МИНОБРНАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО Тульский государственный университет

М.Ю. ЕЛАГИН

ТЕРМОДИНАМИКА ОТКРЫТЫХ СИСТЕМ (Практическое применение)

Издательство ТулГУ

ТУЛА - 2020

УДК 621.1.016 (075.8)

Рецензент: кафедра технологии и сервиса ТГПУ им. Л.Н. Толстого.

Елагин М.Ю. Термодинамика открытых систем (Практическое применение)/ М.Ю. Елагин. – Тула: Изд-во Тульского гос. ун-та, 2020. – 480с.

ISBN 978-5-7679-4567-2

В монографии приведена методика получения аналитического аппарата термодинамики открытых систем (термодинамики тела переменной массы) применительно к наиболее используемым в настоящее время уравнениям состояния реальных рабочих тел.

Рассмотрено математическое описание открытой термодинамической системы с равновесным двухфазным рабочим телом; динамическая модель испарения легкокипящей жидкости; приведена методика расчета термодинамических свойств важнейших рабочих веществ на линии насыщения; динамическая модель выделения (растворения) рабочего тела из жидкой бинарной смеси.

В качестве иллюстрации возможностей аналитического аппарата термодинамики открытых систем приведены: двухзонная модель тепловыделения в карбюраторном двигателе, математические модели процессов, протекающих: в сушильной камере конвекционного типа, в объемных компрессорах различного типа, роторно-поршневом двигателе, двигателе с вращающимся цилиндромклапаном, углекислотном авиамодельном двигателе, двигателе внешнего сгорания, термоприродном двигателе, пневматических ротационных двигателях, поршневом детандере, бытовой холодильной машине.

В приложении приведены распечатки: программы, реализующей алгоритм расчета расхода смеси реальных газов; программы расчета ряда термодинамических свойств холодильного агента R134a в двухфазной области; программы регрессионного анализа данных на линии насыщения воды; программ расчета термодинамических свойств воды и холодильных агентов, программ расчета рабочих процессов в ряде тепловых машин, а также результаты расчетов по этим программам. Программы реализованы на алгоритмическом языке FORTRAN -77.

Издание предназначено для специалистов предприятий, НИИ и КБ, аспирантов, магистрантов и студентов старших курсов, занимающихся вопросами математического моделирования в различных открытых термодинамических системах. Фото 3. Ил. 180. Табл. 33. Библиогр.: 143 назв.

УДК 621.1.016 (075.8)

© М.Ю. Елагин, 2020.

ISBN 978-5-6779-4567-2

© Издательство ТулГУ, 2020.

В предлагаемой монографии представлены результаты многолетней работы автора по математическому моделированию нестационарных и стационарных процессов в различных открытых термодинамических системах.

Результаты исследований, по моделированию процессов в бытовых холодильных машинах и компрессорах объемного принципа сжатия, двигателях внутреннего и внешнего сгорания получили научное признание и практическую реализацию на предприятиях отрасли, НИИ и КБ.

Учитывая, что объекты исследований являются традиционными при изучении дисциплин «Теплотехника» и «Техническая термодинамика», данное издание будет полезно студентам старших курсов, магистрантам и аспирантам, а также специалистам, занимающимся математическим моделированием термодинамических процессов в тепловых машинах.

Автор приносит благодарность кафедре «Автомобили и автомобильное хозяйство» Тульского государственного университета за помощь в издании данной монографии.

Третье издание монографии дополнено главами: «Моделирование рабочего процесса двигателя с вращающимся цилиндромклапаном (RCV – двигателя)», «Математическое моделирование рабочих процессов аксиальных поршневых компрессоров», «Математическая модель оппозитно-кулачкового компрессора», а также переработанными и дополненными главами: «Математическое описание тепломеханической системы с двухфазным рабочим телом», «Термоприродные двигатели» и «Ротационные пневматические двигатели».

СОДЕРЖАНИЕ

Введение. История развития методов расчета
термодинамических процессов в открытых системах7
Глава 1. Основы математического моделирования
процессов в открытых термодинамических системах
1.1. Основные зависимости
1.2. Первый закон термодинамики для открытых систем11
1.2.1.Газодинамический вывод уравнений13
1.3. Обобщенная математическая модель нестационарных
термодинамических процессов в открытой системе18
Глава 2. Зависимости термодинамики открытых систем при
использовании различных уравнений состояния
2.1. Уравнения состояния для описания р - р - Т данных
реальных рабочих тел22
2.2. Основные термодинамические уравнения
2.3. Аналитический аппарат термодинамики тела
переменной массы применительно к уравнению
состояния Боярского – Подчерняева
Глава 3. Математическое описание тепломеханической системы
с двухфазным рабочим телом
3.1. Математическое описание тепломеханической системы
с двухфазным равновесным рабочим телом
3.2. Определение термодинамических свойств
рабочих веществ в двухфазной области
3.3. Подход к математическому моделированию открытых
систем с парожидкостными рабочими телами
Н.В. Семенчевой
3.4. Динамическая модель испарения рабочего тела
3.5. Расчет рабочего процесса в углекислотном
авиамодельном двигателе102
3.6. Расчет термодинамических свойств важнейших
рабочих веществ на линии насыщения105
3.7. Алгоритм определения термодинамических свойств
веществ на линии насыщения (уравнение состояния
Редлиха-Квонга)
Глава 4. Математическое моделирование термодинамических
процессов выделения и растворения реального рабочего тела
из жидкой смеси

Глава 5. Двухзонная термодинамическая модель	
тепловыделения в двигателе с внешним смесеобразованием	129
Глава 6. Математическое моделирование процессов,	
протекающих в сушильной камере конвективного типа	140
Глава 7. Математическое моделирование тепломеханических	
процессов роторно-поршневых компрессоров	152
Глава 8. Математическое моделирование тепломеханических	
процессов роторно-поршневых двигателей	163
Глава 9. Математическое моделирование	
тепломеханических процессов парожидкостного	
двигателя внешнего сгорания	181
Глава 10. Математическое моделирование рабочих	
процессов в поршневых детандерах	189
Глава 11. Термоприродные двигатели	196
11.1. История создания	196
11.2. Математическое моделирование работы	
термоприродного двигателя – «Утки Хоттабыча»	204
Глава 12. Математическая модель бытовой холодильной	
машины	220
12.1. Предварительные замечания	220
12.2. Математическая модель двухкамерного бытового	
холодильника	226
12.3. Экспериментальные и теоретические исследования	
нестационарных процессов в бытовых	
холодильных машинах	239
12.3.1. Приборы и оборудование	239
12.3.2. Методика эксперимента	244
12.3.3. Проверка адекватности	244
12.3.4. Повышение энергетических характеристик	
бытового холодильника на основе теоретических	
исследований	248
Глава 13. Моделирование регулирующего устройства малой	
холодильной машины	255
Глава 14. Ротационные пневматические двигатели	262
14.1. Общая характеристика и классификация	262
14.2. Ротационные пневмодвигатели	264
14.3. Математическая модель процессов в ротационном	
пневматическом двигателе (РПД)	
14.4. Расчет рабочих процессов в ротационном	

пневматическом двигателе	273
14.5. Определение механических потерь в ротационном	
пневматическом двигателе	280
14.6. Повышение характеристик ротационного	
пневматического двигателя сверлильной машины	288
14.7. Определение скорости изменения объема рабочей	
камеры двигателя с тангенциальным	
расположением лопаток	294
14.8. Определение механических потерь в ротационном	
пневматическом двигателе с	
тангенциальными лопатками	303
14.9. Определение крутящего момента для тангенциальной	
лопатки	306
14.10. Теоретические исследования рабочего процесса	
ротационного пневматического двигателя	
с тангенциальными лопатками	307
Глава 15. Математическое моделирование пневматического	
виброгенератра	311
15.1. Математическая модель функционирования	
пневматического виброгенератора	312
15.2. Исследование зависимости выходных характеристик	
пневматического виброгенератора от	
конструктивных параметров	316
Глава 16. Моделирование рабочего процесса двигателя с	
вращающимся цилиндром-клапаном (RCV – двигателя)	322
Глава 17. Математическое моделирование рабочих	
процессов аксиальных поршневых компрессоров	335
Глава 18. Математическая модель оппозитно-кулачкового	
компрессора	342
Список литературы	347
Приложение	358

введение

История развития методов расчета процессов в открытых термодинамических системах

Поверхность термодинамической системы в общем случае проницаема для всевозможных воздействий окружающей среды. Если ни одно из внешних воздействий не способно проникнуть через поверхность системы, то такая система называется закрытой и масса рабочего тела в ней является величиной постоянной.

В отличие от закрытых систем открытые системы способны обмениваться массой с окружающей средой. При этом вносимая в систему масса является носителем количества движения, энергии.

Первые методы расчета термодинамических процессов в открытых системах (с переменной массой) были разработаны во внутренней баллистике французским инженером А. Резалем в 1864 г., который предложил основное уравнение для процесса в период горения топлива в канале ствола артиллерийского орудия

 $\mathbf{L} = \mathbf{m}\mathbf{C}_{\mathbf{V}}(\mathbf{T}_0 - \mathbf{T}),$

где m - масса газа в канале ствола, меняющаяся во времени; T_0 - температура продуктов горения топлива при постоянном объеме; T - текущая температура продуктов горения в канале ствола; C_V - удельная изохорная теплоемкость газа.

Согласно представлениям А. Резаля mC_vT_0 и mC_vT трактуются как начальная и текущая энергии рабочего тела, что не отвечает физической сущности процесса, так как внутренняя энергия рабочего тела в начале процесса должна определяться как $u_0 = m_0C_vT_0$. В 1937 г. профессором Страховичем К.И. [91] было предложено уравнение энергобаланса для переменного количества газа в рабочей полости в виде

$$h_a dm = dI - W dp$$
.

По трактовке К.И. Страховича $h_a dm$ определяется как количество энергии втекающего газа, dI - как изменение теплоты газа в полости, Wdp - как работа повышения давления. Последнее уравнение было получено из уравнения теплового баланса для установившегося потока газа (dq = dh - vdp) путем соответствующих замен. Однако включение в уравнение энергобаланса энтальпии втекающего газа в качестве эквивалента теплоты противоречит физическому смыслу теплоты, согласно которому теплота определяется только контактным способом. Произведение Wdp в отличие от vdp, имеющего физический смысл для потока газа, выражает изменение его кинетической энергии и лишено реального физического смысла.

Характерной чертой отмеченных выше и ряда других работ является отсутствие в них термодинамического анализа особенностей процессов, протекающих с переменной массой рабочего тела. Прослеживается явная тенденция свести эти процессы к типовым.

Первая попытка термодинамического анализа процессов с переменной массой газа как качественно отличных от процессов с постоянной массой была проведена М.А. Мамонтовым в 1939 г. [63] в кандидатской диссертации. В 1942 г. в докторской диссертации [64] вопросы анализа термодинамических процессов с переменным количеством газа были выделены в особый раздел, где был приведен аналитический аппарат термодинамики тела переменной массы (термодинамики открытых систем), а не уравнение состояния идеального газа. В последующих исследованиях [65 - 67] установлено, что процессы превращения теплоты в работу с переменным количеством рабочего тела сопровождаются тремя взаимосвязанными явлениями контактами: тепловым, механическим, материальным.

Дальнейшее развитие теории М.А. Мамонтова продолжалось его учениками и в основном касалось разработки аналитического аппарата термодинамики тела переменной массы применительно к различным реальным уравнениям состояния [36, 37, 72, 76, 77, 107] и парожидкостным рабочим телам [73, 87 – 89].

8

Глава 1

ОСНОВЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ТЕРМОДИНАМИЧЕСКИХ ПРОЦЕССОВ В ОТКРЫТЫХ СИСТЕМАХ

1.1. Основные зависимости

Термодинамические процессы в открытых системах сопровождаются сложными нестационарными термо-газодинамическими явлениями. Во многих случаях рабочие тела в системах можно рассматривать как равновесные, но имеющие переменную массу.

Для математического описания функционирования таких систем, профессором Мамонтовым М.А., была предложена обобщенная модель открытой термодинамической системы, в которой взаимодействие рабочего тела с окружающей средой происходит за счет трех видов взаимодействий [66] (рис. 1.1):

- теплового, мерой которого является количество переданной теплоты, Q;
- механического, мерой которого является совершенная работа, L;
- материального (массового), мерой которого является массовое количество переданного вещества Y_i и связанная с ним энергия, Z_i.

Первые два вида взаимодействия рабочего тела с окружающей средой подробно исследованы в классической термодинамике и теории теплообмена. Последний вид взаимодействия и его физические особенности были исследованы М.А. Мамонтовым [66, 67].

Исходная система уравнений, описывающих термодинамические процессы с переменной массой, будет включать:

- уравнение баланса энергии

$$d\mathbf{U} = \sum_{0}^{i} \delta \mathbf{Z}_{i} + \delta \mathbf{Q} - \delta \mathbf{L};$$

- уравнение баланса массы рабочего тела

$$dm = \sum_{0}^{i} \delta Y_{i};$$

уравнение состояния в калорической или термической форме

```
U = m u(\rho, T),p = p(\rho, T),
```

где δZ_i - элементарное количество энергии, переносимое массой δY_i .

Можно представить, что

$$\delta Z_i = \Pi_i \, \delta Y_i \; ,$$

где П_i - удельное количество энергии, переносимое присоединяемой или отделяемой массой.

При перетекании из полости в полость Π_i численно равно удельной энтальпии h_i рабочего тела в полости, откуда происходит истечение.

Рис. 1.1. Обобщенная модель открытой термодинамической системы

После незначительных преобразований и введения естественного аргумента - времени т можно записать:

- уравнение скорости изменения полной внутренней энергии рабочего тела

$$\frac{dU}{d\tau} = \sum_{0}^{i} h_{i}G_{i} + \frac{\delta Q}{d\tau} - \frac{\delta L}{d\tau} , \qquad (1.1)$$

- уравнение скорости изменения плотности рабочего тела

$$\frac{d\rho}{d\tau} = \frac{1}{W} \left(\sum_{0}^{i} G_{i} - \rho \frac{dW}{d\tau} \right), \qquad (1.2)$$

- уравнение состояния

$$U = mu(\rho, T), \qquad p = p(\rho, T),$$
 (1.3)

где $\sum_{0}^{i} \delta Z_{i} = \sum_{0}^{i} h_{i}G_{i}$, $dm = Wd\rho + \rho dW$, $G_{i} = \frac{\delta Y_{i}}{d\tau}$, $m = \rho W$.

Уравнение (1.1) является Первым законом термодинамики для открытых термодинамических систем. То, что оно не противоречит основным положениям классической термодинамики, показал профессор В.С. Мартыновский в работе [69].

1.2. Первый закон термодинамики для открытых систем

Любая сложная термодинамическая система состоит из отдельных элементов, которые также представляют собой открытые системы, обменивающиеся с окружающими системами не только тепловой и механической энергией, но и веществом.

Рассмотрим элементарный процесс в открытой системе A (рис. 1.2). Системой совершена работа δL и получена теплота δQ . В нее поступила масса dm_i с удельной внутренней энергией u_i и удельным объемом v_i.

Рассмотрим расширенную систему (A + B) которая, помимо открытой системы A, включает массу dm_i, поступившую в систему A в рассматриваемом элементарном процессе [69]. Так как система (A + B) в этом процессе не обменивалась веществом с другими системами, то она будет являться закрытой, для которой применимо обычное уравнение Первого закона термодинамики

$$\delta Q_{(A+B)} = dU_{(A+B)} + \delta L_{(A+B)}$$
 (1.4)

Исходя из того, что внутренняя энергия является экстенсивной величиной, можно записать

$$dU_{(A+B)} = (U+dU) - (U+u_i dm_i)$$

$$dU_{(A+B)} = dU - u_i dm_i.$$
 (1.5)

Рис. 1.2. К выводу Первого закона термодинамики открытых систем

Работа, совершаемая системой (A + B), кроме δL , включает также слагаемое $p_i v_i dm_i$, учитывающее работу сил давления при перемещении границ системы (A + B), вызванное поступлением массы в открытую систему A:

$$\delta L_{(A+B)} = \delta L - p_i v_i dm_i, \qquad (1.6)$$

теплота

$$\delta Q_{(A+B)} = \delta Q. \tag{1.7}$$

Подставляя в выражение (1.4) значения $dU_{(A+B)}$, $\delta L_{(A+B)}$, $\delta Q_{(A+B)}$, из выражений (1.5) – (1.7), получим

$$\delta Q + (u_i + p_i v_i) dm_i = dU + \delta L. \qquad (1.8)$$

Аналогичное соотношение можно получить, когда открытую систему покидает масса dm_0 с удельной внутренней энергией u_0 и удельным объемом v_0 :

$$\delta Q + (u_o + p_o v_o) dm_o = dU + \delta L. \qquad (1.9)$$

ИЛИ

Из соотношений (1.8) и (1.9) следует, что для открытой системы с і потоками массы, часть которых поступает в нее или ее покидает, следует

$$\delta Q + \sum_{o}^{i} (u_i + p_i v_i) dm_i = dU + \delta L \quad . \tag{1.10}$$

Если u_i определяется только внутренней энергией, последнее уравнение можно переписать в виде

$$\delta Q + \sum_{0}^{i} h_{i} dm_{i} = dU + \delta L \quad . \tag{1.11}$$

Таким образом, Первый закон термодинамики для открытых систем гласит: сумма тепловых потоков и потоков энтальпии масс, пересекающих границы системы, равна сумме изменения внутренней энергии и работы.

