-sections will likely produce inwards flow, and vice versa. The
resulting convective cell is outlined in Fig. 1. The assumed radial flows in turn tend to equalize net
radial forces, in fact radial velocity Vr across axial field Bz produces azimuthal current jφ = −BzVr/η,
where η is resistivity; the resulting contribution to j×B force is inwards if velocity is outwards, and
vice versa.
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Plasma configurations and flow patterns will be evaluated assuming radial force equalization, in
order to provide suitable trial solutions for full 2-D calculations.

Fig. 1: Image of PROTO-SPHERA plasma from three cam-
eras, one for the anodic region (top), one for the nearly cylin-
drical region (middle) and one for the cathode (bottom). View
at transitions from linear to mushroom-shaped regions is im-
peded by coils. The mushroom-shaped plasma is clearly vis-
ible in the anodic region at the top. The cathode region is
obscured by hot electron emitters (visible as brilliant spots).
Arrows outline the flow pattern that would compensate the
larger confining pinch force at smaller plasma cross-sections.
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Consideration of reflected waves in the parabolic equation method
of arbitrarily high accuracy
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The parabolic equations of arbitrarily great accuracy were offered in [1]. Specifically, we under-
stand this as a system

2i
1

ρ
n0Aj,X +

(
1

ρ
Aj,Z

)

Z

+

[
i

(
1

ρ
n0

)

X

+
1

ρ
ν

]
Aj +

(
1

ρ
Aj−1,X

)

X

= 0, (1)

which approximates the acoustic Helmholtz equation
(
1

ρ
ux

)

x

+

(
1

ρ
uz

)

z

+
1

ρ
κ2u = 0, (2)

where u = A0 exp(iθ) + ǫA1 exp(iθ) + . . ., X = ǫx, Z = ǫz, ǫ is a small parameter, ρ = ρ(X,Z),
κ2 = n2 + ǫν(X,Z) + . . ., θ is a phase variable. Note that θ = θ(X). Hereafter A−1 is assumed to be
zero. The derivation was done by the generalized multiple scale method.

Now let Γ be the vertical boundary, on which the index of refraction n and the density ρ are dis-
continuous. Then we can use the ray expansions of our field on Γ to obtain the following formulas [3]

Aref
j = ΨAj +

1

1 + Y
δ(j − 1), Arfd

j = DAj +
1

1 + Y
δ(j − 1),
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where Aref
j and Arfd

j are respectively the reflected and refracted waves and

Ψ =
1− Y

1 + Y
, D =

1

1 + Y
, Y =

ρ2n2

ρ1n1
, δj−1 =

1

n1

(
ρ1
ρ2

∂Arfd

∂X
− ∂A

∂X
− ∂Aref

∂X

)
.

We describe now how to solve the problem. Let A be the initial condition at X = 0. We first
solve the problem for the j = 0 to Γ and then we calculate the Aref

0 and Arfd
0 . We continue calculate

from Γ to some end point X = Xend using the Arfd as initial conditions. We then calculate from the
Xend to 0 using 0 as the initial conditions and the Aref as the Arfd in the first case. Received fields are
added together. Subsequent computations are different from the first using zero initial conditions at
X = 0.
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Mathematical modeling of pulse laser therapy using gold nanoparticles
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Mathematical modeling of passing the pulse radiation through biological tissue is important for
estimating the effectiveness of laser thermotherapy of tumors. It is required to ensure a temperature
field that is sufficient to damage the tumor and is safe for the surrounding tissue. Direct effect of
laser radiation on tumors can be ensured, for example, by placing gold nanoparticles in the tumor [1].

The radiative-conductive heat transfer model describing the passage of radiation through an
isotropic medium filling the domain G has the following form:

1

c

∂I(r, ω, t)

∂t
+ ω · ∇rI(r, ω, t) + µI(r, ω, t) =

µs

4π

∫

Ω

I(r, ω′, t)dω′, (1)

ρcp
∂T (r, t)

∂t
− k∆T (r, t) =

µa

4π

∫

Ω

I(r, ω, t)dω. (2)

Here, I(r, ω, t) is the intensity of radiation at the point r ∈ G in the direction ω ∈ Ω, where Ω is the
unit sphere, and in time moment t ∈ (0, τ ), T (r, t) is the temperature, c is the speed of light in the
medium, µ is the attenuation factor, µs is the scattering coefficient, µa is the absorption coefficient,
k is the thermal conductivity, ρ is the density, cp is the specific heat capacity.

At the boundary Γ of the domain G, we set the following boundary conditions:

I|Γ = Ib(r, ω, t), ω · n < 0, k∂nT + γ(Tb − T )|Γ = 0, (3)

where n is the outward normal, ∂n is the outward normal derivative, γ, Ib, and Tb are given functions.
Particularly, the function Ib on the part of boundary describes the incoming pulse laser radiation.

The initial conditions are given by

I(r, ω, 0) = I0, T (r, 0) = T0. (4)

The mathematical model requires the calculation of radiation characteristics for gold nanoparticles
placed in the skin tissue. The absorption and scattering coefficients for a gold nanoparticle has been
calculated on the base approximation formulas from [2].
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In the current work, an iterative algorithm to find a solution of the initial-boundary value problem
(1)–(4) is constructed and implemented. The convergence of the iterative algorithm, the stabilization
of the temperature field, and the influence of gold nanoparticles on the temperature distribution are
studied. The effectiveness of the use of gold nanoparticles in laser therapy of tumors is demonstrated.
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Structure of invariant subspaces of the rotation group image
under the Jordan mapping

Tushavin G.V., Trifanov A.I.
ITMO University, 197101 Kronverksky 49 Saint Petersburg, Russia
e-mail: gleb@tushavin.ru