Уравнение (1.11) применимо как к обратимым, так и к необратимым стационарным и нестационарным термодинамическим процессам*. Можно показать, что уравнение (1.11) и уравнение скорости изменения плотности рабочего тела (1.2) являются частными случаями уравнений механики сплошной среды.

1.2.1. Газодинамический вывод уравнений

Пусть рабочее тело от источника питания через впускное отверстие, ограниченное сечением 1-1 (рис. 1.3), поступает в полость силового цилиндра и вытекает через выпускное отверстие, ограниченное сечением 2-2. Параметры рабочего тела будем считать средними по этим сечениям. При описании рабочих процессов в полостях различных устройств допускается считать скорость рабочего тела в полости пренебрежимо малой величиной, а параметры рабочего тела - средними и одинаковыми по объему W_0 .

В этом случае комплекс переменных величин, полностью определяющих состояние газа в полости, будет включать параметры: p_0, ρ_0, T_0 .

^{*}Аналогичный вывод приводится Г. Бэром в [11].

Для определения этих величин будем использовать уравнения: неразрывности, энергии и состояния. Уравнение количества движения в исходную систему не включается, так как согласно принятому допущению, скорость газа в полости равна нулю [1].

Рис. 1.3. Расчетная схема

Для описания процессов, протекающих в переменном объеме полости, необходимо записать уравнения механики сплошной среды в комбинированной форме:

- уравнение неразрывности

$$\frac{\partial}{\partial \tau} \iiint \rho dW + \oiint \rho (V_n - V_{\Gamma n}) dS = 0;$$

- уравнение энергии

$$\frac{\partial}{\partial \tau} \iiint \rho \left(u + \frac{V^2}{2} \right) dW + \oiint \rho \left(V_n - V_{\Gamma n} \right) \left(u + \frac{V^2}{2} \right) dS = \iiint \rho \overline{FV} dW - W$$

$$- \underset{S}{\underbrace{\$p}\overline{n}\overline{V}dS} + \underset{S}{\underbrace{\$}\overline{\tau}_{n}\overline{V}dS} + \underset{S}{\underbrace{\$}q_{n}dS} + \underset{W}{\underbrace{\$}} q_{n}dS + \underset{W}{\underbrace{\$}} \rho \varepsilon dW;$$

уравнение состояния

где $\underset{W}{\iiint}\rho dW$ - масса газа, заключенная в объеме W; $\underset{S}{\oiint}\rho(V_n - V_{rn})dS$ - поток массы через поверхность S, движущуюся со скоростью V_{rn} ; V_n нормальная составляющая вектора скорости потока газа; $u + \frac{V^2}{2}$ полная энергия единичной массы ρdW в объеме dW; $\underset{W}{\iiint}\rho\left(u + \frac{V^2}{2}\right)dW$ полная энергия массы газа, заключенного в объеме W; $\underset{S}{\oiint}\rho(V_n - V_{rn})\left(u + \frac{V^2}{2}\right)dS$ - поток энергии через поверхность S, движущийся со скоростью V_{rn} ; $\underset{W}{\iiint}\rho\overline{FV}dW$ - работа в единицу времени массовых сил; $\underset{S}{\oiint}\overline{P}VdS = \underset{S}{\oiint}\tau_n\overline{V}dS - \underset{S}{\oiint}pn\overline{V}dS$ - работа поверхностных сил; $\underset{W}{\oiint}q\overline{q}\overline{d}S$ - количество теплоты, проходящее в единицу времени через поверхность S; $\underset{W}{\iiint}\varepsilon\rho dW$ - количество теплоты, выделенное массой газа, заключенного в объеме W.

С учетом принятых допущений и, пренебрегая массовыми силами и вязкостью рабочего тела, получим систему "нульмерных" уравнений механики сплошной среды [1]:

$$\begin{cases} \frac{d(\rho W)}{d\tau} = -\oiint \rho (V_n - V_{rn}) dS, \\ \frac{d(\rho u W)}{d\tau} = -\oiint \rho (V_n - V_{rn}) \left(u + \frac{V^2}{2} \right) dS - \oiint \overline{N} \overline{V} dS + \oiint q \overline{n} dS, \\ p = \rho R T z(\rho, T). \end{cases}$$

Применительно к рассматриваемой полости и, учитывая, что $S = S_1 + S_2 + S_\delta + S_\Pi$, эти уравнения примут вид

$$\begin{cases} \frac{d(\rho W)}{d\tau} = -\oiint \rho (V_n - V_{\Gamma n}) dS - \oiint CdS - \oiint CdS - \oiint CdS, \\ S_2 & S_6 & S_{\Pi} \end{cases}, \\ \frac{d(\rho u W)}{d\tau} = -\oiint \rho (V_n - V_{\Gamma n}) \left(u + \frac{V^2}{2} \right) dS - \oiint EdS - \oiint EdS - \oiint EdS - \oiint EdS - \varPi EdS - \\ S_2 & S_6 & S_{\Pi} \end{cases} \\ - \oiint p \overline{n} \overline{V} dS - \oiint BdS - \oiint BdS - \oiint BdS + \oiint q_n dS + \oiint q_n dS, \\ S_1 & S_2 & S_6 & S_{\Pi} & S_6 & S_{\Pi} \end{cases}$$

где
$$C = \rho(V_n - V_{rn});$$
 $E = \rho(V_n - V_{rn})(u + \frac{V^2}{2});$ $B = p\bar{n}\bar{V}.$

Учитывая известные граничные условия

- на поверхности S_1 $\rho = \rho_1; p = p_1; V_n = -V_1; u = u_1; V_{\Gamma n} = 0,$
- на поверхности S_2 $\rho = \rho_2; p = p_2; V_n = -V_2; u = u_2; V_{\Gamma n} = 0,$
- на поверхности S_{δ} $V_n = V_{rn} = 0; q_n = q_{\delta},$

- на поверхности S_{Π} $V_n = V_{\Gamma n}; q_n = q_{\Pi}; p = p_0,$ получаем:

$$\begin{cases} \frac{d(\rho_0 W_0)}{d\tau} = \rho_1 V_1 S_1 - \rho_2 V_2 S_2, \\ \frac{d(\rho_0 u_0 W_0)}{d\tau} = \rho_1 V_1 \left(u_1 + \frac{V_1^2}{2} \right) S_1 - \rho_2 V_2 \left(u_2 + \frac{V_2^2}{2} \right) S_2 - 0 - 0 + \\ + \rho_1 V_1 S_1 - \rho_2 V_2 S_2 - 0 - p_0 V_{\Pi} S_{\Pi} + q_{\delta} S_{\delta} + q_{\Pi} S_{\Pi} , \\ p_0 = \rho_0 R T_0 z(\rho_0, T_0). \end{cases}$$

Вводя обозначения

$$G_1 = \rho_1 V_1 S_1;$$
 $G_2 = \rho_2 V_2 S_2;$

$$u_1 + \frac{p_1}{\rho_1} + \frac{V_1^2}{2} = \frac{\kappa}{\kappa - 1} RT_p = h_p; \qquad u_2 + \frac{p_2}{\rho_2} + \frac{V_2^2}{2} = \frac{\kappa}{\kappa - 1} RT_0 = h_0,$$

получим расчетную систему уравнений:

$$\begin{cases} \frac{d(\rho_0 u_0 W_0)}{d\tau} = h_p G_1 - h_0 G_2 - p_0 V_{\Pi} S_{\Pi} + q_{\delta} S_{\delta} + q_{\Pi} S_{\Pi} ,\\ \\ \frac{d(\rho_0 W_0)}{d\tau} = G_1 - G_2 ,\\ \\ p_0 = \rho_0 R T_0 z(\rho_0, T_0). \end{cases}$$

Так как

$$\begin{split} \rho_{0}u_{0}W_{0} &= U; \\ p_{0}V_{\Pi}S_{\Pi} &= p\frac{dW}{d\tau} = \frac{\delta L}{d\tau}; \\ q_{\delta}S_{\delta} + q_{\Pi}S_{\Pi} &= \frac{\delta Q}{d\tau}; \\ \rho_{0}W_{0} &= m, \end{split}$$

получаем

$$\begin{split} \frac{dU}{d\tau} &= \sum_{0}^{i} h_{i}G_{i} + \frac{\delta Q}{d\tau} - \frac{\delta L}{d\tau}; \\ \frac{dm}{d\tau} &= \sum_{0}^{i} G_{i}; \qquad \frac{d\rho}{d\tau} = \frac{1}{W} \left(\sum_{0}^{i} G_{i} - \rho \frac{dW}{d\tau} \right) \; . \end{split}$$

1.3. Обобщенная математическая модель нестационарных термодинамических процессов в открытой системе

Согласно рис. 1.1 обобщенная модель будет состоять из трех подсистем уравнений:

- подсистемы уравнений, описывающей термодинамические процессы и включающей:

1) уравнение скорости изменения удельной внутренней энергии

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = \frac{1}{\rho W} \left[\sum_{0}^{i} (\mathbf{h}_{i} - \mathbf{u}) \mathbf{G}_{i} + \frac{\delta \mathbf{Q}}{\mathrm{d}\tau} - p \frac{\mathrm{d}W}{\mathrm{d}\tau} \right]; \qquad (1.12)$$

2) уравнение скорости изменения плотности рабочего тела

$$\frac{d\rho}{d\tau} = \frac{1}{W} \left(\sum_{0}^{i} G_{i} - \rho \frac{dW}{d\tau} \right); \qquad (1.13)$$

3) уравнение состояния в калорической форме

$$\mathbf{u} = \mathbf{f}(\boldsymbol{\rho}, \mathbf{T}); \tag{1.14}$$

- подсистемы уравнений, описывающих теплообмен между рабочим телом и окружающей средой включающей:

1) Уравнение конвективного теплопереноса

$$\frac{\delta Q}{d\tau} = \alpha F \Delta T \quad ; \tag{1.15}$$

подсистемы уравнений кинематики включающей:
1) уравнение движения подвижного звена

$$\frac{\mathrm{dV}}{\mathrm{d\tau}} = \frac{1}{\mathrm{M}} \left(\mathrm{pS} - \mathrm{F_c} \right) \quad ; \tag{1.16}$$

2) кинематическое соотношение

$$\frac{\mathrm{dl}}{\mathrm{d}\tau} = \mathrm{V}\,.\tag{1.17}$$

В уравнениях (1.12) – (1.17)

 α - коэффициент теплоотдачи, который в первом приближении можно принять пропорциональным плотности рабочего тела; ΔT - температурный напор; F - площадь теплообмена; l, V - путь и скорость подвижного звена; S - площадь, на которую действует давление p; M - масса подвижного звена; F_c - сила сопротивления движению.

Система уравнений (1.12) - (1.17) является замкнутой, позволяющей при известных расходах G_i, законе движения подвижного звена определить все текущие параметры рабочего тела в полости (p, ρ , T), а также ряд интегральных характеристик системы, о которых пойдет речь ниже.

Часто для получения расчетной системы уравнений применительно к конкретному калорическому уравнению состояния вместо уравнения скорости изменения удельной внутренней энергии рабочего тела записывают уравнение скорости изменения температуры или давления, которые получаются следующим образом.

1. Уравнение скорости изменения температуры рабочего тела

$$u = u(\rho, T)$$

ИЛИ

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = \left(\frac{\partial u}{\partial \rho}\right)_{\mathrm{T}} \frac{\mathrm{d}\rho}{\mathrm{d}\tau} + \left(\frac{\partial u}{\partial \mathrm{T}}\right)_{\rho} \frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\tau}, \qquad \left(\frac{\partial u}{\partial \mathrm{T}}\right)_{\rho} = \mathrm{C}_{\mathrm{V}},$$

откуда

$$\frac{\mathrm{dT}}{\mathrm{d\tau}} = \left[\frac{\mathrm{du}}{\mathrm{d\tau}} - \left(\frac{\partial \mathrm{u}}{\partial \rho}\right)_{\mathrm{T}} \frac{\mathrm{d\rho}}{\mathrm{d\tau}}\right] / C_{\mathrm{V}} \quad (1.18)$$

Далее, подставляя в уравнение (1.18) уравнения (1.12), (1.13), получим уравнение скорости изменения температуры в наиболее общем виде [41]:

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^{i} \left[h_i - u - \rho \left(\frac{\partial u}{\partial \rho} \right)_T \right] G_i + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \left[p - \rho^2 \left(\frac{\partial u}{\partial \rho} \right)_T \right] \right\}.$$
 (1.19)

Значение производной ($\partial u/\partial \rho$) найдем из выражения для удельной внутренней энергии рабочего тела, подчиняющегося тому или иному уравнению состояния.

Например, для идеального газа $(\partial u/\partial \rho)_T = 0$. Подставляя последнее выражение в уравнение (1.19), получим

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^{i} (h_i - u) G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \right\} .$$
(1.19a)

2. Уравнение скорости изменения давления рабочего тела

$$u = u(\rho, p)$$

ИЛИ

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = \left(\frac{\partial u}{\partial \rho}\right)_{p} \frac{\mathrm{d}\rho}{\mathrm{d}\tau} + \left(\frac{\partial u}{\partial p}\right)_{\rho} \frac{\mathrm{d}p}{\mathrm{d}\tau},$$

откуда

$$\frac{\mathrm{d}p}{\mathrm{d}\tau} = \left[\frac{\mathrm{d}u}{\mathrm{d}\tau} - \left(\frac{\partial u}{\partial \rho}\right)_{\mathrm{p}} \frac{\mathrm{d}\rho}{\mathrm{d}\tau}\right] / \left(\frac{\partial u}{\partial p}\right)_{\mathrm{\rho}}.$$
(1.20)

Примечание.

Уравнение (1.12) получается из уравнения (1.1) путем следующих преобразований:

U = um; dU = mdu + udm; m =
$$\rho$$
W;

$$\frac{dU}{d\tau} = m\frac{du}{d\tau} + u\frac{dm}{d\tau}; \qquad \frac{dm}{d\tau} = \sum_{0}^{i}G_{i};$$

$$\frac{du}{d\tau} = \frac{1}{\rho W} \left(\frac{dU}{d\tau} - u\frac{dm}{d\tau}\right) = \frac{1}{\rho W} \left(\frac{dU}{d\tau} - u\sum_{0}^{i}G_{i}\right)$$

Подставляя в уравнение (1.20) уравнения (1.12, 1.13), получим в <u>са-</u> мом общем виде уравнение скорости изменения давления

$$\frac{dp}{d\tau} = \frac{1}{\rho W} \left\{ \sum_{0}^{i} \left[h_{i} - u - \rho \left(\frac{\partial u}{\partial \rho} \right)_{p} \right] G_{i} + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \left[p - \rho^{2} \left(\frac{\partial u}{\partial \rho} \right)_{p} \right] \right\} / \left(\frac{\partial u}{\partial p} \right)_{\rho}.$$
 (1.21)

Значения производных $(\partial u/\partial p)_p$ и $(\partial u/\partial p)_p$ можно найти из выражения $u = f(\rho, p)$ в зависимости от вида используемого уравнения состояния.

Например, для идеального газа можно записать

$$\mathbf{u} = \frac{\mathbf{C}_{\mathbf{V}}}{\mathbf{R}} \left(\frac{\mathbf{p}}{\rho}\right), \qquad \left(\frac{\partial \mathbf{u}}{\partial \rho}\right)_{\mathbf{p}} = \frac{\mathbf{C}_{\mathbf{V}}}{\mathbf{R}} \left(-\frac{\mathbf{p}}{\rho^2}\right), \qquad \left(\frac{\partial \mathbf{u}}{\partial \rho}\right)_{\mathbf{p}} = \frac{\mathbf{C}_{\mathbf{V}}}{\mathbf{R}} \left(\frac{1}{\rho}\right).$$

Подставляя полученные выражения в уравнение (1.21) и проводя необходимые преобразования, получим

$$\frac{dp}{d\tau} = \frac{R}{C_V W} \left\{ \sum_{0}^{i} h_i G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \left(\frac{C_V + R}{R} \right) \right\} .$$
(1.21a)

Следует отметить, что уравнение скорости изменения давления для сложных уравнений состояния получается весьма громоздким. Поэтому при математическом моделировании термодинамических процессов его используют только для простых уравнений состояния [72, 76, 77]. При математическом моделировании термодинамических процессов с реальными газами удобнее использовать уравнение скорости изменения температуры. Ряд уравнений состояния и их анализ будут представлены в следующей главе.

Глава 2

ЗАВИСИМОСТИ ТЕРМОДИНАМИКИ ОТКРЫТЫХ СИСТЕМ ПРИ ИСПОЛЬЗОВАНИИ РАЗЛИЧНЫХ УРАВНЕНИЙ СОСТОЯНИЯ

2.1. Уравнения состояния для описания р – р – Т данных реальных рабочих веществ

Уравнение состояния идеального газа (уравнение Клапейрона) было сформулировано на основании законов Бойля - Мариотта и Гей - Люссака, полученных в результате экспериментальных исследований процессов в газах при небольших давлениях в 1834 г.:

$$p = \rho R T . \qquad (2.1)$$

Однако в результате измерений установлено, что даже при сравнительно невысоких давлениях поведение газа отклоняется от описываемого уравнением (2.1). Причем, чем меньше плотность газа, тем уравнение (2.1) более точно.

В отличие от идеального газа молекулы реального газа обладают собственным объемом и испытывают взаимодействие, поэтому уравнение состояния реального газа будет отличаться от уравнения Клапейрона [59].