We studied structure of invariant subspaces of effective hamiltonian of phase light modulation pro-
cess [1]. Hamiltonian generators satisfy the commutational relationships of SU(2) rotation group [2],
thus their bose-operator representation are derived using Jordan mapping technique. However, due
to dimensionality of Fock space and additional symmetries of bose-operators, tasks of obtaining
eigenbasis, as well as complete classification of invariant subspaces, become nontrivial. In this work,
we obtain the relations between the bases of invariant subspaces and derive a classification of the
invariant spaces.
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Wide-angle mode parabolic equation with transparent boundary
conditions and its applications in shallow water acoustics
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Modeling of sound propagation in the shallow-water environments with the three-dimensional
inhomogeneous bottom is one of the main research branches of underwater acoustics. Sound field
P (x, y, z) produced by a time-harmonic point source in a 3D waveguide is described by the three-
dimensional Helmholtz equation. Its solution can be expressed in the form of modal decomposition

P (x, y, z) ≈
N∑

j=1

Aj (x, y)ϕj (z, x, y) , (1)

where ϕj (z, x, y) are the mode functions and Aj (x, y) are the modal amplitudes (where z is the
depth, and x, y are horizontal coordinates). Mode functions ϕj (z, x, y) and the respective horizontal
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wavenumbers kj can be obtained from acoustical spectral problem [1], and the modal amplitudes
Aj(x, y) satisfy the so-called horizontal refraction equation

∂2Aj

∂x2
+
∂2Aj

∂y2
+ k2jAj = −ϕj(zs)δ(x)δ(y). (2)

One-way solution of the latter equation can be approximated the solution of wide-angle mode
parabolic equation [1]

∂Aj

∂x
= ik0j

(
a+ bL

1 + cL
− 1

)
Aj , (3)

where k0j is the reference wavenumber and k20jL = ∂zz + k2j − k20 (a, b, c are certain constants chosen
as explained in [1]). Such equation can be solved using the standard Crank–Nicolson method and
discrete transparent boundary conditions [2].

In this study we consider various examples of sound propagation problems for shallow-water wave-
guides with bottom inhomogeneities, including sloping bottom and an underwater canyon. Obtained
results are compared with analytical solutions of these problems.
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Propagation of waves in three-dimensional periodic media

B. Vainberg
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Propagation of waves governed by the Helmholtz equation in a medium containing periodic lattice
of spherical or cylindrical inclusions will be considered. Assuming that the transmission boundary
conditions on inclusions interface is imposed and the radius of inclusion is small, we suggest a
novel method for determining the dispersion relations of the Floquet–Bloch waves. The complete
asymptotic expansion of the dispersion relations will be obtained with the rigorous estimate of the
remainder. The method is based on a reduction of the original singular perturbed problem to a
regular one. (These are joint results with Yu. Godin.)

Centralized networks

Sergey Vakulenko
Institute for Problems in Mechanical Engineering, Saint Petersburg
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Ivan Morozov
Saint Petersburg State University of Industrial Technology and Design
e-mail: mmmmoroz@yandex.ru

We consider continuous time Hopfield-like recurrent networks as dynamical models for gene regu-
lation and neural networks. We are interested in networks that contain n high-degree nodes preferably
connected to a large number ofNs weakly connected satellites, a property that we call n/Ns-centrality.
If the hub dynamics is slow, we obtain that the large time network dynamics is completely defined
by the hub dynamics. Moreover, such networks are maximally flexible and switchable, in the sense
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that they can switch from a globally attractive rest state to any structurally stable dynamics when
the response time of a special controller hub is changed. In particular, we show that a decrease of
the controller hub response time can lead to a sharp variation in the network attractor structure: we
can obtain a set of new local attractors, whose number can increase exponentially with N . These
new attractors can be periodic or even chaotic. We provide an algorithm, which allows us to design
networks with the desired switching properties, or to learn them from time series, by adjusting the in-
teractions between hubs and satellites. Such switchable networks could be used as models for context
dependent adaptation in functional genetics or as models for cognitive functions in neuroscience [2].

We describe applications of models of such kinds for genetic networks, and also to simulate human
body motions [1].
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Reconstruction for the coefficients of a quasilinear elliptic partial
differential equation

Manmohan Vashisth
Beijing Computational Science Research Center, Beijing 100193, China
e-mail: mvashisth@csrc.ac.cn

In this talk, we consider an inverse coefficients problem for a quasilinear elliptic equation of
divergence form ∇ · ~C(x,∇u(x)) = 0, in a bounded smooth domain Ω. We assume that

−→
C (x, ~p) =

γ(x)~p+~b(x)|~p|2+O(|~p|3), by expanding
−→
C (x, ~p) around ~p = 0. We give a reconstruction method for

γ and ~b from the Dirichlet to Neumann map defined on ∂Ω.
This is a joint work with Cătălin I. Cârstea (distinguished associate researcher), School of Math-

ematics, Sichuan University, China and Gen Nakamura (emeritus professor), Department of Mathe-
matics, Hokkaido University, Japan.

Fluctuations of the spectrum of symmetrically deformed unitary
invariant random matrix ensemble

Vasilchuk V.
St. Petersburg State University of Architecture and Civil Engineering, 4, 2nd Krasnoarmeiskaya Str.,
St. Petersburg, 190005, Russia;
Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya Str., St. Petersburg,
195251, Russia
e-mail: vvyu@yahoo.com

We consider the ensemble of n× n random matrices

Hn = U ∗
nAnUn + C∗

nV
∗
nBnVnCn,

where An, Bn and CnC
∗
n are hermitian (Cn is invertible) random (or non-random), having the limiting

Normalized Counting Measure (NCM) of eigenvalues, Un and Vn are unitary, uniformly distributed
over U(n), and An, Bn, Cn, Un, and Vn are mutually independent. By using the technic described in
[1], we establish the convergence of NCM of ensemble Hn to the non-random limit then n→ ∞ and
find the limiting NCM via its Stieltjes transform. We also prove the Central Limit Theorem for the
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fluctuations of linear eigenvalue statistics of ensemble and calculate in the explicit form the variance
of limiting Gaussian distribution of fluctuations in terms of the Stieltjes transforms of the limiting
NCM of ensemble using the functional equations for it derived in [2] and [3].
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All-fiber polarization-dependent optical-vortex-controlling
via acousto-optic interaction

D.V. Vikulin, M.A. Yavorsky
V. I. Vernadsky Crimean Federal University, Vernadsky Prospekt, 4, Simferopol, 295007, Russia
e-mail: vikulindmitriy@mail.ru, maxyavorsky@yahoo.com

It is well-known that the acousto-optic interaction (AOI) can be efficiently used for versatile
controlling of a light beam. Indeed, frequency shifters, wavelength tunable filters, deflectors and in-
tensity modulators have been implemented both in the bulk [1] and fiber configurations [2]. Recently
the possibility of the all-fiber stable wave-length tunable generation of OAM-bearing optical vortices
(OVs) via the AOI induced by the flexural acoustic wave (FAW) of the lowest-order has been theo-
retically predicted [3] and demonstrated [4]. Here we report a new dynamic polarization-dependent
mode conversion in a circular optical fiber endowed with the AOI, in which the sign of the topological
charge of the generated OV are governed by the linear polarization direction of the incident beam.
The permittivity of a fiber under consideration is given by [5]:

ε̂(r, ϕ, z, t) = ε0(r) + 2∆εcou0fr cosϕ cos(Kz − Ωt) + ε2copKu0




0 0 1
0 0 0
1 0 0


 sin(Kz − Ωt). (1)

Here the unperturbed fiber permittivity ε0(r) = εco[1 − 2∆f(r)], where ∆ = (εco − εcl)/2εco is
the normalized index difference, εco and εcl are the core and cladding values of the permittivity,
respectively, and f(r) is the fiber’s profile function. In the second term fr = df/dr and u0, K,
and Ω are the amplitude, wavevector and frequency of the FAW, respectively. In the last term for
silica at the wavelength λ = 0.63 µm the constant of photoelasticity is p = −0.075. The cylindrical
coordinates (r, ϕ, z) are implied.

Let the OV linearly polarized along x or y-axis |LVσ
ℓ 〉 at frequency ω be incident on such a fiber.

Under certain conditions the incident beam will be completely transformed in the following way:

|LVx
ℓ 〉 e−iωt −→ |LVx

−ℓ〉 e−iωt, |LVy
ℓ 〉 e−iωt −→ |LPy

ℓ 〉 e−iωt.

This transformation describes a novel type of the optical polarization-dependent mode conversion in
fiber acousto-optics. The key feature of such a conversion is that the topological charge ℓ or −ℓ (and
OAM per photon ~ℓ or −~ℓ) of the generated field is determined by the direction of linear polarization
σ = x, y of the incident vortex beam. The described effect can be useful in developing new acousto-
optic devices such, for example, as polarization-controlled optical vortex intensity modulators. Yet,
this type of all-fiber wavelength-tunable optical vortex generation and controlling should be especially
useful in micromechanics and simulation of quantum computing.
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Stable components of wave fields in underwater acoustic waveguides

Virovlyansky A.L., Kazarova A.Yu., Lyubavin L.Ya.
Institute of Applied Physics RAS, 46 Ulyanov St., Nizhny Novgorod, Russia
e-mail: viro@appl.sci-nnov.ru

The main factor limiting the possibility of theoretical prediction of sound fields in the ocean is
the inevitable mismatch between the real propagation medium and its mathematical model used to
solve the wave equation.

The presentation is aimed at analyzing such field components in a hydroacoustic waveguide
that are weakly sensitive to variations in the waveguide parameters and therefore can be relatively
accurately predicted even under conditions of uncertain environment.

In Ref. [1] it is shown that the field component low sensitive to large-scale sound speed fluctuations
is formed by a narrow beam of rays. If the beam width is smaller than the fluctuation spatial scales,
then the rays actually pass through the same inhomogeneities, and therefore their phases in the
presence of perturbation acquire close increments. At a given observation distance, the components
of the monochromatic field, formed by such a beam of rays in a perturbed and unperturbed waveguide,
differ only by a constant phase factor. For pulsed signals, the perturbation only leads to an additional
delay of the stable component as a whole. These simple physical considerations make it possible to
expect that the stable component is formed by waves arriving in a relatively small depth interval at
grazing angles from a small angular interval.

Thus, at a given observation distance, the stable field component is associated with a small
region of the phase plane ‘depth – arrival angle’. Two methods are proposed for the isolation of this
component from the total wave field. One of them is based on using the coherent state expansion
developed in quantum mechanics. Another method is based on the modal representation of the
wave field. From the viewpoint of modal description, the stable component is formed by a group of
constructively interfering modes.

Stable components can be used to modify the traditional method of match field processing used
in underwater acoustics to solve inverse problems related to estimating the coordinates of a sound
source and reconstructing unknown environmental parameters. This method is based on the com-
parison of the complex amplitudes of the measured and calculated wave fields at the aperture of the
receiving antenna. An alternative approach discussed in the presentation is based on comparing the
intensity distributions of these fields in the ‘depth – arrival angle’ plane [2]. The main advantage of
this approach is its low sensitivity to the inevitable inaccuracy of an environmental model used in
calculation.
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Normal mode coupling in a waveguide with a range-dependent sound
speed profile in the bottom

Volkov M.V.1,2, Lunkov A.A.1,2, Petnikov V.G.1, Grigor’ev V.A.3
1Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov st., Moscow
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Sound propagation in shallow water over the bottom with varying impedance is considered in
the normal mode approach. Water depth is assumed to be constant. Bottom roughness is not taken
into account. Range-dependent impedance is only associated with the spatial variability of sound
speed in the bottom. The results of 3D seismic survey conducted in the Kara Sea are taken as an
input data for sound propagation modeling. Numerical simulations show that the typical horizontal
gradients of the bottom sound speed provide mode coupling. It has negligible effect on depth averaged
acoustic intensity. However, the sound field interference pattern is rather sensitive to this type of
perturbation. The work was supported by RFBR, 16-32-60194 and 19-02-00127.