Одной из первых попыток была разработка уравнения состояния реального газа голландским физиком Я. Ван-дер-Ваальсом в 1873 г., которое имеет вид

$$(p+a\rho^2)(1-b\rho) = \rho R T$$
, (2.2)

где a, b - константы, характеризующие индивидуальные свойства веществ; a ρ^2 - поправка, учитывающая силы взаимного притяжения молекул; b - поправка, учитывающая объем, занимаемый молекулами.

При $\rho \to 0$ уравнение (2.2) превращается в уравнение состояния идеального газа. Если не учитывать силы молекулярного взаимодействия, то уравнение (2.2) превращается в уравнение Дюпре - Абеля, широко используемое во внутренней баллистике при описании про-

цессов с пороховыми газами, имеющими высокую плотность и температуру:

$$p(1-b\rho) = \rho RT \quad . \tag{2.3}$$

Следует отметить, что константы в уравнении состояния Вандер-Ваальса вычисляются по параметрам газа в критической точке.

Для чего находят производные $\left(\frac{dp}{d\rho}\right)_{T_{\kappa p}}$, $\left(\frac{d^2p}{d\rho^2}\right)_{T_{\kappa p}}$ и, приравняв их к

нулю, получают

$$a = \frac{27 R^2 T_{KP}^2}{64 p_{KP}}$$
, $b = \frac{V_{KP}}{3}$

Тем не менее уравнение (2.2) также применимо для области малых плотностей (в области низких давлений и высоких температур) даже в том случае, когда константы а и b определяются по экспериментальным $p-\rho-T$ данным. Поэтому газ Ван-дер-Ваальса можно рассматривать только как приближение к реальному газу [59].

С целью усовершенствования уравнения состояния Ван-дер-Ваальса и повышения его точности были предложены различные поправки к нему, в результате чего был получен ряд новых уравнений состояния. Некоторые из полученных уравнений, в пределах определенной области состояний, оказались настолько точными, что были использованы для расчета термодинамических свойств ряда веществ [17]. Наиболее известны следующие уравнения состояния газа:

уравнение Гирна

$$(p + \pi)(1 - b\rho) = \rho RT;$$
 (2.4)

уравнение Бертло

$$(p + \frac{a}{T}\rho^2)(1 - b\rho) = \rho RT;$$
 (2.5)

первое уравнение Дитеричи

$$p(1-b\rho) = \rho RT \exp\left(-\frac{a\rho}{RT}\right); \qquad (2.6)$$

второе уравнение Дитеричи

$$(p+a\rho^{5/3})(1-b\rho) = \rho RT;$$
 (2.7)

уравнение Клаузиуса

$$\left[p + \frac{a\rho^2}{T(1+c\rho)^2}\right](1-b\rho) = \rho RT, \qquad (2.8)$$

где a, b, c – постоянные;

уравнение Битти–Бриджмена

$$p = \rho RT(1 - \varepsilon)(1 + B\rho) - A\rho^2, \qquad (2.9)$$

где $A = A_0(1-a\rho); B = B_0(1-b\rho); \epsilon = \frac{C\rho}{T^3};$

уравнение Камерлинга – Оннеса (1901 г.)

$$p = \rho RT(1 + B_2 \rho^2 + B_3 \rho^3 + ...), \qquad (2.10)$$

где B₂, B₃ ... - второй, третий и последующие вириальные коэффициенты, являющиеся функциями температуры.

Из большого числа попыток вывода теоретически обоснованного уравнения состояния, справедливого как для области пара, так и для области жидкости (уравнения, описывающие и область пара, и область жидкости, называют едиными уравнениями состояния), следует отметить уравнение состояния советского математика Боголюбова Н.Н. и американского физика Дж. Майера (1937- 46 гг.), которое в наиболее общем виде записывается как

$$p = \rho R T \left(1 - \sum_{\kappa=1}^{\infty} \frac{\kappa}{\kappa+1} B_{\kappa} \rho^{\kappa} \right), \qquad (2.11)$$

где В_к - вириальные коэффициенты, которые выражаются через температуру и потенциальную энергию взаимодействия двух молекул.

При $\rho \to 0$ все члены степенного ряда по ρ обращаются в нуль и уравнение (2.9) превращается в уравнение состояния идеального газа.

Для реальных газов с малой плотностью отбрасываются все члены вириального ряда, кроме первых двух, и уравнение принимает вид

$$p = \rho RT(1 - \frac{1}{2}B_1\rho).$$
 (2.11a)

Вириальные коэффициенты B_{κ} теоретическими методами вычислены быть не могут, поэтому их определяют с помощью экспериментальных $p-\rho-T$ данных.

Как правило, более целесообразным является получение уравнения состояния просто в виде интерполяционной формулы [100]

$$p = \rho R T \left[1 + \sum_{i=1}^{n} \left(\sum_{j=0}^{m} \frac{b_{ij}}{\tau^{j}} \right) \frac{1}{\rho^{i}} \right] , \qquad (2.12)$$

где b_{ij} - аппроксимационные коэффициенты; $\tau = T / T_{\kappa p}$.

Для малоисследованных веществ в области докритических плотностей можно рекомендовать обобщенное уравнение Битти - Бриджмена [109]

$$p = \rho RTZ, \qquad (2.13)$$

где

$$\begin{split} Z = 1 + \left(187,64 - \frac{475,8}{\tau} - \frac{50,0}{\tau^3}\right) \frac{\rho \cdot 10^{-3}}{\rho_{Kp}^{HA}} + \left(-7,192 + \frac{53,62}{\tau} - \frac{9,38}{\tau^3}\right) \cdot 10^{-3} \left(\frac{\rho}{\rho_{Kp}^{HA}}\right)^2 + \\ + \frac{0,36 \cdot 10^{-3}}{\tau^3} \left(\frac{\rho}{\rho_{Kp}^{HA}}\right)^3 \end{split}$$

 $\rho_{\kappa p}^{\rm MA} = \frac{p_{\kappa p} \cdot 10^{-6}}{RT_{\kappa p}}$ - идеальная критическая плотность; $p_{\kappa p}$ - критическое

давление.

Следует отметить, что уравнение (2.11) является частным случаем уравнения (2.10), в котором n = m = 3.

Советскими учеными М.П. Вукаловичем и И.И. Новиковым в 1939 г. было получено уравнение для перегретого водяного пара газов с учетом ассоциации. При учете столкновения двойных молекул это уравнение имеет вид

$$(p + a\rho^2)(1 - b\rho) = \rho RT \left(1 - \frac{C'\rho}{\frac{3+2m}{T^2}}\right),$$
 (2.14)

где С'и т-опытные константы.

Последнее уравнение путем введения нескольких дополнительных членов может быть распространено и на область больших давлений.

Существует множество локальных уравнений состояния – уравнений, описывающих часть термодинамической поверхности. Эти уравнения, а также способы их применения изложены в [82, 100].

Для области перегретого водяного пара можно также предложить уравнение [18]

$$\varepsilon = \varepsilon_0 + \sum_{i=1}^4 \sum_{j=0}^5 \frac{a_{ij}}{\tau^j} \beta^i + \frac{d_1 \beta^8}{\tau^{35} (d_2 + \beta^8)} + \frac{d_3 \beta^{12}}{\tau^{71} (d_4 + \beta^{12})}, \qquad (2.15)$$

где $\varepsilon = \mu/70,1204$ - приведенная удельная энергия Гиббса; ε_0 - приведенная удельная энергия Гиббса в идеально-газовом состоянии

$$\epsilon_0 = 26,4554 + 4,3286 \cdot 10^{-2} \,\text{T} + 5,4053 \cdot 10^{-6} \,\text{T}^2 - 0,649 \,\text{ln} \,\text{T} + 6,5816 \cdot 10^{-2} \,\text{T} \,\text{ln} \,\text{p} - 2,1147 \,\text{T} \,\text{ln} \,\text{T} \,\text{;}$$

 $\beta = p/22,12$ - приведенное давление; $\tau = T/647,3$ - приведенная температура; μ - в кДж/кг; р - в МПа; Т - в К; $d_1=1,7988\cdot10^{-3}$; $d_2=1,755\cdot10^{-2}$; $d_3=-4,06007\cdot10^{-4}$; $d_4=1,24828\cdot10^{-2}$; a_{ij} – коэффициенты, приведенные в табл. 2.1.

Таблица 2.1

j	i=1	i=2	i=3	i=4
0	0,8853863	24,24687	-1,997394	0,7527841
1	-4,429320	-156,3135	-4,751840	-1,947890
2	9,961583	399,1567	63,77667	-2,324420
3	-13,68941	-503,6067	-156,2124	11,62933
4	7,604213	313,5063	152,9724	-12,01737
5	-1,797136	-77,09810	-53,96037	3,843190

При заданных давлении р и температуре T водяного пара рассчитывают удельную энергию Гиббса μ , а используя производные, находят удельный объем v, энтропию s, энтальпию h и изобарную теплоемкость c_p:

$$\mathbf{v} = \left(\frac{\partial \mu}{\partial p}\right)_{\mathrm{T}} ; \mathbf{s} = -\left(\frac{\partial \mu}{\partial \mathrm{T}}\right)_{\mathrm{p}} ; \mathbf{h} = \mu + \mathrm{Ts} ; \mathbf{c}_{\mathrm{p}} = -\mathrm{T}\left(\frac{\partial^{2} \mu}{\partial \mathrm{T}^{2}}\right)_{\mathrm{p}}$$

Выражения производных имеют вид:

$$\left(\frac{\partial\mu}{\partial p}\right)_{\mathrm{T}} = 70,1204 \left[\left(\frac{\partial\varepsilon_{0}}{\partial p}\right)_{\mathrm{T}} + \sum_{i=1}^{4} \sum_{j=0}^{5} i \frac{a_{ij}\beta^{i-1}}{\tau^{j}} + \frac{8d_{1}d_{2}\beta^{7}}{\tau^{35}(d_{2} + \beta^{8})^{2}} + \frac{12d_{3}d_{4}\beta^{11}}{\tau^{71}(d_{4} + \beta^{12})^{2}} \right];$$

$$\left(\frac{\partial\mu}{\partial\mathrm{T}}\right)_{\mathrm{p}} = 70,1204 \left[\left(\frac{\partial\varepsilon_{0}}{\partial\mathrm{T}}\right)_{\mathrm{p}} + \sum_{i=1}^{4} \sum_{j=0}^{5} (-j)\frac{a_{ij}\beta^{i}}{\tau^{j+1}} - \frac{35d_{1}\beta^{8}}{\tau^{36}(d_{2} + \beta^{8})} - \frac{71d_{3}\beta^{12}}{\tau^{72}(d_{4} + \beta^{12})} \right];$$

$$\left(\frac{\partial^{2}\mu}{\partial T^{2}}\right)_{p} = 70,1204 \left[\left(\frac{\partial^{2}\varepsilon_{0}}{\partial T^{2}}\right)_{p} + \sum_{i=1}^{4} \sum_{j=0}^{5} j(j+1)\frac{a_{ij}\beta^{i}}{\tau^{j+2}} + \frac{1260d_{1}\beta^{8}}{\tau^{37}(d_{2}+\beta^{8})} + \frac{5112d_{3}\beta^{12}}{\tau^{73}(d_{4}+\beta^{12})} \right].$$

В приведенных выражениях:

$$\left(\frac{\partial \varepsilon_0}{\partial p}\right)_{\rm T} = 6,5816 \cdot 10^{-2} \,\frac{\rm T}{\rm p} \quad ;$$

$$\left(\frac{\partial \varepsilon_0}{\partial \rm T}\right)_{\rm p} = 4,3286 \cdot 10^{-2} + 10,8106 \cdot 10^{-6} \,\rm T - \frac{0,649}{\rm T} + 6,5816 \cdot 10^{-2} \ln p - 2,1147 (\ln \rm T + 1) \,;$$

$$\left(\frac{\partial^2 \varepsilon_0}{\partial T^2}\right)_{\rm p} = 10,8106 \cdot 10^{-6} + \frac{0,649}{T^2} - \frac{2,1147}{T}$$

Использование в качестве рабочих тел малоизученных веществ ограничивает возможность расчета их термических и калорических свойств. Поэтому очень полезно представлять термодинамические свойства рабочих веществ с помощью единых уравнений состояния [60, 83].

Одно из таких уравнений уже упоминалось - это уравнение состояния Ван-дер-Ваальса, которое до сих пор полезно для создания хоть и приближенного, но простого аналитического представления о поведении реального газа.

Используя обобщенную теорию Ван-дер-Ваальса, в работе [137] показано, что из этого уравнения с определенными допущениями можно вывести некоторые современные аналитические уравнения состояния, в частности, уравнение состояния в форме Редлиха - Квонга.

Уравнение Редлиха - Квонга, сформулированное в 1949 г., является наиболее удачным двухпараметрическим уравнением состояния [82, 134]. Его часто используют при описании фазового равновесия и прогнозировании критических и других параметров смесей. Уравнение имеет вид

$$p = \frac{R_0 T}{V - B} - \frac{A}{T^{0,5} V(V + B)} .$$
 (2.16)

Применяя условия, что в критической точке

$$\left(\frac{dp}{dV}\right)_{T_{Kp}} = \left(\frac{d^2p}{dV^2}\right)_{T_{Kp}} = 0 ,$$

можно получить

$$A = \frac{0,427 R_0^2 T_{\kappa p}^{2,5}}{p_{\kappa p}} ; \qquad B = \frac{008664 R_0 T_{\kappa p}}{p_{\kappa p}},$$

где V - мольный объем; R₀ - универсальная газовая постоянная.

Уравнение (2.14) обычно называют оригиналом уравнения Редлиха-Квонга, что отличает его от многих модификаций, предложенных после 1949 г. [82]. Успешное использование оригинала уравнения Редлиха - Квонга, как надежного уравнения состояния явилось причиной попыток многих исследователей повысить его точность и диапазон применимости.

Широко известной модификацией уравнения Редлиха-Квонга является выражение [82].

$$p = R_0 T \left[\frac{1}{V - B} - \frac{4,934 B F}{V(V + B)} \right], \qquad (2.17)$$

в котором выражение F варьируется в зависимости от типа предложенной модификации.

В оригинале уравнения Редлиха - Квонга [134]

$$F = \left(\frac{T}{T_{\kappa p}}\right)^{-1,5},$$
 (2.18)

в модификациях: Вильсона [138]

F = 1 + (1,57 + 1,62
$$\omega$$
) $\left(\frac{T_{\kappa p}}{T} - 1\right)$, (2.19)

Барне - Кинга [121]

$$F = 1 + (0,9 + 1,21\omega) \left[\left(\frac{T_{\kappa p}}{T} \right)^{1,5} - 1 \right], \qquad (2.20)$$

Соаве [135]

$$F = \frac{T_{\kappa p}}{T} \left[1 + \left(0,48 + 1,574\omega - 0,176\omega^2 \right) \left(1 - \sqrt{\frac{T}{T_{\kappa p}}} \right) \right]^2,$$
(2.21)

где ω - фактор ацентричности [82], определяемый по уравнению

$$\omega = -\lg \frac{p_s}{p_{\kappa p}} - 1,0.$$

Чтобы получить значение ω необходимо знать критическое давление p_{kp} , а также давление насыщенных паров p_s при $T/T_{kp} = 0,7$.

Эта константа сначала была предложена для описания ацентричности или несферичности молекулы и для одноатомных газов она близка к нулю. Однако для углеводородов с высокой молекулярной массой значение ω возрастает и резко увеличивается с полярностью. Поэтому в настоящее время фактор ацентричности используется в качестве параметра, который характеризует сложность молекулы как в отношении ее геометрии, так и полярности.

Значения фактора ацентричности для многих веществ даны в [82].

Если необходимый фактор ацентричности не приведен в [82], его можно рассчитать по нескольким имеющимся там же методикам.

За исключением температур близких к Т_{кр} различные функции F хорошо согласуются друг с другом.

Расчеты по предложенным уравнениям параметров и функций состояния являются достаточно точными и дают погрешности в пределах 1 - 2% за исключением области вблизи критической точки.

Модифицированные уравнения Редлиха - Квонга можно применять не только для чистых рабочих веществ (холодильных агентов), но и для смесей холодильных агентов, а также их смесей со смазочным маслом, как это имеет место в паровых холодильных машинах. Для азеотропных смесей уравнение Редлиха-Квонга в модификации Вильсона [82] будет иметь вид

$$p_{cM} = R_0 T_{cM} \left[\frac{1}{V_{cM} - B_{cM}} - \frac{4,934B_{cM}F_{cM}}{V_{cM}(V_{cM} + B_{cM})} \right], \qquad (2.22)$$

$$B_{cM} = \sum_{j} y_{j} B_{j}$$
, $F_{cM} = \sum_{j} y_{j} F_{j}$, (2.23)

где у₁ - мольная доля компонента.

Уравнение (2.14) можно представить в следующем виде:

$$p = RT\left[\frac{1}{v-b} - \frac{a(T)}{v(v+b)}\right], \qquad (2.24)$$

где $b = B/\mu$; $a(T) = 4,934BF/\mu$.

Проводя замену удельного объема v на плотность р, получаем

$$p = RT \left[\frac{\rho}{1 - b\rho} - \frac{\rho^2 a(T)}{1 + b\rho} \right].$$
(2.25)

Кроме перечисленных также используют уравнения состояния [82]: Барнера - Адлера, Суги - Лю, Ли - Эдбара - Эдмистера, Бенедикта- Вебба - Рубина и его модификации и др.