Remote sensing problem in the existence of acoustic noise in the ocean

Vornovskikh P.A.1, Sushchenko A.A.1,2

1Far Eastern Federal University, Vladivostok, Russia
2Institute for Applied Mathematics, FEB RAS, Vladivostok, Russia
e-mail: vornovskikh.polina@gmail.com, sushchenko.aa@dvfu.ru

In the single scattering approximation and point source the solution of the inverse problem (remote
sensing problem) is obtained in the paper [1]. In this paper authors consider the remote sensing
problem taking into account acoustical noise in the ocean.

Echo signal propagates in the medium G ≡ R
2. Let J0 describe a point isotropic sound source

located at the origin O and emitted a pulse in the initial time. J1 is the round distributed source
located at the point r0:

J0(r,k, t) = P0δ(r)δ(t), J1(r,k, t) =

{
P1, |r− r0| < R;

0, otherwise.
(1)

Here, δ denotes the Dirac delta-function and P0, P1 are the powers of the sources J0, J1, respectively.
Authors assume that there are no sound sources in the medium up to the moment t = 0. The point
receiver located at the point O. In the case of [1], the source was point and isotropic (J = J0). Thus,
the solution of the initial-boundary value problem:

I(O,k, t) = I1(O,k, t) =
J1
|Ω| exp(−µct)σ

(ct
2
k
)1
t
=: I1(O,k, t). (2)

Redefined r = ctk/2 and received signal I(r, t) := I(O,k, t) in the equation (2) authors obtain
the relation for determining the coefficient of volume scattering [1]:

σ(r) =
|Ω|t exp(µct)

P0
I(r, t), r ∈ R

2. (3)
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Equation (3) is a solution of the inverse problem for determining the volume scattering coefficient
σ in the single scattering approximation, a point source, emitted a pulse at the initial time, and in
the case of a receiver concentrated at the origin.

The signal measured by the receiver in the single scattering approximation with a combined
source J = J0 + J1 takes the following form:

I(O,k, t) = I0(O,k, t) + I1(O,k, t) =

∫ ct

0

exp(µt′)J1

(
t′k,k, t− t′

c

)
dt′ +

P0

|Ω| exp(−µct)σ
(ct
2
k
)1
t

+
1

|Ω|

∫ ct

0

exp(−µt′)σ(−t′k)
∫ R

0

∫ 2π

0

J1

(
x− t′k,− x

|x| , t−
t′ + |x|
c

)
exp(−µ|x|)

|x| ρ dρ dφ dt′, (4)

where x = r0 + t′k+ ρ(sin(φ), cos(φ)).
The goal of the computational experiment is analyzing of the influence of the additional source

J1 in the solution of the remote sensing problem which is obtained in the case of a point isotropic
source. From the practical point of view, authors consider the problem of remote sensing in the
ocean. By scattering coefficient σ, they simulate biological objects (plankton clusters, schools of
fish). J1 describe an active source in the ocean (acoustic buoy, autonomous unmanned vehicle or
submarine).

Fig. 1: Distribution of volume scattering coefficient. Left: exact solution and position of
sources (yellow color). Right: Reconstruction of σ function.
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Modified Z-scan method: numerical simulation and analytical solution

Vorontsova I.O., Melnik M.V., Tcypkin A.N., Kozlov S.A.
ITMO University, International Laboratory of Femtosecond Optics and Femtotechnologies, Saint
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Nowadays, there are sources of the broadband pulsed THz radiation of such a high intensity,
that it gets possible to observe nonlinear effects in the spectral range mentioned. The most utilized
technique to evaluate the nonlinear properties of the media is the Z-scan method. Recently, our
research team has proposed a more sensitive modification of the method [1]. The comparison of the
results obtained through the standard Z-scan method and its modification is shown in Fig. 1(a) [1].

Usually, THz pulses contain 1–1.5 electromagnetic field oscillations and, therefore, have wide
spectrum. The standard Z-scan method is based on the monochromatic approach, which means it
has certain limitations when employed for the THz pulses. Therefore, a new mathematical model for
the Z-scan method for few-cycle pulses is needed. This work provides the analytical solution of the
modified Korteweg – de Vries equation [2] for the case of the THz pulse with folowing parameters:
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central wavelength of the THz radiation λ0 = 0.3 mm, period of oscillations T0 = 0.3− 10 ps, peak
intensity I0 = 107 W/cm2, the nonlinear refractive index coefficient n2 = 4 · 10−11 cm2/W [3]. ZnSe
crystal with thickness L = 0.3 mm was used as the sample.

Fig. 1: (a) The ratio of the peak-to-valey values for the modified ∆TM and standard ∆TS
Z-scan methods for the sample thickness L = 0.3 mm depending on the pulse duration τ .
(b) Comparison of the analytical solutions for the input and output pulses with and without
nonlinear effects consideration

Fig. 1(b) represents an example of the analytical solution for the parameters above considering the
dispersion and diffraction effects only and together with the nonlinearity. For the chosen parameters
consideration of the nonlinearity is crucial for the correct description of the pulse changes.

In this work the comparison of the numerical simulation results and the analytical solution for
the cases of both the standard and modified Z-scan methods is demonstrated.

The study is funded by RFBR project № 19-02-00154.
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Emission illusion at the angle
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Mathematical methods of transformation optics, proposed by Ulf Leonhardt [1] and John Pendry
[2, 3], have made it possible to calculate such exotic devices as invisibility cloaks, “black holes”,
absorbers, “wormholes”, etc. Transformation optics based on differential geometry and tensor anal-
ysis, although its concept was determined by Fermat’s principle. The light propagation direction
depends on the material refractive index. This indicates that any optical medium establishes geom-
etry. According to this, at present, transformation optics is a unique scientific tool that allows for
the combining of the mathematical mapping of desired distortions of space with the actual special
distribution of refractive index in physical space to control light propagation.
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This work proposes to use a fundamentally different approach for mirage creation based on angular
dependence of constitutive parameters [4]. Such an approach allows creation of an emission illusion in
any angular directions. We have theoretically described and numerically simulated the radar illusion
device using artificial materials with the cylindrical polar angle dependent tensors of permittivity
and permeability. The illusion device was simulated by the Finite Element Method in the frequency
domain.To create a mirage of source emission it is necessary to consider two materials (see Fig. 1):
from 0 to ϕ2 is a right-handed medium and from ϕ2 to Φ is a left-handed medium. The radiation
source should be placed into the permissible domain (ϕ1;ϕ2) in the first material, otherwise the
expected effect is not observed. Influence of different factors (metamaterials anisotropy, source
location) on the appearance of a source illusion were considered.

Fig. 1: The scheme of the illusion device. Electric field distribution ( ¯|E|) of the point source
placed at the angle ϕs. Images of the source are located at the angles ϕim1 and ϕim2.
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On discrete WKB methods for resonance electromagnetic traps

Vybornyi E.V.
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The WKB asymptotics are well known and widely used to obtain semiclassical estimates of
eigenstates and the spectrum for the one-dimensional Schrödinger operator, that is a second-order
differential operator. On the other hand, many one-dimensional quantum systems can be naturally
represented in terms of difference equations. Namely, if one considers a quantum system in the
spectral representation of a coordinate operator, where the coordinate is an action operator with a
discrete spectrum, then the corresponding spectral equation takes the form of a difference equation.
The theory of semiclassical asymptotics for a difference equation, or discrete WKB methods, can be
formally obtained by considering a difference equation as a pseudodifferential equation. The rigorous
WKB asymptotics for difference equations including tunneling effects are also presented [1–3] but
are significantly less known than their continuous counterparts.

We consider the semiclassical asymptotics for a second-order difference equation that corresponds
to resonance electromagnetic traps [4, 5]. The one-dimensional Hamiltonian is obtained by quantum
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averaging of small anharmonic terms in the hyperbolic resonance trap. We express the Hamiltonian
in terms of integrals (symmetries) of the ideal resonance trap. These integrals form a non-Lie
algebra with a creation-annihilation-neutral operator structure. Here the neutral operator is an
action operator with a discrete spectrum. The one-dimensional effective Hamiltonian is a polynomial
on these basis operators. Therefore, it can be presented as a difference operator on the spectral
representation of neutral operator.

We discuss several basic theorems of discrete WKB methods and their application to the tunneling
asymptotics for resonance electromagnetic traps Hamiltonians. This is a joint work with M.V. Kara-
sev and E.M. Novikova. The work was supported by the Program for Fundamental Research of
Higher School of Economics.
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Transition of edge waves to wedge waves in a semi-infinite elastic plate
with facets

Wilde M.V.
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Edge waves (EW) and wedge waves (WW) represent two examples of one-dimensionally guided
waves in elastic waveguides. Usually, the term EW means the waves propagating along the end face of
a structure shaped like a semi-infinite plate, whereas WW propagate along the tip of a wedge formed
by two non-parallel semi-infinite planes. Until quite recently, these types of waves were studied
separately (see [1, 2] for EW and [3] for WW). But there is a relation between them, that can be
investigated on the basis of 3D theory of elastodynamics. So, it is shown [2, 4], that the fundamental
EW become pair of WW as the frequency tends to infinity. This result is obtained for the waves
propagating in the direction x1 in a semi-infinite plate of rectangular cross-section (−∞ < x1 < ∞,
|x2| ≤ h, x3 ≤ 0) (see Fig. 1,a).

α
β

Fig. 1: Cross-section of the plate: (a) – rectangular plate, (b) – plate with two facets.

In this work, more interesting case of a plate with the cross-section shown in Fig. 1,b is considered.
In this case, there are two pair of non-rectangular wedges with different aperture angles α and β,
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which can guide quasi-WW at high frequencies. At the low frequencies, the influence of the facets
is small, consequently, the properties of EW are nearly the same as in the rectangular plate. The
goal of this work is to investigate the transition of EW to quasi-WW in the plate with facets. The
method of solution of corresponding problem of elastodynamics is developed, which is based on the
modal expansion technique. The numerical results for EW dispersion curves are presented for various
values of α, which show how they tend to WW as the frequency grows, or vanish when WW does
not exist at the given aperture angle.
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Steering light by tailored excitation of nano-antennas and applications to
nano-metrology

Xi Z., Urbach H.P.
Optics Research Group, Department of Imaging Physics, Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 1, Delft, The Netherlands
e-mail: z.xi@tudelft.nl

The field of nano optics involves the study of light and matter interactions at nano-scale. One
of the key elements is nanoantenna: nanoscaled particle that interacts resonantly with free space
light [1, 2]. Using the so-called antenna effect, free space light can be focused down to extremely
small point, and then reemitted in a highly directional way through the interference of different
antenna modes. The reshaping of the light field by nanoantennas has propelled many intriguing
applications ranging from holography to imaging devices.

Attractive ideas have been developed to use different spatial modes of light for the excitation
of different antenna modes [3–8]. For example, it has been shown cylindrical vector beams such
as radially polarized beam and azimuthally polarized beam can excite the electric and magnetic
resonances of the nano-antenna respectively [5]. However, the true power of this selective excitation
lies in designing the excitation field on purpose for better antenna directivity. This would require
optimization of the excitation field in terms of polarization, amplitude and phase.