2.2. Основные термодинамические уравнения

То или иное уравнение состояния (2.1) – (2.14), (2.25) в принципе позволяет получить расчетные зависимости для основных термодинамических функций и характеристик рабочего тела, к которым следует отнести: внутреннюю энергию, энтальпию, теплоемкость в изохорном и изобарном процессах, показатель изоэнтропы, выражения для расчета расходов реальных рабочих веществ и др.

Для получения расчетных зависимостей этих величин будем использовать известные [59] дифференциальные уравнения термодинамики, которые приведем к виду, удобному для интегрирования. Иллюстрацию вывода основных зависимостей проведем на примере уравнения состояния Редлиха-Квонга (2.25) [36].

Удельные внутренняя энергия и энтальпия

Для нахождения зависимости удельной внутренней энергии используем уравнение (4-25) [59]

$$\left(\frac{\partial u}{\partial \rho}\right)_T = T \left(\frac{\partial \rho}{\partial T}\right)_V - p ,$$

откуда, производя замену $v=1/\rho$

$$\partial \mathbf{v} = -\frac{1}{\rho^2}\partial \rho$$
,

получим

$$\left(\frac{\partial u}{\partial \rho}\right)_{T} = \frac{1}{\rho^{2}} \left[p - T \left(\frac{\partial p}{\partial T}\right)_{\rho} \right] \,.$$

При $\rho \to 0$ внутренняя энергия стремится к внутренней энергии идеального газа $u_{\mu d}$, поэтому

$$u = u_{\rm M,T} + \int_{0}^{\rho} \frac{1}{\rho^2} \left[p - T \left(\frac{\partial p}{\partial T} \right)_{\rho} \right] d\rho , \qquad (2.26)$$

где и_{ид} отсчитывается от некоторого начального значения и_{оид}.

Для определения величины и_{ид} используется зависимость

$$u = u_{O H \mathcal{A}} + \int_{T_o}^{T} C_{V H \mathcal{A}}(T) dT ,$$

где $C_{vug}(T)$ - зависимость идеальной теплоемкости вещества от температуры, которую представляют обычно в виде полиномиального ряда.

$$C_{V M A}(T) = C_0 + C_1 T + C_2 T^2 +,..., + C_i T^i + ...C_n T^n = \sum_{i=0}^{m} C_i T^i$$
.

Иногда для изохорной теплоемкости в идеально-газовом состоянии используют аппроксимационное уравнение вида

$$C_{\text{VИД}}(T) = \sum_{i=0}^{n} C_i \tau^i$$
,

где $\tau = T/T_{\kappa p}$, а $T_{\kappa p}$ – критическая температура. В ряде случаев это уравнение записывают как

$$\frac{C_{VHZ}(T)}{R} = \sum_{i=-1}^{n} C_{i} \left(\frac{T}{1000}\right)^{i},$$

где R – газовая постоянная.

Аппроксимирующие коэффициенты C_i приводятся в справочной литературе [82, 100, 104] для различных рабочих веществ.

Для нахождения зависимости удельной энтальпии используем уравнение (4-33) [59]

$$\left(\frac{\partial h}{\partial v}\right)_{T} = T \left(\frac{\partial p}{\partial T}\right)_{V} + v \left(\frac{\partial p}{\partial v}\right)_{T},$$

откуда, произведя замену v на р, получим

$$\left(\frac{\partial h}{\partial \rho}\right)_{T} = \left[\frac{1}{\rho} \left(\frac{\partial p}{\partial \rho}\right)_{T} - \frac{T}{\rho^{2}} \left(\frac{\partial p}{\partial T}\right)_{\rho}\right].$$

При *ρ*→0 удельная энтальпия стремится к удельной энтальпии идеального газа. Тогда зависимость для удельной энтальпии, справедливая для всех газов, будет иметь вид

$$h = h_{\rm HZ} + \int_{0}^{\rho} \left[\frac{1}{p} \left(\frac{\partial p}{\partial \rho} \right)_{\rm T} - \frac{{\rm T}}{\rho^2} \left(\frac{\partial p}{\partial {\rm T}} \right)_{\rho} \right] d\rho , \qquad (2.27)$$

где h_{ид} - удельная энтальпия идеального газа, которая определяется по зависимости

$$h_{\mu\mu} = u_{\mu\mu} + RT = u_{\mu\mu} + \frac{p}{\rho}.$$

Для получения расчетных зависимостей удельных внутренней энергии и энтальпии, отвечающих рабочему телу, описываемому уравнением состояния (2.25) найдем производные

$$\left(\frac{\partial p}{\partial \rho}\right)_{T} = RT \left[\frac{1}{(1-b\rho)^{2}} - \frac{a(T)(2\rho+b\rho^{2})}{(1+b\rho)^{2}}\right], \qquad (2.28)$$

$$\left(\frac{\partial p}{\partial T}\right)_{\rho} = R\left[\frac{\rho}{1-b\rho} - \frac{\rho^2}{1+b\rho}\left(a(T) + T\frac{da(T)}{dT}\right)\right].$$
 (2.29)

Подставив в (2.26) и (2.27), производные (2.28) и (2.29) после интегрирования получим

$$u = u_{\mu\mu} + RT^2 \frac{da(T)}{dT} \frac{1}{b} ln(1 + b\rho) , \qquad (2.30)$$

$$h = u_{\rm M,H} + \frac{RT}{1 - b\rho} - \frac{a(T)RT\rho}{1 + b\rho} + RT^2 \frac{da(T)}{dT} \frac{1}{b} \ln(1 + b\rho) . \qquad (2.31)$$

Изохорная и изобарная теплоемкости

Для нахождения зависимости изохорной теплоемкости используем уравнение (4-47) [59]

$$C_{\rm V} = \left(\frac{\partial u}{\partial T}\right)_{\rho} .$$

Тогда, дифференцируя (2.30), запишем

$$C_{V} = C_{V_{HZ}} + \frac{RT}{b} \ln(1 + b\rho) \frac{d^{2}(Ta(T))}{dT^{2}} . \qquad (2.32)$$

Для нахождения изобарной теплоемкости можно использовать зависимость (4-53) [59]

$$C_{p} - C_{V} = -T \left(\frac{\partial v}{\partial p}\right)_{T} \left(\frac{\partial p}{\partial T}\right)_{V}^{2}$$

которая после замены $v = 1/\rho$ преобразуется к виду

$$C_{p} - C_{V} = \frac{T}{\rho^{2}} \frac{\left(\frac{\partial p}{\partial T}\right)_{\rho}^{2}}{\left(\frac{\partial p}{\partial \rho}\right)_{T}^{2}} .$$

Подставляя в последнее выражение уравнения (2.28) и (2.29), получим

$$C_{p} - C_{V} = \frac{R \left[\frac{1}{1 - b\rho} - \frac{\rho}{1 + b\rho} \left(a(T) + T \frac{da(T)}{dT} \right) \right]^{2}}{\left[\frac{1}{(1 - bp)^{2}} - \frac{a(T)(2\rho + b\rho^{2})}{(1 + b\rho)^{2}} \right]} .$$
 (2.33)

На рис. 2.1 представлены результаты расчета удельной изохорной теплоемкости по уравнению (2.32).

Рис. 2.1. Зависимость удельной изохорной теплоемкости реального рабочего тела:

1 -
$$\rho = 40 \text{ kg/m}^3$$
; 2 - $\rho = 20 \text{ kg/m}^3$; 3 - $\rho = 2 \text{ kg/m}^3$

Удельная энтропия

Для нахождения зависимости удельной энтропии воспользуемся уравнением

$$\left(\frac{\partial s}{\partial v}\right)_{T} = \left(\frac{\partial p}{\partial T}\right)_{v},$$

откуда, производя замену v = 1/ р

$$\partial v = -\frac{1}{\rho^2} \partial \rho \; ,$$

Получим

$$\left(\frac{\partial s}{\partial \rho}\right)_{T} = -\frac{1}{\rho^{2}} \left(\frac{\partial p}{\partial T}\right)_{\rho}.$$

При $\rho \to 0$ ($\rho = \text{const}$) энтропия стремится к энтропии идеального газа $s_{\mu g}$, поэтому

$$s = s_{\mu\mu} - \int_{\rho_0}^{\rho} \frac{1}{\rho^2} \left(\frac{\partial p}{\partial T}\right)_{\rho} d\rho,$$

где s_{ид} отсчитывается от некоторого начального значения s_{о ид}. Тогда для указанных условий можно записать, что

$$s_{\rm HZ} = s_{\rm O HZ} + \int_{\rm T_o}^{\rm T} C_{\rm V HZ}({\rm T}) \frac{{\rm d}{\rm T}}{{\rm T}},$$

где С_{v ид}(T) - зависимость идеально-газовой теплоемкости от температуры.

$$s = s_{\mu\mu} - \int_{\rho_0}^{\rho} \frac{1}{\rho^2} \left(\frac{\partial p}{\partial T}\right)_{\rho} d\rho$$
.
Так как в последнем уравнении один предел интегрирования (ρ) относится к реальному газу, а другой (ρ_0) к идеальному, то разобьем интеграл на две части:

$$s = s_{H \Pi} - \int_{0}^{\rho} \frac{1}{\rho^2} \left(\frac{\partial p}{\partial T} \right)_{\rho} d\rho - \int_{\rho_0}^{0} \frac{1}{\rho^2} \left(\frac{\partial p}{\partial T} \right)_{\rho} d\rho .$$

Первый интеграл требует знания свойств реального газа, а второй описывает идеальный газ и может быть взят сразу. Однако, чтобы избежать трудностей, которые вносит предел интегрирования «0», в правой части уравнения следует добавить и вычесть величину $\int_{0}^{\rho} \frac{R}{\rho} d\rho$.

Для идеального газа $p = \rho RT$ и $\left(\frac{\partial p}{\partial T}\right)_{\rho} = \rho R$, поэтому

$$s = s_{\mathcal{H}\mathcal{I}} - \int_{0}^{\rho} \frac{1}{\rho^2} \left(\frac{\partial p}{\partial T} \right)_{\rho} d\rho - \int_{\rho_0}^{0} \frac{R}{\rho} d\rho + \int_{0}^{\rho} \frac{R}{\rho} d\rho - \int_{0}^{\rho} \frac{R}{\rho} d\rho =$$

$$= s_{\mu \pi} - \int_{0}^{\rho} \left[\frac{1}{\rho^{2}} \left(\frac{\partial p}{\partial T} \right)_{\rho} - \frac{R}{\rho} \right] d\rho - \int_{\rho_{0}}^{\rho} \frac{R}{\rho} d\rho = s_{\mu \pi} - \int_{0}^{\rho} \left[\frac{1}{\rho^{2}} \left(\frac{\partial p}{\partial T} \right)_{\rho} - \frac{R}{\rho} \right] d\rho - R \ln \frac{\rho}{\rho_{0}}.$$

Применительно к уравнению состояния Редлиха - Квонга можно получить

$$s = s_{0_{M,T}} + \int_{T_0}^{T} C_{V_{M,T}}(T) \frac{dT}{T} + R \ln(1 - b\rho) + \frac{R}{b} \left[a(T) + \frac{T da(T)}{dT} \right] \ln(1 + b\rho) - R \ln \frac{\rho}{\rho_0} , \quad (2.34)$$

ИЛИ

$$s = s_0 + \int_{T_0}^{T} C_{V \text{ MA}}(T) \frac{dT}{T} - R \ln \frac{\rho}{1 - b\rho} + \frac{R}{b} \left[a(T) + \frac{T da(T)}{dT} \right] \ln(1 + b\rho),$$

где $s_o = const$ отсчитывается от произвольного идеально-газового состояния,

$$s_0 = s_{0 \text{ ид}} + R \ln \rho_0.$$

Для других уравнений состояния зависимости s приведены в табл. 2.2

Таблица 2.2

Уравнение	S
состояния	
Клапейрона	$s_{o} + \int_{T_{o}}^{T} c_{V \mu \mu}(T) \frac{dT}{T} - R \ln \rho$
Дюпре – Абеля	$s_{0} + \int_{T_{0}}^{T} c_{V HZ}(T) \frac{dT}{T} + Rb\rho - R \ln \rho$
Ван - дер – Вальса	$s_{o} + \int_{T_{o}}^{T} c_{V H A}(T) \frac{dT}{T} + Rb\rho - R \ln \rho$
Боголюбова – Майера	$s_{o} + \int_{T_{o}}^{T} c_{V M A}(T) \frac{dT}{T} - R \sum_{i=1}^{n} \left[B_{i}(T) + T \frac{dB_{i}(T)}{dT} \right] \frac{\rho^{i}}{i} - R \ln \rho$

Изоэнтропный процесс и показатель изоэнтропы

Для нахождения показателя изоэнтропы используем объединенные уравнения первого и второго законов термодинамики

 $Tds = du + p \, dv ,$

Tds = dh - v dp ,

которые для изоэнтропного процесса (ds = 0) принимают вид

$$du = -p dv$$
, $dh = v dp$,

Откуда

$$\left(\frac{\partial u}{\partial v}\right)_{S} = -p \;, \qquad \left(\frac{\partial h}{\partial p}\right)_{S} = v \;.$$

Из последних соотношений можно получить дифференциальные уравнения изоэнтропы в виде

$$\left(\frac{\partial h}{\partial u}\right)_{S} = \frac{v}{p} \left(\frac{\partial p}{\partial v}\right)_{S} = k \ .$$

Производя замену v на р, получим

$$k = \frac{\rho}{p} \left(\frac{\partial p}{\partial \rho} \right)_{S} . \tag{2.35}$$

Из (4-61) [59] находим

$$\left(\frac{\partial p}{\partial \rho}\right)_{\rm S} = \left(\frac{\partial p}{\partial \rho}\right)_{\rm T} + \frac{{\rm T}}{{\rm C}_{\rm v} \rho^2} \left(\frac{\partial p}{\partial {\rm T}}\right)_{\rho}^2 ,$$

откуда после подстановки выражений производных (2.26, 2.27), получим

$$\left(\frac{\partial p}{\partial \rho}\right)_{S} = RT\left\{\left[\frac{1}{(1-bp)^{2}} - \frac{a(T)(2\rho+b\rho^{2})}{(1+b\rho)^{2}}\right] + \frac{R}{C_{V}}\left[\frac{1}{1-b\rho} - \frac{\rho^{2}}{1+b\rho}\left(a(T) + T\frac{da(T)}{dT}\right)\right]^{2}\right\} \quad . \quad (2.36)$$

Тогда выражение для показателя изоэнтропы примет вид

$$k = \frac{\left[\frac{1}{(1-b\rho)^{2}} - \frac{a(T)(2\rho + b\rho^{2})}{(1+b\rho)^{2}}\right] + \frac{R}{C_{V}}\left[\frac{1}{1-b\rho} - \frac{\rho}{1+b\rho}\left(a(T) + T\frac{da(T)}{dT}\right)\right]^{2}}{\left[\frac{1}{1-b\rho} - \frac{\rho a(T)}{1+b\rho}\right]}.$$
 (2.37)

Для нахождения соотношения между давлениями в адиабатном процессе преобразуем выражение (2.35) к виду

$$k = \frac{\rho}{p} \left(\frac{\partial p}{\partial \rho} \right)_{s} = \left(\frac{\partial (\ln p)}{\partial (\ln \rho)} \right)_{s}$$

ИЛИ

$$(\partial(\ln p))_{s} = k(\partial(\ln \rho))_{s}$$
, откуда $\ln \frac{p_{2}}{p_{1}} = \int_{\rho_{1}}^{\rho_{2}} k \frac{d\rho}{\rho}$,

$$\frac{p_2}{p_1} = \exp \int_{\rho_1}^{\rho_2} k \frac{d\rho}{\rho} .$$
 (2.38)

Найдем соотношение между плотностями в адиабатном процессе, для чего воспользуемся зависимостью (4-56) [59]

$$\mathbf{C}_{\mathbf{v}} = -\mathbf{T} \left(\frac{\partial \mathbf{p}}{\partial \mathbf{T}} \right)_{\mathbf{v}} \left(\frac{\partial \mathbf{v}}{\partial \mathbf{T}} \right)_{\mathbf{s}} \; .$$

Откуда после замены у на р получим

$$\left(\frac{\partial T}{\partial \rho}\right)_{\rm S} = \frac{T}{C_{\rm V} \rho^2} \left(\frac{\partial p}{\partial T}\right)_{\rho} \ . \label{eq:stars}$$

Подставляя в последнее уравнение, формулу (2.29), получим выражение

$$\left(\frac{\partial T}{\partial \rho}\right)_{s} = \frac{RT}{C_{v}\rho} \cdot \left[\frac{1}{1-b\rho} - \frac{\rho}{1+b\rho}\left(a(T) + T\frac{da(T)}{dT}\right)\right],$$

которое для адиабатного процесса можно преобразовать к виду

$$C_{v} \frac{dT}{T} - R \left[\frac{1}{1 - b\rho} - \frac{\rho}{1 + b\rho} \left(a(T) + T \frac{da(T)}{dT} \right) \right] \frac{d\rho}{\rho} = 0 \quad . \tag{2.39}$$

Последнее уравнение можно представить в общем виде [18]

$$P(T,\rho)dT + Q(T,\rho)d\rho = 0$$
, (2.40)

где

$$P(T,\rho) = \frac{C_{v}}{T} = \frac{1}{T} \left[C_{v \mu \mu} \frac{RT}{b} \ln(1+b\rho) \frac{d^{2}(Ta(T))}{dT^{2}} \right],$$

$$Q(T,\rho) = -\frac{R}{\rho} \left[\frac{1}{1-b\rho} - \frac{\rho}{1+b\rho} \left(a(T) + T \frac{da(T)}{dT} \right) \right].$$

Для уравнения (2.40) должно выполняться и выполняется условие

$$\frac{\partial P}{\partial \rho} = \frac{\partial Q}{\partial T} = \frac{R}{1+b\rho} \frac{d^2 (T a(T))}{dT^2} .$$

Тогда общий интеграл уравнения (2.38) будет иметь вид

$$F(T,\rho) = A ,$$

где F(T, ρ) - первообразная функция [19]; А - произвольная постоянная.