If the nanoantenna is placed in a strongly inhomogeneous field, its far-field scattering directivity
can be largely changed depending on its relative position [6–9]. If the incoming field contains rapidly
changing features, the displacement sensitivity of the nanonantenna within the field can be extremely
large. In this talk, we will talk about our recent works on this subject. In particular, we will show that
extremely high far-field scattering sensitivity for a displacement much smaller than the wavelength
can be achieved using the optimized illumination and nano-antenna structures. This method could
bring about important understandings of super-resolution technique involving singular optics as well
as interesting applications in optical subwavelength metrology.
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Tunable spin-orbit optical coupling to retrieve the shape of deep
subwavelength objects from the scattered far field intensity

Xi Z., Urbach H.P.
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e-mail: h.p.urbach@tudelft.nl

The far field scattering behaviour of deep subwavelength particles can strongly depend on the
properties of the particles and the illumination. An example is the configuration of two parallel
gold nanoparticles with a gap of order 15 nm between them, which are illuminated by a polarised
azimuthally polarised focused spot. When a wavelength is used for which the particles have a localised
plasmon resonance, the scattered far field is very sensitive to the position of the particles. In fact, a
scattering pattern that is symmetric as function of the azimuthal scattering angle is obtained when
the centre (dark) spot is exactly inbetween the two particle, but for a very small displacement the
scattering becomes strongly uni-directional [1].

Here we study a scheme to retrieve size parameters of a nano-particle on a glass substrate at a
scale much smaller than the wavelength. Apart from being very sensitive to the shape parameters,
the scattered far field also strongly depends on the position of the particle with respect to the
illumination. We illuminate a silicon nano-particle by two interfering p-polarised plane waves at
the Brewster angle of incidence, to create an illumination with locally varying elliptically polarised
state. The scattered far field is detected in the glass medium. It is underlined that the scheme
works not only for particles made of silicon but also for dielectric and semiconductor particles. Two
polar scattering angle regions can be distinguished: the undercritical angle region (UAR) for which
radiation occurs in a cone with axis equal to the normal to the glass surface, and its complement: the
supercritical angle region (SAR) where the radiation is into large polar angles beyond the angle of
total internal reflection in the glass. The intensity of the far field in the SAR depends exponentially
on the height of the particle. Therefore, by measuring the ratio of the intensity scattered in the SAR
over that in the UAR, the height of the particle can be determined.

The scattering by a nanowire with elliptical cross-section can be well described by a line current
at the centre of the nanowire with polarisation parallel to that of the local incident electric field.
When the line current has a particular elliptic polarisation, the field scattered in SAR is strongly
asymmetric: the scattering is maximum in the direction of negative azimuthal angles of the SAR
whereas it vanishes in the direction of positive azimuthal angles, or conversely (see Fig. 1c). Since
the particle is much smaller than the wavelength used, the polarisability of the particle can be
expressed in its shape parameters using a quasi-static model. This polarisability depends strongly
on the shape of the cross-section of the nanowire and on the polarisation of the incident light. By
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scanning the particle with the illuminating standing wave with spatially varying polarisation states,
the polarisability can be determined where the far field scattering asymmetry is maximum. From
this the shape parameters can be retrieved with deep sub-nanometer precision.

The technique can be extended to retrieve the parameters of nanoparticles of ellipsoidal shape as
shown in Fig. 1d. Sizes of order of 10 nm are retrieved from far field scattering measurements using
two orthogonal illuminations by p-polarised standing waves (Fig. 1b and 1c). As in the case of the
nanorod, the far field scattering data also give highly precise information about the position of the
particle.

Fig. 1: (a) Nanorod illuminated by two p-polarised plane waves at the Brewster angle.
(b) Power ratio of radiated intensity in the positive and negative azimuthal angle parts of
the SAR, as function of the position of the illumination and for different aspect ratios of the
elliptic cross-sections. Far field scattering pattern when the excited electric dipole is linear
polarised (c), and when the excitation is such that maximum asymmetry in the SAR scattering
occurs (d). The red curve is rigorously computed, the blue curve is obtained with the single
dipole model. (e) Ellipsoidal particle illuminated by p-polarised plane waves. The inset is the
power ratio similar to (b), but now for illumination along both the x-and y-directions. (f) and
(g): Comparison between actual and retrieved parameters values.
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Nonstationary inhomogeneous waves near the boundary
of an anisotropic elastic body
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We study the kinematics and dynamics of inhomogeneous elastic waves with a complex phase that
arise at a discontinuity in an elastic medium, such as an interface between two media or a boundary
surface of an elastic body. These waves form an important part of a solution to the boundary problem
of the reflection / refraction of elastic waves. Here, the boundary is assumed to be smooth, and elastic
media, inhomogeneous. The displacement vectors for both inhomogeneous and homogeneous (with
real phases) waves arising upon reflection / refraction of an incident wave, are sought in the form of
asymptotic ST (Space-Time) series [3]. The incident elastic wave is given by its ST ray expansion as
a homogeneous wave with real phase pϕ0, where p≫ 1 is a large parameter of the problem.
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The aforementioned waves belong to a class of non-stationary high-frequency oscillations modu-
lated in both amplitude and frequency. We posit that an ST-modulated wave, at any pointM0(

−→r0 , t0)
in 4D space, can be represented as a locally plane wave with instantaneous frequency ω = −∂(Reϕ)