Выполняя интегрирование

$$\begin{split} \left(\int P(T,\rho)dT\right)_{\rho} &= \int \left[\frac{C_{VHA}}{T} + \frac{R}{b}\ln(1+b\rho)\frac{d^{2}(Ta(T))}{dT^{2}}\right] = \\ &= \int_{0}^{T} \frac{C_{VHA}}{T}dT + \frac{R}{b}\ln(1+b\rho)\left(a(T) + T\frac{da(T)}{dT}\right) + A_{1}; \\ \left(\int Q(T,\rho)d\rho\right)_{T} &= \int \left[-\frac{R}{\rho(1-b\rho)} + \frac{R}{1+b\rho}\left(a(T) + T\frac{da(T)}{dT}\right)\right]d\rho = \\ &= -R \cdot \ln\frac{R}{b}\ln(1+b\rho)\left(a(T) + T\frac{da(T)}{dT}\right) + A_{2} \end{split}$$

и объединяя полученные выражения, найдем первообразную функцию

$$F(T,\rho) = \int_{0}^{T} \frac{C_{VHA}}{T} dT - R \ln \frac{\rho}{(1-b\rho)} + \frac{R}{b} \ln(1+b\rho) \left(a(T) + T \frac{da(T)}{dT}\right) = A \quad .$$
(2.41)

Подставляя в (2.39) начальные значения параметров, найдем выражение для А :

$$A = \int_{0}^{T_{1}} \frac{C_{VMA}}{T} dT - R \ln \frac{\rho_{1}}{(1 - b\rho_{1})} + \frac{R}{b} \ln(1 + b\rho_{1}) \left(a(T_{1}) + T_{1} \frac{da(T_{1})}{dT}\right).$$
(2.42)

Объединяя выражения (2.41) и (2.42), найдем частное решение уравнения (2.40)

$$\frac{1}{R} \int_{T_1}^{T_2} C_{VHZ} \frac{dT}{T} - \ln \frac{\rho_2}{\rho_1} - \ln \frac{1 - b\rho_1}{1 - b\rho_2} + \frac{1}{b} \left[\ln(1 + b\rho_2) \left(a(T_2) + T \frac{da(T_2)}{dT_2} \right) - \left(2.43 \right) - \ln(1 + b\rho_1) \left(a(T_1) + T \frac{da(T_1)}{dT_1} \right) \right] = 0.$$
(2.43)

Подставляя вместо C_{vud} выражение $C_{vud}(T) = \sum_{i=0}^{m} C_i T^i$ получим,

ЧТО

$$\frac{1}{R} \int_{T_1}^{T_2} C_{VHZ} \frac{dT}{T} = \frac{C_0}{R} \ln \frac{T_2}{T_1} + \frac{1}{R} \int_{T_1}^{T_2} \left(\sum_{i=1}^m C_i T^i \right) dT \quad .$$
(2.44)

Подставив (2.44) в (2.43), после преобразований получим

$$\frac{\rho_{2}}{\rho_{1}} = \left(\frac{T_{2}}{T_{1}}\right)^{\frac{Co}{R}} \exp\left\{\frac{1}{R} \int_{T_{1}}^{T_{2}} \left(\sum_{i=1}^{m} C_{i} T^{i}\right) dT + \left[\ln(1+b\rho_{2})\left(a(T_{2})+T_{2} \frac{da(T_{2})}{dT}\right) - \ln(1+b\rho_{1})\left(a(T_{1})+T_{1} \frac{da(T_{1})}{dT}\right)\right] - \ln\frac{1-b\rho_{1}}{1-b\rho_{2}}\right\}.$$
(2.45)

Уравнения (2.45) и (2.38) можно использовать для нахождения значений параметров в адиабатном процессе по одному из заданных значений параметров (р, р, Т) в конечной точке.

Скорость звука

Скорость распространения малых возмущений (скорость звука) в любой среде определяется выражением (8-21a) [59] $a = \sqrt{(\partial p / \partial \rho)_s}$, откуда, используя (2.36), получим

$$a = \sqrt{RT} \left\{ \left[\frac{1}{(1-b\rho)^2} - \frac{a(T)(2\rho + b\rho^2)}{(1+b\rho)^2} \right] + \frac{R}{C_v} \left[\frac{\rho}{1-b\rho} - \frac{\rho^2}{1+b\rho} \left(a(T) + T\frac{da(T)}{dT} \right) \right]^2 \right\} . \quad (2.46)$$

Секундный массовый расход газа

Рассмотрим режим истечения газа из сосуда при заданных параметрах газа в сосуде и давлении среды, куда происходит истечение.

В общем случае массовый расход можно определить по зависимости (прил. 1.)

$$G = \mu S \rho V(\rho, T)$$
 (2.47)

где μ - коэффициент расхода; S - площадь поперечного сечения отверстия; ρ - плотность газа; V(ρ ,T) - скорость газа в сечении отверстия.

Скорость газа при истечении определим выражением (8-9) [59]

$$V = \sqrt{2(h_0 - h) + V_0^2}$$
(2.48)

где h₀, h - удельные энтальпии газа в сосуде и отверстии соответственно; V₀ - скорость газа в сосуде.

Подставляя в зависимость (2.48) выражение энтальпии, согласно (2.31) получим

$$V = \sqrt{2\int_{T}^{T_{0}} C_{VHZ}(T) dT + 2RT_{0} \left[\left(\frac{1}{1 - b\rho_{0}} - \frac{T/T_{0}}{1 - b\rho} \right) - \left(\frac{a(T_{0})\rho_{0}}{1 + b\rho_{0}} - \frac{a(T)\rho}{1 + b\rho} \right) + \right]^{m}}$$
(2.49)

$$+\frac{1}{b}\left(T_0\frac{\mathrm{da}(T_0)}{\mathrm{dT}}\ln(1+b\rho_0)-\frac{T^2}{T_0}\frac{\mathrm{da}(T)}{\mathrm{dT}}\ln(1+b\rho)\right)\right].$$

Считая истечение газа изоэнтропным, значения параметров газа в отверстии и сосуде должны быть связаны уравнением изоэнтропы в виде (2.38) или (2.45). В этом случае состояние газа в отверстии зависит от одного независимого параметра. При этом возможны два режима истечения: докритический и критический.

Докритический режим истечения

Поскольку в докритическом режиме давление p в отверстии равно давлению среды p_c , куда происходит истечение, значение температуры Т и плотности газа ρ могут быть найдены решением системы уравнений, включающей уравнение состояния (2.25) и уравнение изоэнтропы (2.38) или (2.45).

$$\begin{cases} \frac{p_{c}}{p_{o}} = \exp \int_{\rho_{o}}^{\rho} k \frac{dp}{\rho}; \\ \frac{p_{c}}{\rho} = RT \left[\frac{1}{1 - b\rho} - \frac{a(T)\rho}{1 + b\rho} \right]. \end{cases}$$
(2.50)

Критический режим истечения

Критические параметры истечения в отверстии могут быть найдены из условия равенства скорости течения газа V и скорости звука в отверстии а

$$\sqrt{2[h_0(T_0,\rho_0) - h(T_{KP},\rho_{KP})]} = a(T_0,\rho_0,T_{KP},\rho_{KP}),$$

которое приводится к виду

$$2\left[\int_{T_{H}}^{T_{0}} C_{VHZ}(T)dT + \left(\frac{RT}{1-b\rho_{0}} - \frac{a(T_{0})RT_{0}\rho_{0}}{1+b\rho_{0}} + RT_{0}^{2}\frac{da(T_{0})}{dT}\frac{1}{b}\ln(1+b\rho_{0})\right)\right] + V_{0}^{2} = 0$$

$$=2\int_{T_{H}}^{T_{Kp}}C_{VHZ}(T)dT + RT_{Kp}\left\{\frac{3}{1-b\rho_{Kp}} - \frac{a(T_{Kp})\rho_{Kp}}{1+b\rho_{Kp}}\left(\frac{4+3b\rho_{Kp}}{1+b\rho_{Kp}}\right) + (2.51)\right\}$$

$$+\frac{2T_{\kappa p}}{b}\frac{da(T_{\kappa p})}{dT}\ln(1+b_{\kappa p})+\frac{R}{C_{v}}\left[\frac{1}{1-b\rho_{\kappa p}}-\frac{\rho_{\kappa p}}{1+b\rho_{\kappa p}}\left(a(T_{\kappa p})+T_{\kappa p}\frac{da(T_{\kappa p})}{dT}\right)\right]^{2}\right\}.$$

Решая уравнение (2.51) совместно с уравнением адиабаты (2.45) найдем параметры $T_{\kappa p}$, $\rho_{\kappa p}$, а из уравнения состояния (2.25) найдем $\rho_{\kappa p}$.

Расход газа определяется выражением

$$G = \mu S \rho_{KP} V_{KP} \quad . \tag{2.52}$$

Уравнение скорости изменения температуры

Для получения расчетных зависимостей, описывающих функционирование обобщенной тепломеханической системы (см. рис. 1) с рабочим телом, состояние которого описывается уравнением Редлиха - Квонга, заменим уравнение (1.1) на уравнение скорости изменения температуры.

Для этого используем выражение удельной внутренней энергии, которое в общем случае можно представить в виде u=u(ρ,T) или

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = \left(\frac{\partial u}{\partial \rho}\right)_{\mathrm{T}} \frac{\mathrm{d}\rho}{\mathrm{d}\tau} + \left(\frac{\partial u}{\partial \mathrm{T}}\right)_{\rho} \frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\tau} ,$$

откуда

$$\frac{\mathrm{dT}}{\mathrm{d\tau}} = \left[\frac{\mathrm{du}}{\mathrm{d\tau}} - \left(\frac{\partial \mathrm{u}}{\partial \rho}\right)_{\mathrm{T}} \frac{\mathrm{d\rho}}{\mathrm{d\tau}}\right] / \left(\frac{\partial \mathrm{u}}{\partial \mathrm{T}}\right)_{\rho} \,. \tag{2.53}$$

Выражение du/dт найдем из уравнения (1.1):

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = \frac{1}{\rho W} \left[\sum_{0}^{k} (h_{k} - u)G_{k} + \frac{\delta Q}{\mathrm{d}\tau} - p\frac{\mathrm{d}W}{\mathrm{d}\tau} \right].$$
(2.54)

Подставляя в (2.53) уравнение (2.54), а также уравнение

$$\left(\frac{\partial u}{\partial \rho}\right) = \frac{1}{\rho^2} \left[p - T \left(\frac{\partial p}{\partial T}\right)_{\rho} \right] ,$$

получим уравнение скорости изменения температуры рабочего тела

$$\frac{dT}{d\tau} = \frac{1}{C_v \rho W} \left\{ \sum_{0}^{k} \left[h_k - u - \rho \left(\frac{\partial u}{\partial \rho} \right)_T \right] G_k + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \left[p - \rho^2 \left(\frac{\partial u}{\partial \rho} \right)_T \right] \right\} . \quad (2.55)$$

Применительно к уравнению состояния Редлиха - Квонга имеем выражение

$$\left(\frac{\partial T}{\partial \rho}\right)_{T} = \frac{RT^{2}}{1+b\rho} \frac{da(T)}{dT} ,$$

после подстановки которого в уравнение (2.53), получаем

$$\frac{dT}{d\tau} = \frac{1}{C_v \rho W} \left[\sum_{0}^{k} \left(h_k - u - \frac{RT^2 \rho}{1 + b\rho} \cdot \frac{da(T)}{dT} \right) G_k + \frac{\delta Q}{d\tau} - \frac{\rho}{1 + b\rho} \left(a(T) + T \frac{da(T)}{dT} \right) \frac{dW}{d\tau} \right].$$
(2.55a)

Определение производных da(T)/dT и d²a(T)/dT² для уравнения Редлиха - Квонга различных модификаций

$$a(T) = 4,934 BF/\mu$$
,

где
$$B = \frac{0,08664 R_0 T_{\kappa p}}{p_{\kappa p}}.$$

После преобразований получаем $a(T)=a_{\kappa}F$,

где $a_{\rm K} = \frac{0.42748 \, {\rm R}_0 {\rm T}_{\rm Kp}}{p_{\rm Kp} \, \mu}$.

Выражения производных сведены в табл. За, Зб.

По аналогии с вышеизложенным можно получить основные расчетные зависимости и для других уравнений состояния. В частности, для уравнений состояния (2.1), (2.2), (2.3), (2.11), они приводятся в табл. 2a, 26, 3a, 3б.

Выражения для расчета массовых расходов при перетеканиях приведены для уравнений состояния Боголюбова - Майера и Ван-дер-Ваальса. Из последнего, последовательно полагая a = 0 и a = b = 0, легко получить соответствующие выражения для уравнений состояния Абеля и Клапейрона - Менделеева.

Уравнение состояния Боголюбова - Майера

1. Скорость газа при истечении

$$V = \sqrt{2\int_{T}^{T_{0}} C_{V M \pi}(T) dT + 2RT_{0} \left\{ \left(1 - \frac{T}{T_{0}}\right) + \sum_{i=1}^{n} \left(\left[B_{i}(T_{0}) - \frac{T_{0}}{i} \frac{dB_{i}(T_{0})}{dT}\right] \rho_{0}^{i} - \frac{T_{0}}{i} \frac{dB_{i}(T_{0})}{dT} \right] \rho_{0}^{i} - \frac{T_{0}}{i} \frac{dB_{i}(T)}{dT} \left[B_{i}(T) - \frac{T_{0}}{i} \frac{dB_{i}(T)}{dT}\right] \rho_{0}^{i} \right\} + V_{0}^{2},$$

где T₀, ρ_0 , V₀ - температура, давление, скорость газа в полости, откуда происходит истечение.

2. Уравнение, связывающее плотность и температуру в изоэнтропном процессе:

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{C_0}{R}} \exp\left\{\frac{1}{R} \int_{T_1}^{T_2} \left(\sum_{i=1}^{m} C_i T^i\right) dT + \left[\sum_{i=1}^{n} \frac{d(T_1 B_i(T_1))}{dT} \frac{\rho_1^i}{i} - \sum_{i=1}^{n} \frac{d(T_2 B_i(T_2))}{dT} \frac{\rho_2^i}{i}\right]\right\}.$$

Уравнение для определения критических параметров при истечении:

$$\begin{split} & 2 \Bigg[\prod_{T_{H}}^{T_{0}} C_{v}(T) dT + RT_{0} \Bigg\{ 1 + \sum_{i=1}^{n} \Bigg(B_{i}(T_{0}) - \frac{dB_{i}(T_{0})}{dT} \Bigg) \rho_{0}^{i} \Bigg\} \Bigg] + V_{0}^{2} = \\ & = 2 \Bigg[\prod_{T_{H}}^{T_{\kappa p}} C_{v}(T) dT + RT_{\kappa p} \Bigg\{ 3 + \sum_{i=1}^{n} \Bigg[(i+3)B_{i}(T_{\kappa p}) - \frac{2}{i}T_{\kappa p} \frac{dB_{i}(T_{\kappa p})}{dT} \Bigg] \rho_{\kappa p}^{i} + \\ & \quad + \frac{R}{C_{v}(T)} \Bigg[1 + \sum_{i=1}^{n} B_{i}(T_{\kappa p}) \rho_{\kappa p}^{i} + T_{\kappa p} \sum_{i=1}^{n} \frac{dB_{i}(T_{\kappa p})}{dT} \rho_{\kappa p}^{i} \Bigg]^{2} \Bigg\} . \end{split}$$

Уравнение состояния Ван-дер-Ваальса

1. Скорость газа при истечении

$$V = \sqrt{2\int_{T}^{T_{0}} C_{VHA}(T) dT} + 2\left[R\left(\frac{T_{0}}{1 - b\rho_{0}} - \frac{T}{1 - b\rho}\right) - 2a(\rho_{0} - \rho) \right] + V_{0}^{2} .$$

2. Уравнение, связывающее плотность и температуру в изоэнтропном процессе:

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{C_0}{R}} \exp\left[\frac{1}{R} \int_{T_1}^{T_2} \left(\sum_{i=1}^m C_i T^i\right) dT + \ln\frac{1-b\rho_2}{1-b\rho_1}\right].$$

3. Уравнение для определения критических параметров при истечении

$$2\int_{T_{\kappa p}}^{T_{0}} C_{V M A}(T) dT + 2 \left[R \left(\frac{T_{0}}{1 - b\rho_{0}} - \frac{T}{1 - b\rho_{\kappa p}} \right) - 2a \left(\rho_{0} - \frac{3}{2} \rho_{\kappa p} \right) \right] + V_{0}^{2} = \frac{RT_{\kappa p}}{\left(1 - b\rho_{\kappa p} \right)^{2}} \left(1 + \frac{R}{C_{v}} \right)$$

Уравнения скорости изменения температуры

1. Уравнение состояния Боголюбова - Майера:

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^k \left[h_k - u + RT^2 \sum_{i=1}^n \frac{dB_i(T)}{dT} \rho^i \right] G_k + \frac{\delta Q}{d\tau} - \rho R T \left[1 + \sum_{i=1}^n \frac{d(T \cdot B_i(T))}{dT} \rho^i \right] \frac{dW}{d\tau} \right\}$$

2. Уравнение состояния Ван-дер-Ваальса:

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^{k} (h_k - u + a\rho) G_k + \frac{\delta Q}{d\tau} - \frac{RT\rho}{(1 - b\rho)} \frac{dW}{d\tau} \right\}.$$

3. Уравнение состояния Дюпре – Абеля:

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^k (h_k - u) G_k + \frac{\delta Q}{d\tau} - \frac{RT\rho}{(1 - b\rho)} \frac{dW}{d\tau} \right\}.$$

4. Уравнение состояния Клапейрона:

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^{k} (h_k - u) G_k + \frac{\delta Q}{d\tau} - RT \rho \frac{dW}{d\tau} \right\} \quad . \tag{a}$$

Уравнения скорости изменения давления

Уравнение скорости изменения давления можно получить следующим способом. Для чего запишем уравнение $\frac{dp}{d\tau}$ в самом общем виде (1.21)

$$\frac{dp}{d\tau} = \frac{1}{\rho W} \left\{ \sum_{0}^{i} \left[h_{i} - u - \rho \left(\frac{\partial u}{\partial \rho} \right)_{p} \right] G_{i} + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \left[p - \rho^{2} \left(\frac{\partial u}{\partial \rho} \right)_{p} \right] \right\} / \left(\frac{\partial u}{\partial p} \right)_{\rho}$$

В уравнении (1.21) значения производных $\left(\frac{\partial u}{\partial \rho}\right)_p u \left(\frac{\partial u}{\partial p}\right)_\rho$ в зави-

симости от вида используемого уравнения состояния можно найти по уравнению $u = f(p, \rho)$ или следующим образом.