∂t

and local wavevector
−→
k = ∇(Reϕ), where ϕ is the phase of the ST wave. As in the case of monochro-

matic plane waves, at a point M on the boundary, the phase velocities V of locally plane waves may
be expressed as a function of the directional unit local wave vector, where velocities V are found
as positive roots of the characteristic equation of a real 3-row matrix. This interpretation enables
the creation of wave surfaces, such as phase velocity and refraction (inverse velocity) surfaces. The
refraction curves situated on the incidence planes where the reflection/refraction waves arise, are
formed by the intersection of these planes with the refraction surface [1, 2]. According to Snell’s law,

change to the incidence angle ψ of incident wave
−→
U0 within [ψ1, ψ2) and [ψ2,

π
2
], respectively, where

ψ1 and ψ2 denote critical angles of
−→
U0, gives rise to inhomogeneous elastic waves, one of which is

quasi-longitudinal, and the other two are quasi-transverse.
For inhomogeneous waves, in zeroth approximation of asymptotics, we arrive at the problem

of finding the eigenfunctions and eigenvalues of a symmetric three-row matrix operator in complex
Hilbert space, with its eigenvectors formed by the principal terms of the ST ray expansions, and its
complex eigenvalues given by λ =

(
∂τ
∂t

)2
, where τ is the phase of an inhomogeneous wave.

The eigenvalues λ are found as the roots of a third-degree algebraic equation with complex coeffi-
cients expressed via Cardano’s formulas with a non-zero discriminant. In the Riemann metric related
to the surface boundary, and in the vicinity of that boundary, we use these eigenvalue expressions
together with the homogeneous equation for the eigenfunctions to construct the complex phases τ
and polarization vectors of the inhomogeneous waves as expansions in powers n (coordinate n is the
distance of point M to the boundary).

The principal term of asymptotics and higher-order coefficients of the ray series include arbitrary
functions Ψ as scalar factors in their polarization vector. Use of the ST ray procedure to derive the
coefficients of the ray series, combined with the boundary conditions, leads to a first-order differential
equation in coordinate n for function Ψ. Thus, analytical expressions for the wave amplitudes are
obtained outside the boundary. Furthermore, the requirement for phase τ to meet ∂ Im τ

∂n
> 0 at

n = 0, implies that the inhomogeneous waves are evanescent and decay exponentially away from the
boundary surface.

This work was supported by RFFI Grant No. 17-01-00529-A.
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Acoustics@home volunteer computing project and an investigation
on the accuracy of dispersion-based geoacoustic inversion method
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Volunteer computing is a type of distributed computing, in which resources of private persons
are used [1]. Volunteer computing suits well to solve hard problems, which can be decomposed into
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a set of independent subproblems. In 2017, the volunteer computing project Acoustics@home was
launched, which is aimed at solving hard problems in underwater acoustics.

It is known, that water column and bottom parameters can be reconstructed from acoustic data
using geoacoustic inversion [2]. Recently it was shown that acoustical parameters of sea bottom
can be estimated from a pulse signal recorded by a single hydrophone (see, e.g., [3]). The inversion
procedure in this case relies on the dependence of arrival times on frequency and mode number (see
details, e.g., in [3, 4]).

In this study, the accuracy of reconstruction of bottom parameters and the sound speed profile in
a shallow-water waveguide by a dispersion-based geoacoustic inversion scheme is studied. The depths
of the sound speed profile nodes are also considered inversion parameters. The inversion problem
was transformed into a problem of black-box minimization of a mismatch function.

Several large-scale computational experiments were held in Acoustics@home and on a computing
cluster. In these experiments, the performance of the inversion algorithm with three mismatch
functions was investigated under various uncertainties in the information on the media and in the
presence of various waveguide inhomogeneities that can potentially affect the accuracy of media
parameters reconstruction from the dispersion data. In particular, it is shown that a fitness function
that assigns to a point of a dispersion curve the weight associated with the respective spectrogram
magnitude in most cases ensures better accuracy of media parameters inversion than a uniform fitness
function.
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Electromagnetic waves scattering from infinite periodic arrays
of thin absorbing wires

V. Zalipaev, A. Matveentsev, V. Bulgakova, S. Pozdnyakova, A. Rzhevski
Krylov State Research Centre, St. Petersburg, Russia
e-mail: v.zalipaev@metalab.ifmo.ru

A subject of electromagnetic waves scattering from periodic structures has been very popular
for the last three or more decades in acoustics, water waves, the photonic crystal optics, microwave
physics, and other areas of wave propagation. One could fairly mention a study of electromagnetic
waves propagating through periodic arrays of spherical scatterers where the spheres were modelled
by some combination of electric and magnetic dipoles, see for example [1]. It is worth to mention
an another example of guided electromagnetic waves propagating along one-dimensional arrays of
dielectric spheres that was studied recently in [2] on the basis of a rigorous analysis of a wave
field superposition of vector spherical wave functions. In papers [3] and [4] an excitation of the
guided localized electromagnetic waves propagating along 1D finite and infinite arrays of thin metallic
parallel wires in a free space and near to flat interface between two dielectric media were studied quite
recently. It is apparent that this subject is very important for many applications of metamaterials
physics and, in particular, for the metasurfaces.

104



In the paper a scattering of plane electromagnetic wave from periodic arrays of thin absorbing
wires is studied semi-analytically and numerically. Two types of arrays are involved into the presented
analysis. For the first type structure we study a few layers of parallel 1D periodic arrays of infinitely
long thin absorbing wires with the same period and different spacing in between layers. This structure
is located over perfectly conducting metallic (PEC) screen. The scattering is being considered in the
case of the long wave approximation, that is, the radius of the wires are much smaller than the
wavelength. For the second type the doubly periodic 2D array of parallel thin absorbing wires of
finite length is illuminated by a plane electromagnetic wave. This lattice is also located over PEC
screen. The length of the wires is assumed to be of the order of the wavelength whereas the radius of
the wires are much smaller than the wavelength and their length either (the long wave approximation).
For the fist type lattice of infinite thin wires we obtain an approximate analytical solution. For the
structure of the second type with the thin wires of finite length the approach based on a well-known
numerical analysis of method of Pocklington integral equation was used. In both scattering problems
the quasi-periodic wave field is constructed as a superposition of wave fields generated by linear
electric currents that satisfies the boundary conditions on the surfaces of the wires. For the second
problem we obtain an infinite system of real linear algebraic equations. The presented analysis is
based on the accurate and efficient computation of lattice sums that was necessary for computations
of the linear electric currents of the thin wires. Both problems is a natural extension of the equivalent
electromagnetic problems studied in [3, 4].