Используя дифференциальные уравнения термодинамики с независимыми переменными р и v можно записать что,

$$\begin{split} \left(\frac{\partial u}{\partial v}\right)_{p} &= c_{p} \left(\frac{\partial T}{\partial v}\right)_{p} - p , \\ \left(\frac{\partial u}{\partial p}\right)_{v} &= c_{v} \left(\frac{\partial T}{\partial p}\right)_{v} , \\ c_{p} - c_{v} &= T \left(\frac{\partial p}{\partial T}\right)_{v} \left(\frac{\partial v}{\partial T}\right)_{p} . \end{split} \\ \end{split}$$
Откуда произведя замену v на $\rho \left(\partial v = -\frac{1}{\rho^{2}}\partial \rho\right)$ получаем
 $\left(\frac{\partial u}{\partial \rho}\right)_{p} &= c_{p} \left(\frac{\partial T}{\partial \rho}\right)_{p} + \frac{p}{\rho^{2}}, \\ \left(\frac{\partial u}{\partial p}\right)_{\rho} &= c_{v} \left(\frac{\partial T}{\partial p}\right)_{\rho}, \\ c_{p} - c_{v} &= -T \left(\frac{\partial p}{\partial T}\right)_{\rho} \left(\frac{\partial \rho}{\partial T}\right)_{p} \frac{1}{\rho^{2}}. \end{split}$
Из последнего уравнения следует, что $\left(\frac{\partial T}{\partial \rho}\right)_{p} = -\frac{T \left(\frac{\partial p}{\partial T}\right)_{\rho}}{(c_{p} - c_{v})\rho^{2}}. \end{cases}$
Тогда выражения производных $\left(\frac{\partial u}{\partial p}\right)_{\rho}, \\ \left(\frac{\partial u}{\partial \rho}\right)_{p} = D \left(\frac{\partial T}{\partial \rho}\right)_{p}$

$$\left(\frac{\partial u}{\partial p}\right)_{\rho} = \frac{c_{v}}{\left(\frac{\partial p}{\partial T}\right)_{\rho}} \quad , \qquad \left(\frac{\partial u}{\partial \rho}\right)_{p} = \frac{1}{\rho^{2}} \left[p - \frac{Tc_{p}\left(\frac{\partial p}{\partial T}\right)_{\rho}}{c_{p} - c_{v}}\right]$$

Подставляя выражения производных в уравнение (1.21) можно получить

$$\frac{dp}{d\tau} = \frac{1}{c_{v}\rho W} \left\{ \sum_{o}^{i} \left[h_{i} - u - \left(\frac{p}{\rho} - \frac{Tc_{p} \left(\frac{\partial p}{\partial T} \right)_{\rho}}{\rho(c_{p} - c_{v})} \right) \right] G_{i} + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \left(\frac{Tc_{p} \left(\frac{\partial p}{\partial T} \right)_{\rho}}{c_{p} - c_{v}} \right) \right\} \left(\frac{\partial p}{\partial T} \right)_{\rho} \quad (2.56)$$

Применительно к уравнению состояния Редлиха – Квонга $p = \rho RT \left[\frac{1}{1 - b\rho} - \frac{\rho a(T)}{1 + b\rho} \right]$ можно получить выражения производных

$$\left(\frac{\partial u}{\partial p}\right)_{\rho} \varkappa \left(\frac{\partial u}{\partial \rho}\right)_{p}.$$

Ранее было получено что

$$\left(\frac{\partial p}{\partial T}\right)_{\rho} = R\left[\frac{\rho}{1-b\rho} - \frac{\rho^2}{1+b\rho}\left(a(T) + T\frac{da(T)}{dT}\right)\right],$$

тогда

$$\begin{pmatrix} \frac{\partial u}{\partial p} \end{pmatrix}_{p} = \frac{c_{v}}{\left(\frac{\partial p}{\partial T}\right)_{p}} = \frac{c_{v}}{R\left[\frac{\rho}{1-b\rho} - \frac{\rho^{2}}{1+b\rho}\left(a(T) + T\frac{da(T)}{dT}\right)\right]},$$

$$\begin{pmatrix} \frac{\partial u}{\partial \rho} \end{pmatrix}_{p} = \frac{1}{\rho^{2}} \left[p - \frac{Tc_{p}\left(\frac{\partial p}{\partial T}\right)_{\rho}}{c_{p} - c_{v}}\right] = \frac{1}{\rho^{2}} \left[p - \frac{c_{p}RT\left(\frac{\rho}{1-b\rho} - \frac{\rho^{2}}{1+b\rho}\left(a(T) + T\frac{da(T)}{dT}\right)\right)}{c_{p} - c_{v}}\right],$$

где
$$c_p - c_v = \frac{R \left[\frac{1}{1 - b\rho} - \frac{\rho}{1 + b\rho} \left(a(T) + T \frac{da(T)}{dT} \right) \right]^2}{\left[\frac{1}{(1 - bp)^2} - \frac{a(T)(2\rho + b\rho^2)}{(1 + b\rho)^2} \right]},$$

$$c_v = c_{v u d} + \frac{RT}{b} ln(1+b\rho) \frac{d^2(Ta(T))}{dT^2}, \qquad \frac{c_{v u d}(T)}{R} = \sum_{i=-1}^{n} c_i \left(\frac{T}{1000}\right)^i$$

В случае идеального газа $(\partial u/\partial p)_{\rho} = \frac{c_V}{\rho R}$,

$$\left(\partial u/\partial \rho\right)_{p} = \frac{1}{\rho^{2}} \left(p - \frac{c_{p}\rho RT}{c_{p} - c_{v}} \right) = \frac{1}{\rho^{2}} \left(p - \frac{pc_{p}}{c_{p} - c_{v}} \right) = -\frac{p}{\rho^{2}} \left(\frac{c_{v}}{c_{p} - c_{v}} \right)$$

и из уравнения (1.21) следует

$$\begin{split} \frac{dp}{d\tau} &= \frac{1}{\rho W} \Biggl\{ \sum_{o}^{i} \Biggl[h_{i} - u - \rho \Biggl(\frac{\partial u}{\partial \rho} \Biggr)_{p} \Biggr] G_{i} + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \Biggl[p - \rho^{2} \Biggl(\frac{\partial u}{\partial \rho} \Biggr)_{p} \Biggr] \Biggr\} / \Biggl(\frac{\partial u}{\partial p} \Biggr)_{\rho} = \\ &= \frac{1}{\rho W} \Biggl\{ \sum_{o}^{i} \Biggl[h_{i} - u + \frac{p}{\rho} \Biggl(\frac{c_{v}}{c_{p} - c_{v}} \Biggr) \Biggr] G_{i} + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \Biggl[p + p \Biggl(\frac{c_{v}}{c_{p} - c_{v}} \Biggr) \Biggr] \Biggr\} / \Biggl(\frac{c_{v}}{R\rho} \Biggr) = \\ &= \frac{R}{c_{v} W} \Biggl\{ \sum_{o}^{i} (h_{i} - u + c_{v} T) G_{i} + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl[1 + \Biggl(\frac{c_{v}}{c_{p} - c_{v}} \Biggr) \Biggr] \Biggr\} = \\ &= \frac{R}{c_{v} W} \Biggl\{ \sum_{o}^{i} h_{i} G_{i} + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl(\frac{c_{v} + R}{R} \Biggr) \Biggr\} \quad . \end{split}$$

Для идеального газа следует, что $(\partial p / \partial T)_{\rho} = \rho R$ и тогда из уравнения (2.56) следует вывод аналогичный предыдущему

$$\begin{split} \frac{dp}{d\tau} &= \frac{1}{c_V \rho W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - \Biggl[\frac{p}{\rho} - \frac{Tc_p \Bigl(\frac{\partial p}{\partial T} \Bigr)_\rho}{\rho(c_p - c_V)} \Biggr] \Biggr] G_i + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \Biggl[\frac{Tc_p \Bigl(\frac{\partial p}{\partial T} \Bigr)_\rho}{c_p - c_V} \Biggr] \Biggr\} \Biggl(\frac{\partial p}{\partial T} \Bigr)_\rho = \\ &= \frac{1}{c_V \rho W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - \Biggl[\frac{p}{\rho} - \frac{Tc_p \rho R}{\rho(c_p - c_V)} \Biggr] \Biggr] G_i + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \Biggl(\frac{Tc_p \rho R}{c_p - c_V} \Biggr] \Biggr\} \rho R = \\ &= \frac{R}{c_V W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - \Biggl[\frac{p}{\rho} - \frac{pc_p}{\rho(c_p - c_V)} \Biggr] \Biggr] G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl(\frac{c_p}{c_p - c_V} \Biggr] \Biggr\} = \\ &= \frac{R}{c_V W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - \Biggl[\frac{p}{\rho} - \frac{pc_p}{\rho(c_p - c_V)} \Biggr] \Biggr] G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl(\frac{c_p}{c_p - c_V} \Biggr) \Biggr\} = \\ &= \frac{R}{c_V W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - \frac{p}{\rho} \Biggl(1 - \frac{c_p}{(c_p - c_V)} \Biggr) \Biggr] G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl(\frac{c_p}{c_p - c_V} \Biggr) \Biggr\} = \\ &= \frac{R}{c_V W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - RT \Biggl(- \frac{c_V}{(c_p - c_V)} \Biggr) \Biggr] G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl\{ \frac{c_p}{c_p - c_V} \Biggr\} \Biggr\} = \\ &= \frac{R}{c_V W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - RT \Biggl(- \frac{c_V}{(c_p - c_V)} \Biggr) \Biggr] G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl\{ \frac{c_p}{c_p - c_V} \Biggr\} \Biggr\} = \\ &= \frac{R}{c_V W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - RT \Biggl\{ - \frac{c_V}{(c_p - c_V)} \Biggr\} \Biggr\} G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl\{ \frac{c_p}{c_p - c_V} \Biggr\} \Biggr\} = \\ &= \frac{R}{c_V W} \Biggl\{ \sum_{0}^{i} \Biggl[h_i - u - RT \Biggl\{ - \frac{c_V}{(c_p - c_V)} \Biggr\} \Biggr\} G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl\{ \frac{c_p}{c_p - c_V} \Biggr\} \Biggr\} = \\ &= \frac{R}{c_V W} \Biggl\{ \sum_{0}^{i} \Biggl\{ \frac{i}{\rho} h_i G_i + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau} \Biggl\{ \frac{c_V + R}{c_V - c_V} \Biggr\} \Biggr\} .$$

Получим выражение для dp, продифференцировав уравнение состояния Редлиха – Квонга $p = R \left[\frac{\rho T}{1 - b\rho} - \frac{\rho^2 T a(T)}{1 + b\rho} \right].$

$$dp = R\left\{ \left(\frac{\rho dT}{1 - b\rho} - \frac{\rho^2}{1 + b\rho} \left[a(T) dT + T da(T) dT \right] \right) + \frac{T d\rho}{(1 - b\rho)^2} - \frac{T a(T) (2\rho + b\rho^2) d\rho}{(1 + b\rho)^2} \right\} = 0$$

$$= R\left\{ dT \left(\frac{\rho}{1 - b\rho} - \frac{\rho^2}{1 + b\rho} \left[a(T) + T da(T) \right] \right) + d\rho \left(\frac{T}{(1 - b\rho)^2} - \frac{T a(T)(2\rho + b\rho^2)}{(1 + b\rho)^2} \right) \right\} = (2.59)$$

$$= R \left\{ \rho dT \left(\frac{1}{1 - b\rho} - \frac{\rho}{1 + b\rho} [a(T) + Tda(T)] \right) + Td\rho \left(\frac{1}{(1 - b\rho)^2} - \frac{a(T)(2\rho + b\rho^2)}{(1 + b\rho)^2} \right) \right\}$$

Для $\frac{dp}{d\tau}$ можно записать

$$\frac{dp}{d\tau} = R \left\{ \rho \frac{dT}{d\tau} \left(\frac{1}{1 - b\rho} - \frac{\rho}{1 + b\rho} [a(T) + Tda(T)] \right) + T \frac{d\rho}{d\tau} \left(\frac{1}{(1 - b\rho)^2} - \frac{a(T)(2\rho + b\rho^2)}{(1 + b\rho)^2} \right) \right\} , \quad (2.59a)$$

где для уравнения Редлиха – Квонга в модификации Вильсона

$$da(T) = -Ka_{\kappa} \frac{T_{\kappa p}}{T^2}; \quad K = 1,57 + 1,62\omega; \quad a_{\kappa} = \frac{0,42748R_0 T_{\kappa p}}{p_{\kappa p}\mu};$$

 $T_{\kappa p}, \, p_{\kappa p}$ – критическая температура и давление; ω - фактор ацентричности; R_o – универсальная газовая постоянная; μ - молекулярная масса вещества.

Как частный случай для случая идеального газа из уравнения (2.59) можно получить известное выражение

$$dp = R(\rho dT + T d\rho) .$$

Таблица 2.3а

Наименование уравнения	a(T)	К	da(T)/dT
Оригинал ур-я Редлиха-Квонга	$a_{K}\left(\frac{T_{KP}}{T}\right)^{1,5}$	1	$-\frac{1.5a_{\rm K}({\rm T}_{\rm Kp})^{1.5}}{{\rm T}^{2.5}}$
Модификация Вильсона	$a_{K}\left[1+K\left(\frac{T_{Kp}}{T}\right)-1\right]$	1,57+1,62ω	$-Ka_{K}\frac{T_{KP}}{T^{2}}$
Модификация Барне-Кинга	$a_{K}\left[1+K\left(\left(\frac{T_{KP}}{T}\right)^{1,5}-1\right)\right]$	0,9+1,21w	$-\frac{1,5Ka_{\rm K}(T_{\rm Kp})^{1,5}}{T^{2,5}}$
Модификация Соаве	$a_{K} \frac{T_{KP}}{T} \left[1 + K \left(1 - \sqrt{\frac{T}{T_{KP}}} \right) \right]$	0,48+1,57ω- 0,176ω ²	$-\operatorname{Ka}_{K}(\operatorname{T}_{Kp}/\operatorname{T}^{2}) \times \left[\frac{(1+\mathrm{K})^{2}}{\mathrm{K}} - \frac{(1+\mathrm{K})\sqrt{\mathrm{T}}}{\operatorname{T}_{Kp}^{0,5}}\right]$

Таблица 2.3б

Наименование уравнения	$d^2a(T)/dT^2$	$d^2(T a(T))/dT^2$
Оригинал уравнения Редлиха - Квонга	$\frac{3,75a_{\kappa}(T_{\kappa p})^{1,5}}{T^{3,5}}$	$\frac{0,75a_{\kappa}(T_{\kappa p})^{1,5}}{T^{2,5}}$
Модификация Вильсона	$2Ka_{\kappa}T_{\kappa p}/T^{3}$	0
Модификация Барне - Кинга	$\frac{3,75 \text{Ka}_{\kappa} (\text{T}_{\kappa p})^{1,5}}{\text{T}^{3,5}}$	$\frac{0,75 \text{Ka}_{\text{K}} (\text{T}_{\text{Kp}})^{1,5}}{\text{T}^{2,5}}$
Модификация Соаве	$2a_{\kappa}(1+K)^{2}(T_{\kappa p}/T^{3})1,5K(1+K)a_{\kappa}T_{\kappa p}^{0,5}/T^{2,5}$	$0,5K(1+K)a_{\kappa}T_{\kappa p}^{0,5} / T^{1,5}$

Произволица	Уравнение состояния		
производные	Клапейрона	Дюпре - Абеля	Ван-дер-Ваальса
$(\partial p / \partial T) \rho$	Rρ	Rρ/(1-bρ)	Rρ/(1-bρ)
$(\partial p/\partial ho)_{T}$	RT	$\frac{\mathrm{RT}}{\left(1-\mathrm{b}\rho\right)^2}$	$\frac{\mathrm{RT}}{\left(1-\mathrm{b}\rho\right)^2}-2\mathrm{a}\rho$
$(\partial p/\partial \rho)s=a^2$	$RT\left(1+\frac{R}{C_{v}}\right)$	$\frac{\mathrm{RT}(1+\mathrm{R}/\mathrm{C}_{\mathrm{V}})}{(1-\mathrm{b}\rho)^2}$	$\frac{\mathrm{RT}}{\left(1-\mathrm{b}\rho\right)^2} \left(1+\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{V}}}\right) - 2\mathrm{a}\rho$

Таблица 2.4б

Процеровника	Уравнение состояния
производные	Боголюбова – Майера
(∂p/∂T)p	$R\rho \left[1 + \sum_{i=1}^{n} B_i(T)\rho^i + T\sum_{i=1}^{n} \frac{dB_i(T)}{dT}\rho^i\right]$
$(\partial p/\partial \rho)_T$	$RT\left[1+\sum_{i=1}^{n} (i+1)B_{i}(T)\rho^{i}\right]$
$(\partial p/\partial \rho)s=a^2$	$RT\left\{1 + \sum_{i=1}^{n} (i+1)B_{i}(T)\rho^{i} + \frac{R}{C_{V}}\left[1 + \sum_{i=1}^{n}B_{i}(T)\rho^{i} + T\sum_{i=1}^{n}\frac{dB_{i}(T)}{dT}\rho^{i}\right]^{2}\right\}$

Таблица 2.5а

	Уравнения состояния		
Функции	Клапейрона	Дюпре - Абеля	Ван-дер-Ваальса
u	u _{ид}	u _{ид}	и _{ид} – ар
h	u _{ид} + RT	$u_{\mu\mu} + \frac{RT}{1-b\rho}$	$u_{\mu\mu} + \frac{RT}{1-b\rho} - a\rho$
Cv	С _{иид}	Суид	Суид
$C_P - C_V$	R	R	$R / \left[1 - \frac{2a\rho}{RT} (1 - b\rho)^2 \right]$
k	$1 + \frac{R}{C_V}$	$\frac{1+R/C_V}{1-b\rho}$	$\frac{(1 + R/C_V) - 2a\rho(1 - b\rho)^2/RT}{(1 - b\rho) - a\rho(1 - b\rho)^2/RT}$

Функции	Уравнение состояния Боголюбова – Майера	
u	$u_{H\mathcal{I}} - RT^2 \sum_{i=1}^{n} \frac{dB_i(T)}{dT} \frac{\rho^i}{i}$	
h	$u_{\mathcal{H}\mathcal{I}} + RT \left\{ 1 + \sum_{i=1}^{n} \left[B_i(T) - \frac{T}{i} \frac{dB_i(T)}{dT} \right] \rho^i \right\}$	
Cv	$C_{V H \mathcal{A}} - RT \sum_{i=1}^{n} \frac{d^2(T B_i(T))}{dT^2} \frac{\rho^i}{i}$	
C _P -C _V	$R \frac{\left[1 + \sum_{i=1}^{n} B_{i}(T)\rho^{i} + T\sum_{i=1}^{n} \frac{dB_{i}(T)}{dT}\rho^{i}\right]^{2}}{1 + \sum(i+1)B_{i}(T)\rho^{i}}$	
k	$\frac{1 + \sum_{i=1}^{n} (i+1)B_{i}(T)\rho^{i} + \frac{R}{C_{V}} \left[1 + \sum_{i=1}^{n} B_{i}(T)\rho^{i} + T\sum_{i=1}^{n} \frac{dB_{i}(T)}{dT}\rho^{i}\right]^{2}}{\left[1 + \sum_{i=1}^{n} B_{i}(T)\rho^{i}\right]}$	

Используя уравнение (2.56) и данные приведённые в табл. 2.4а, 2.4б, 2.5а, 2.5б можно получить уравнения dp/dt для других уравнений состояния.

В заключение этой главы следует отметить, что в открытых термодинамических системах, где рабочим телом является, например, воздух, следует использовать уравнения состояния Клапейрона или Абеля и соответствующий аналитический аппарат. Для реальных газов, например углеводородов, необходимо использовать уравнения состояния Боголюбова - Майера, Редлиха -Квонга и др.

Последние уравнения дают погрешность в определении р - р - Т данных в пределах 1 - 2%, кроме области вблизи критической точки.

Что касается точности определения таких функций состояния, как u, h и других термодинамических свойств, например удельных теплоемкостей C_v , C_p и др., то погрешность здесь увеличивается до 3 - 8%, вследствие наличия в зависимостях этих величин первой и второй производных от параметров уравнений состояния по температу-

ре. Это необходимо помнить при расчетах термодинамических процессов, связанных с переходом через пограничные кривые, и по возможности скорректировать результаты с помощью диаграмм состояния или таблиц насыщенных и перегретых паров.

В следующем разделе речь пойдет о разработке аналитического аппарата термодинамики тела переменной массы применительно к уравнению состояния Боярского – Подчерняева.

2.3. Аналитический аппарат термодинамики тела переменной массы применительно к уравнению состояния Боярского - Подчерняева

Использование новых холодильных агентов, а также их смесей в качестве озонобезопасных ставит задачи по определению их термодинамических свойств, необходимых для расчета и оптимизации энергетических характеристик термотрансформаторов.

Существенное влияние на энергетические характеристики оказывает также взаимная растворимость масел с холодильники агентами, что особенно характерно для бытовых холодильных приборов, в которых отсутствуют маслоотделители.

В настоящее время получили широкое распространение единые уравнения состояния, справедливые для всех зон состояния [82, 83].

В данной работе приводится аналитический аппарат термодинамики тела переменной массы применительно к уравнению состояния Боярского-Подчерняева [7, 8] обладающий больней точностью и универсальностью по сравнению с имеющимися, позволяющий определить термодинамические свойства чистых холодильных агентов, их смесей, смесей с маслами, а также рассмотреть нестационарный характер процессов, протекающих в элементах термотрансформаторов, под которыми подразумеваются бытовые холодильные машины и малые тепловые насосы.

Уравнение состояния

Указанное уравнение имеет вид [7]:

$$p = \frac{RT}{v} \cdot \frac{v + 0.77b}{v - 0.42b} - \frac{a(T)}{v(v + c)} , \qquad (2.60)$$

где R - газовая постоянная; a(T), b, c - коэффициенты, зависящие от эффективного критического коэффициента сжимаемости, являющегося функцией температуры [7].

$$a(T) = \Omega_a \frac{R^2 T_{\kappa p}^2}{p_{\kappa p}} \alpha(T) \quad , \quad b = \Omega_b \frac{R T_{\kappa p}}{p_{\kappa p}} \quad , \quad c = \Omega_c \frac{R T_{\kappa p}}{p_{\kappa p}} \quad ,$$

где Т_{кр}, р_{кр} – критическая температура и давление, α(T) - температурная функция [81].

Ниже приводятся аппроксимационные зависимости позволяющие определить согласно [7, 8], указанные выше коэффициенты a(T), b, c и температурную функцию α(T).

$$\Omega_{a} = 1,01331 - 2,66323z_{kp}^{3} - 1,13091(z_{kp}^{3})^{2} + 14,1719(z_{kp}^{3})^{3},$$

$$\Omega_{b} = 0,036541 - 0,207429z_{\kappa p}^{\vartheta} - 0,150104(z_{\kappa p}^{\vartheta})^{2} + 0,52491(z_{\kappa p}^{\vartheta})^{3} + 13,9655(z_{\kappa p}^{\vartheta})^{4},$$

$$\Omega_{\rm c} = 0.981180 - 2.58256 z_{\rm Kp}^{\rm 3} - 2.82052 (z_{\rm Kp}^{\rm 3})^2 + 6.83024 (z_{\rm Kp}^{\rm 3})^3.$$

Для всех веществ эффективный критический коэффициент сжимаемости $z_{\kappa p}^{9} = z_{\kappa p}^{9}(T)$.

$$z_{\kappa p}^{\vartheta} = z_{\kappa p} + (z_{\kappa p}^{0} - z_{\kappa p}) \cdot \left[\frac{2}{1 + \exp(-A|T_{r} - 1| - 0.5|p_{r-1}|}\right]^{n}$$

,

где $z_{\kappa p}^0$ - максимальное значение $z_{\kappa p}^3$; А, n – индивидуальные для каждого вещества параметры и показатель степени; $T_r = T/T_{\kappa p}$ - приведенная температура; $p_r = p/p_{\kappa p}$ - приведенное давление.

$$\alpha(T) = \left[1 + F\left(1 - T_r^{0,5}\right)\right]^2, \quad F = 2 - Dz_{\kappa p}^3$$

где D – коэффициент пропорциональности индивидуальный для каждого вещества.

A = 7,7308 + 17,686
$$\omega$$
 - 43,654 ω^2 ,
D = 5,4773 - 3,0563 ω ,
 $z_{Kp}^0 = 0,54469 - 1,8979z_{Kp} + 4,2686z_{Kp}^2$,

где ω - фактор ацентричности [82], $z_{kp} = \frac{p_{kp}v_{kp}}{RT_{kp}}$ - критический коэффициент сжимаемости.

Произведя замену удельного объема v на плотность р получим:

$$p = RT\rho \frac{1+0.77b\rho}{1-0.42b\rho} - \frac{a(T)\rho^2}{(1+c\rho)}.$$
 (2.60a)

Уравнение (2.60а) позволяет получить основные зависимости теплофизических характеристик реальных рабочих веществ для расчета внутренней энергии, энтальпии, теплоемкости в изохорном и изобарном процессах и т.д. Для получения расчетных зависимостей этих величин будем использовать известные [59] дифференциальные уравнения термодинамики, приведенные к виду удобному для интегрирования.

Удельная внутренняя энергия и энтальпия

Для нахождения зависимости удельной внутренней энергии используем уравнение (4-25) [59]

$$\left(\frac{\partial u}{\partial v}\right)_{T} = T \left(\frac{\partial p}{\partial T}\right)_{V} - p$$

откуда произведя замену v на ρ , $\partial v = -\frac{1}{\rho^2} \partial \rho$ получим:

$$\left(\frac{\partial u}{\partial \rho}\right)_{T} = \frac{1}{\rho^{2}} \left[p - T \left(\frac{\partial p}{\partial T}\right)_{\rho} \right].$$

При р→0 удельная внутренняя энергия стремится к внутренней энергии идеального газа u_{ид}, поэтому

$$u = u_{HA} + \int_{0}^{\rho} \frac{1}{\rho^2} \left[p - T \left(\frac{\partial p}{\partial T} \right)_{\rho} \right] d\rho \quad , \qquad (2.61)$$

где u_{ud} отсчитывается от некоторого начального значения u_{0ud} . Для определения величины u_{ud} используется зависимость

$$u_{\rm ИД} = u_{\rm 0 ИД} + \int_{T_0}^{T} c_{\rm V И Д}(T) dT$$
,

где с_{vид} - зависимость идеальной теплоемкости вещества от температуры, которую обычно представляют в виде полиномиального ряда

$$c_{VHI}(T) = C_0 + C_1T + C_2T + ... + C_iT^i + ... + C_nT^n = \sum_{i=0}^{m} C_iT^i$$

Значения аппроксимирующих коэффициентов приводятся в литературе [82, 104].

Для нахождения зависимости удельной энтальпии используем уравнение (4-33) [59]:

$$\left(\frac{\partial h}{\partial v}\right)_{T} = T \left(\frac{\partial p}{\partial T}\right)_{v} + v \left(\frac{\partial p}{\partial v}\right)_{T}$$
 откуда,

произведя замену v на р, получим:

$$\left(\frac{\partial h}{\partial \rho}\right)_{T} = \frac{1}{\rho} \left(\frac{\partial p}{\partial \rho}\right)_{T} - \frac{T}{\rho^{2}} \left(\frac{\partial p}{\partial T}\right)_{\rho}.$$

При р→0 удельная энтальпия стремится к удельной энтальпии идеального газа. Тогда зависимость удельной энтальпии для реальных газов будет иметь вид:

$$h = h_{\rm M,T} + \int_{0}^{\rho} \left[\frac{1}{\rho} \left(\frac{\partial p}{\partial \rho} \right)_{\rm T} - \frac{T}{\rho^2} \left(\frac{\partial p}{\partial T} \right)_{\rho} \right] d\rho , \qquad (2.62)$$

где h_{ид} - удельная энтальпия идеального газа, определяемая по зависимости:

$$h_{\mathcal{H}\mathcal{I}} = u_{\mathcal{H}\mathcal{I}} + \frac{p}{\rho} = u_{\mathcal{H}\mathcal{I}} + RT .$$

Для получения расчетных зависимостей удельных внутренней энергии и энтальпии, применительно к рабочему телу, состояние которого описывается уравнением (2.60), найдем производные:

$$\left(\frac{\partial p}{\partial \rho}\right)_{\rm T} = \frac{{\rm RT}}{\left(1 - 0.42b\rho\right)^2} \left[1 + 2 \cdot 0.77b\rho - 0.77 \cdot 0.42b^2\rho^2\right] - a({\rm T})\frac{2\rho + c\rho^2}{\left(1 + c\rho\right)^2} , \qquad (2.63)$$

$$\left(\frac{\partial p}{\partial T}\right)_{\rho} = \frac{R\rho(1+0.77b\rho)}{1-0.42b\rho} - \frac{\frac{da(T)}{dT}\rho^2}{1+c\rho} \quad .$$
(2.64)

Подставляя в (2.61) выражения (2.60а) и (2.63), в (2.62) выражения (2.63) и (2.64) после интегрирования получим:

$$u = u_{HA} + \frac{1}{c} \ln(1 + c\rho) \left[T \frac{da(T)}{dT} - a(T) \right], \qquad (2.65)$$

$$h = u_{HA} + \frac{RT(1+0,77b\rho)}{1-0,42b\rho} - \frac{a(T)\rho}{1+c\rho} + \frac{\ln(1+c\rho)}{c} \left[T\frac{da(T)}{dT} - a(T) \right].$$
(2.66)

Изохорная и изобарная теплоемкости

Для нахождения зависимости изохорной теплоемкости используем соотношение (4-47) [59]. $c_v = \left(\frac{\partial u}{\partial T}\right)_{\rho}$ и после дифференцирования (2.65) получим:

$$c_{v} = c_{v_{M,H}} + \frac{1}{c} \ln(1 + c\rho) T \frac{d^{2}a(T)}{dT^{2}}$$
 (2.67)

Для нахождения изобарной теплоемкости используем зависимость (4-53) [59]

$$c_{p} - c_{v} = -T \left(\frac{\partial v}{\partial p} \right)_{T} \cdot \left(\frac{\partial p}{\partial T} \right)_{v}^{2}$$
,

которая при замене v на р, преобразуется к виду:

$$c_p - c_v = \frac{T}{\rho^2} \cdot \frac{\left(\partial p / \partial T\right)_{\rho}^2}{\left(\partial p / \partial \rho\right)_T} \quad . \label{eq:cp}$$

Подставляя в последнее уравнение значение производных (2.63, 2.64), получим:

$$c_{p} - c_{v} = \frac{\frac{T}{\rho^{2}} \left[R\rho \frac{1 + 0.77b\rho}{1 - 0.42b\rho} - \frac{da(T)}{dT} \cdot \frac{\rho^{2}}{1 + c\rho} \right]^{2}}{\frac{RT}{(1 - 0.42b\rho)^{2}} \left[1 + 2 \cdot 0.77b\rho - 0.77 \cdot 0.42b^{2}\rho^{2} \right] - a(T) \cdot \frac{2\rho + c\rho^{2}}{(1 + c\rho)^{2}}}{(1 + c\rho)^{2}} \quad (2.68)$$

Изоэнтропный процесс и показатель изоэнтропы

Используем уравнение изоэнтропы вида:

$$k = \frac{\rho}{p} \left(\frac{\partial p}{\partial \rho} \right)_{S}.$$
 (2.69)

Из (4-61) [59] получим:

$$\left(\frac{\partial p}{\partial \rho}\right)_{S} = \left(\frac{\partial p}{\partial \rho}\right)_{T} + \frac{T}{c_{v}\rho^{2}} \left(\frac{\partial p}{\partial T}\right)_{\rho}^{2}$$
 откуда

после подстановки выражений производных (2.63, 2.64) получим:

$$\begin{split} \left(\frac{\partial p}{\partial \rho}\right)_{S} &= \frac{RT}{\left(1 - 0,42b\rho\right)^{2}} \left[1 + 2 \cdot 0,77b\rho - 0,77 \cdot 0,42b^{2}\rho^{2}\right] - a(T)\frac{2\rho + c\rho^{2}}{\left(1 + c\rho\right)^{2}} + \\ &+ \frac{T\left[\frac{R\rho(1 + 0,77b\rho)}{1 - 0,42b\rho} - \frac{da(T)}{dT} \cdot \frac{\rho^{2}}{\left(1 + c\rho\right)}\right]^{2}}{c_{V}\rho^{2}} \end{split}$$
(2.70)

Подставляя уравнение (2.70) в (2.69) можно получить уравнение для показателя изоэнтропы k.