For both scattering problems their solutions were tested numerically using propagation power
balance criterion exactly for the case when all the thin wires are PEC metallic conductors. In this
case all of the incident plane wave power is totally reflected back from the lattices located over PEC
screens. However, for the thin absorbing wires a part of the reflected energy transforms into Joule
losses. The effect of significant decrease in the reflected energy has been studied for quite wide
frequency radio bands. In this paper we report on some examples for both scattering problems with
specific geometries of very sharp decrease in the reflected power for a few frequencies of resonance
absorbance for both structures with thin absorbing wires located over PEC screens. This effect has
various applications, especially in radiophysics. Firstly it is vital in engineering of the radio absorbing
surfaces.
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Features of the bottom seismic wave by the generation of a hydroacoustic
source in a condition of the shore zone (3D numerical simulation)
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46 Ul’yanov Street, 603950, Nizhny Novgorod, Russia
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Three-dimensional numerical simulation of hydroacoustic and bottom surface seismic waves is
performed based on application of finite element method. The wave excitation is carried out by a
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hydroacoustic source installed in the coastal water area, where the horizontal bottom is replaced by an
inclined. The modes of pulsed operation and continuous harmonic pulsations of the hydroacoustic
source at different depths of the dive and distances from the coastal edge of the water-land are
considered. The structure and characteristics of the propagation of excited hydro and seismic surface
Rayleigh waves in the case of rock bottom are studied. Wave hodographs are constructed, the analysis
of which allows to select wave types. The possibility of detecting a surface bottom wave overlooking
the land along the coastal slope with seismic receivers is discussed. A comparative assessment of
its level relative to the hydroacoustic wave level is given. The amplitude-wave spatial distribution
obtained by modeling is demonstrated in the illustrations.

The symmetric mode of an elastic solid wedge
with the opening close to a flat angle

G.L. Zavorokhin1, A.I. Nazarov1,2, S.A. Nazarov2,3

1St. Petersburg Department of the Steklov Mathematical Institute, Fontanka, 27, 191023, St. Peters-
burg, Russia
2St. Petersburg State University, Universitetsky pr., 28, Peterhof, St. Petersburg, 198504, Russia
3Institute for Problems in Mechanical Engineering RAS, V.O., Bolshoj pr., 61, St. Petersburg, 199178,
Russia
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The existence of a symmetric mode in an elastic solid wedge for all allowable values of the Poisson
ratio and arbitrary openings close to π has been proven. A radically new effect — the presence of a
wave localized in a vicinity of the edge of a wedge with an opening larger than a flat angle — has
been found.

Giant nonlinear Goos–Hänchen effect at the reflection of light
from gyrotropic liquid metacrystal

Alexander A. Zharov, Jr., Alexander A. Zharov
Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, 603950
Russia
e-mail: alexander.zharov@gmail.com

Highly tunable and reconfigurable liquid metamaterials attract significant attention in recent
years [1, 2] because of the possibilities of controlling the optical fields at micro- and nanoscales. In
this context, they may become the basis of novel structural elements of photonic devices. A while
ago, a new class of liquid metamaterials called liquid metacrystals (LMCs) [3] was suggested. LMCs
not only extend and enhance the basic properties of liquid metamaterials, but also bring additional
ones, for example, strong nonlinearity [4, 5]. LMCs are composed of micro- or nanoparticles (meta-
atoms) with anisotropic polarizability suspended in a viscous liquid or gel. The external dc electric or
magnetic field applied to LMC aligns meta-atoms’ anisotropy axes along one direction, which makes
LMC anisotropic. At the same time, LMC can become anisotropic in the response to high-frequency
field, which suggests strong nonlinearity of this metamaterial.

This report is devoted to the study of resonant excitation of electromagnetic surface waves in Otto
configuration by an incident beam at the interface between metal and LMC with suspended gyrotropic
spherical meta-atoms. The value and sign of LMC gyrotropy can be changed by an external static
magnetic field. Furthermore, in the region of evanescent field, electromagnetic radiation possesses
the finite angular momentum (so called ‘photonic spin’), which induces the additional ordering of
magnetic momenta of meta-atoms that, in turn, defines the LMC magnetic nonlinearity. We show
that under condition close to the condition of phase synchronism of incident and surface waves, the
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reflected beam can experience a giant lateral shift relatively to the incident one (Goos–Hänchen
effect), which is comparable to the incident beam width. In the nonlinear regime, the value of the
shift has bistable character demonstrating the hysteresis behavior in dependence on the incident
beam intensity. One should also notice that the value of the reflected beam shift can be tuned in the
wide range by means of strength and direction of external dc magnetic field.
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High-frequency diffraction by a contour
with a Hölder discontinuity of curvature
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A high-frequency diffraction of a plane wave by a contour with a Hölder-type discontinuity in
otherwise smooth curvature is addressed. The discontinuity assumed to have the form sλH(s), where
H(s) is the Heaviside function, 0 < λ < 1 and s is the arc-length. A systematic version of boundary
layer approach is applied. The techniques is similar to that developed in [1] for diffraction by a
contour having a jump of curvature, which is in a sense a limit case of current problem as λ→ 0.

According to the Keller geometrical theory of diffraction [2], total wavefield in the illuminated
region is a sum of incident, geometrically reflected and diffracted waves; in transition zone, diffracted
and reflected waves loose their individuality and wavefield is expressed in terms of the parabolic
cylinder function D−3−λ.

The research was supported by RFBR grant 17-01-00529.
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