Для нахождения соотношения между давлениями в адиабатном процессе преобразуем уравнение (2.69) к виду

$$\frac{p_2}{p_1} = \exp \int_{\rho_1}^{\rho_2} k \frac{dp}{\rho}$$
(2.71)

Для нахождения соотношения между плотностями в адиабатном процессе воспользуемся зависимостью (4-56) [59]:

$$\mathbf{c}_{\mathbf{v}} = -T \left(\frac{\partial \mathbf{p}}{\partial T} \right)_{\mathbf{v}} \cdot \left(\frac{\partial \mathbf{v}}{\partial T} \right)_{\mathbf{S}}$$

откуда после замены на v на р, получим:

$$\left(\frac{\partial T}{\partial \rho}\right)_{S} = \frac{T}{\rho^{2} c_{V}} \cdot \left(\frac{\partial p}{\partial T}\right)_{\rho}.$$

Подставляя в последнее выражение уравнение (2.64) получим:

$$\left(\frac{\partial T}{\partial \rho}\right)_{S} = \frac{T}{c_{v}\rho} \left[\frac{R(1+0,77b\rho)}{1-0,42b\rho} - \frac{da(T)}{dT} \cdot \frac{\rho}{1+c\rho}\right],$$

которое для адиабатного процесса можно преобразовать к виду:

$$c_{v} \frac{dT}{T} - \left[\frac{R(1+0,77b\rho)}{1-0,42b\rho} - \frac{da(T)}{dT} \cdot \frac{\rho}{1+c\rho}\right] \frac{d\rho}{\rho} = 0.$$
 (2.72)

Решая уравнение (2.72), методом изложенным в [36] получим:

$$\frac{\rho_2}{\rho_1} = \left(\frac{T_2}{T_1}\right)^{\frac{C_0}{R}} \exp\left\{\int_{T_1}^{T_2} \sum_{i=1}^{m} (C_i T^i) dT + \frac{1}{Rc} \left[\frac{da(T_2)}{dT} \ln(1 + c\rho_2) - \frac{da(T_1)}{dT} \ln(1 + c\rho_1)\right] + \frac{1.19}{0.42} \ln \frac{1 - 0.42b\rho_2}{1 - 0.42b\rho_1}\right\}$$

$$(2.73)$$

Уравнения (2.69 и 2.73) можно использовать для нахождения значений параметров в адиабатном процессе по одному из заданных значений параметров (р, р, Т) в конечной точке.

Скорость звука

Скорость распространения слабых возмущений (скорость звука) в любой среде определяется выражением (8-21a) [59]: $a = \sqrt{(\partial p / \partial \rho)_S}$, откуда используя уравнение (2.60), получаем:

$$a = \sqrt{\frac{RT(1+2\cdot0,77b\rho - 0,77\cdot0,42b^{2}\rho^{2})}{(1-0,42b\rho)^{2}} - \frac{a(T)(2\rho + c\rho^{2})}{(1+c\rho)^{2}} + (2.74)}$$

$$+\frac{T}{c_{v}\rho^{2}}\left[\frac{R\rho(1+0,77b\rho)}{1-0,42b\rho}-\frac{da(T)}{dT}\frac{\rho^{2}}{1+c\rho}\right]^{2}$$

Секундный массовый расход газа

Рассмотрим режим истечения газа из сосуда при заданных параметрах газа в сосуде и давлении среды, куда происходит истечение. В общем случае массовый расход можно определить по зависимости:

$$G = \mu \cdot \rho \cdot V(\rho, T) \cdot S \tag{2.75}$$

где µ - коэффициент расхода, S - площадь проходного сечения, ρ - плотность газа, V(ρ, T) - скорость газа в сечении.

Скорость газа при истечении определим выражением (8-9) [59]

$$V = \sqrt{2(h_0 - h) + V_0^2} , \qquad (2.76)$$

где h₀, h - удельные энтальпии газа в сосуде и отверстии соответственно, V₀ - скорость газа в сосуде.

Подставляя в зависимость (2.76) выражение энтальпии согласно (2.62) получим:

$$V = \sqrt{V_0^2 + 2\int_T^{T_0} c_{VHH}(T) dT} + 2\left[\frac{RT_0(1+0,77b\rho_0)}{1-0,42b\rho_0} - \frac{a(T_0)\rho_0}{1+c\rho_0} + \frac{\ln(1+c\rho_0)}{c} \cdot \frac{1}{c} + \frac{\ln(1+c\rho_0)}{c} \cdot \frac{1}{c} + \frac{\ln(1+c\rho_0)}{c} \cdot \frac{\ln(1+c\rho_0)}{dT} - a(T_0) - \frac{RT(1+0,77b\rho)}{1-0,42b\rho} + \frac{a(T)\rho}{1+c\rho} - \frac{\ln(1+c\rho)}{c} \left(T\frac{da(T)}{dT} - a(T)\right)\right].$$
 (2.77)

Считая истечение газа изоэнтропным, значения параметров газа в отверстии и сосуде должны быть связаны уравнением изоэнтропы в виде (2.71) или (2.73). В этом случае состояние газа в отверстии зависит от одного независимого параметра. При этом возможны два режима истечения: докритический и критический.

Докритический режим истечения

Поскольку в докритическом режиме давление р в отверстии равно давлению среды р_с, куда происходит истечение, значение тем-

пературы Т и плотности газа могут быть найдены решением системы уравнений, включающей уравнение состояния (2.60a) и уравнение изоэнтропы (2.71)

$$\begin{cases} \frac{p_{c}}{p_{0}} = \exp \int_{\rho_{0}}^{\rho} k \frac{d\rho}{\rho} \\ \frac{p_{c}}{\rho} = RT \cdot \frac{1+0,77b\rho}{1-0,42b\rho} - \frac{a(T) \cdot \rho}{1+c\rho} \end{cases}$$
(2.78)

Критический режим истечения

Критические параметры истечения в отверстия могут быть найдены из условия равенства скорости течения газа V и скорости звука в отверстии а:

$$\sqrt{2[h_0(T_0, \rho_0) - h(T_{\kappa p}, \rho_{\kappa p})]} = a(T_0, \rho_0, T_{\kappa p}, \rho_{\kappa p}) ,$$

которое приводится к виду:

$$2\left[\int_{T_{H}}^{T_{0}} c_{V H A}(T) dT + \frac{RT_{0}(1+0,77b\rho)}{1-0,42b\rho} - \frac{a(T_{0})\rho_{0}}{1+c\rho_{0}} + \frac{\ln(1+c\rho_{0})}{c} \left(T_{0}\frac{da(T_{0})}{dT} - a(T_{0})\right)\right] + \frac{1}{c}\left(T_{0}\frac{da(T_{0})}{dT} - a(T_{0})\right) dT + \frac{1}{c}\left(T_{0}\frac{da(T_{0$$

$$+ V_0^2 = 2 \int_{T_H}^{T_{KP}} c_{V M A}(T) dT + \frac{R T_{KP} (3 + 2,24 b \rho_{KP} - 3 \cdot 0,77 \cdot 0,42 b^2 \rho_{KP}^2)}{(1 - 0,42 b \rho_{KP})^2}$$

$$-\frac{a(T_{\kappa p})\rho_{\kappa p}(4+3c\rho_{\kappa p})}{(1+c\rho_{\kappa p})}+\frac{2\ln(1+c\rho_{\kappa p})}{c}\left(T_{\kappa p}\frac{da(T_{\kappa p})}{dT}-a(T_{\kappa p})\right)+$$

$$+\frac{T_{\kappa p}}{c_{v}\rho_{\kappa p}^{2}}\left[\frac{R\rho_{\kappa p}(1+0.77b\rho_{\kappa p})}{1-0.42b\rho_{\kappa p}}-\frac{da(T_{\kappa p})}{dT}\cdot\frac{\rho_{\kappa p}^{2}}{1+c\rho_{\kappa p}}\right]^{2}.$$
 (2.79)

Решая уравнение (2.79) совместно с уравнением адиабаты (2.73), находятся параметры $T_{\kappa p}$ и $\rho_{\kappa p}$, а из уравнения состояния (2.60a) - $p_{\kappa p}$.

Расход газа определится выражением:

$$G_{\kappa p} = \mu \cdot \rho \cdot V_{\kappa p} \cdot S \quad (2.80)$$

Уравнение скорости изменения температуры

Выражение удельной внутренней энергии в общем случае можно представить в виде: u = u(p,T) или

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = \left(\frac{\partial u}{\partial \rho}\right)_{\mathrm{T}} \cdot \frac{\mathrm{d}\rho}{\mathrm{d}\tau} + \left(\frac{\partial u}{\partial \mathrm{T}}\right)_{\rho} \cdot \frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\tau} \qquad \text{откуда}$$
$$\frac{\mathrm{d}\mathrm{T}}{\mathrm{d}\tau} = \left[\frac{\mathrm{d}u}{\mathrm{d}\tau} - \left(\frac{\partial u}{\partial \rho}\right)_{\mathrm{T}} \cdot \frac{\mathrm{d}\rho}{\mathrm{d}\tau}\right] / \left(\frac{\partial u}{\partial \mathrm{T}}\right)_{\rho}. \qquad (2.81)$$

Согласно [30] для du/dт можно записать:

$$\frac{\mathrm{d}u}{\mathrm{d}\tau} = \frac{1}{\rho W} \left[\sum_{0}^{\kappa} (\mathbf{h}_{\kappa} - \mathbf{u}) \mathbf{G}_{\kappa} + \frac{\mathrm{d}Q}{\mathrm{d}\tau} - p \frac{\mathrm{d}W}{\mathrm{d}\tau} \right].$$
(2.82)

Подставляя в уравнение (2.81) уравнения: (2.82), $1 \begin{bmatrix} (\partial p) \end{bmatrix}$ (2.82)

 $\left(\frac{\partial u}{\partial \rho}\right)_{T} = \frac{1}{\rho^{2}}\left[p - T\left(\frac{\partial p}{\partial T}\right)_{\rho}\right], (2.67),$ получим уравнение скорости изменения температуры в виде

пия температуры в виде

$$\frac{dT}{d\tau} = \frac{1}{c_V \rho W} \left\{ \sum_{0}^{\kappa} \left(h_\kappa - u - \frac{\rho}{1 + c\rho} \left[T \frac{da(T)}{dT} - a(T) \right] \right) G_\kappa + \frac{dQ}{d\tau} - \frac{1}{c_V \rho W} \left\{ \frac{R(1 + 0.77b\rho)}{1 - 0.42b\rho} - \frac{\rho}{1 + c\rho} \cdot \frac{da(T)}{dT} \right\} \right\}$$

$$(2.83)$$

Глава 3

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ ТЕПЛОМЕХАНИЧЕСКОЙ СИСТЕМЫ С ДВУХФАЗНЫМ РАБОЧИМ ТЕЛОМ

3.1. Математическое описание тепломеханической системы с двухфазным равновесным рабочим телом^{*}

При рассмотрении термодинамических процессов двухфазную среду очень часто считают единым термодинамическим телом. Такой подход [10] основывается на следующих допущениях:

1. Между фазами существует тепловое и механическое равновесие;

2. Параметры фаз рабочего тела соответствуют двухфазной равновесной системе с плоской поверхностью раздела между фазами.

При этих допущениях математическое описание протекающих во времени термодинамических процессов в двухфазном рабочем теле может быть также построено с использованием зависимостей термодинамики тела переменной массы [66, 67].

Выбрав в качестве переменных температуру Т и удельный объем v, получим дифференциальные уравнения, выражающие законы со-хранения энергии и массы двухфазного рабочего тела.

В качестве исходного уравнения для dT/dt используем его самую общую форму, приведенную в [41]

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^{i} \left[h_i - u - \rho \left(\frac{\partial u}{\partial \rho} \right)_T \right] G_i + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \left[p - \rho^2 \left(\frac{\partial u}{\partial \rho} \right)_T \right] \right\},$$

$$v = v' + x(v'' - v'), \text{ откуда } x = \frac{v - v'}{v'' - v'} \text{ тогда } u = u' + \frac{v - v'}{v'' - v'} (u'' - u').$$

При написании этого раздела использовались результаты, полученные авторами работы [73].

Найдем производную $(\partial u/\partial \rho)_T$:

$$\begin{pmatrix} \frac{\partial u}{\partial \rho} \\ T &= -\frac{1}{\rho^2} \left(\frac{r}{v'' - v'} - p \right) ;$$

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^{i} \left[h_i - u + \frac{1}{\rho} \left(\frac{r}{v'' - v'} - p \right) \right] G_i + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \left[p + \left(\frac{r}{v'' - v'} - p \right) \right] \right\} ;$$

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^{i} \left[h_i - u + \frac{rv}{v'' - v'} - pv \right] G_i + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \frac{r}{v'' - v'} \right\} ;$$

$$\frac{dT}{d\tau} = \frac{1}{C_V \rho W} \left\{ \sum_{0}^{i} \left[h_i - h \right] G_i + \sum_{0}^{i} \frac{rv}{v'' - v'} G_i + \frac{\delta Q}{d\tau} - \frac{dW}{d\tau} \frac{r}{v'' - v'} \right\} .$$

$$\frac{O \kappa ончательно уравнение скорости изменения температуры примет вид }{ \frac{dT}{d\tau} = \frac{v}{C_V W} \left\{ \sum_{0}^{i} \left[h_i - h \right] G_i + \frac{\delta Q}{d\tau} + \frac{rv}{v'' - v'} \left(\sum_{0}^{i} G_i - \frac{1}{v} \frac{dW}{d\tau} \right) \right\} .$$

$$(3.1)$$

Уравнение скорости изменения удельного объема

$$\frac{\mathrm{d}v}{\mathrm{d}\tau} = -\frac{\mathrm{v}^2}{\mathrm{W}} \left(\sum_{0}^{\mathrm{i}} \mathrm{G}_{\mathrm{i}} - \frac{1}{\mathrm{v}} \frac{\mathrm{d}W}{\mathrm{d}\tau} \right) \qquad (3.2)$$

Уравнение изохорной теплоемкости

Теплоемкость влажного пара с_v при постоянном объеме, равная $(\partial u/\partial T)_v$, согласно свойству аддитивности (прибавляемости частей) внутренней энергии будет [17]

$$c_{v} = (1-x)c_{v}^{', \Delta \phi} + xc_{v}^{'', \Delta \phi},$$
 (3.3)

где $c_v^{' d \varphi}$, $c_v^{" d \varphi}$ - изохорные теплоемкости жидкой и газообразной фаз при данной температуре на левой и правой пограничных кривых со стороны двухфазной области.

Продифференцируем уравнения v = (1 - x)v' + xv'' и u = (1 - x)u' + xu'' по температуре при v =const .

$$0 = (1 - x)\frac{dv'}{dT} + x\frac{dv''}{dT} + (v'' - v')\left(\frac{\partial x}{\partial T}\right)_{v},$$
$$c_{v} = (1 - x)\frac{du'}{dT} + x\frac{du''}{dT} + (u'' - u')\left(\frac{\partial x}{\partial T}\right)_{v},$$

Подставляя из первого уравнения выражение $(\partial x/\partial T)_v$ во второе, получим:

$$c_{v} = (1-x) \left(\frac{du'}{dT} - \frac{u'' - u'}{v'' - v'} \frac{dv'}{dT} \right) + x \left(\frac{du''}{dT} - \frac{u'' - u'}{v'' - v'} \frac{dv''}{dT} \right),$$
откуда, полагая, x=0

находим, что теплоемкость с^{'дф} на левой пограничной кривой при подходе к ней из двухфазной области будет

Аналогично теплоемкость с^{"дф} на правой пограничной кривой при подходе к ней из двухфазной области будет равна:

$$c_{V}^{"}{}_{A}\Phi = \frac{du''}{dT} - \frac{u'' - u'}{v'' - v'} \frac{dv''}{dT}.$$

Последние уравнения можно представить также в следующем виде. Для чего преобразуем уравнение с_v^{'дф}:

$$c_{v}^{'}{}^{d\varphi} = \frac{du'}{dT} - \frac{u'' - u'}{v'' - v'} \cdot \frac{dv'}{dT} = \frac{Tds' - pdv'}{dT} - \frac{h'' - h' - p(v'' - v')}{v'' - v'} \frac{dv'}{dT} =$$
$$= \frac{Tds'}{dT} - p\frac{dv'}{dT} - \frac{h'' - h'}{v'' - v'} \frac{dv'}{dT} + p\frac{dv'}{dT} = \frac{Tds'}{dT} - T\frac{dp_s}{dT} \frac{dv'}{dT}.$$

Аналогично для с $v_v^{"d\phi}$ можно записать, что

$$c_{v}^{"}_{v}^{} = \frac{Tds^{"}}{dT} - T\frac{dp_{s}}{dT}\frac{dv^{"}}{dT} .$$

Входящие в уравнения (3.1) – (3.3) величины являются функциями температуры. Значения этих величин приводятся в справочной литературе в виде таблиц. Для дальнейших расчетов зависимости этих величин, а также кривой упругости от температуры выгоднее представить в виде аппроксимационных формул.

Используя свойство аддитивности удельного объема и энтропии влажного пара v = (1-x)v' + xv'' и s = (1-x)s' + xs'', а также их производные по р при s=const зависимость для показателя изоэнтропы $k = -\frac{v}{p} \left(\frac{\partial p}{\partial v}\right)_{S}$ можно представить в виде [25]

$$k(T,x) = -\frac{v'(1-x) + v''x}{p\left[\left(\frac{\partial v}{\partial p}\right)_{S}'^{\mathcal{A}\phi}(1-x) + \left(\frac{\partial v}{\partial p}\right)_{S}''^{\mathcal{A}\phi}x\right]},$$

где

$$\left(\frac{\partial v}{\partial p}\right)_{S}^{',\alpha\varphi} = -\frac{c_{v}^{',\alpha\varphi}}{T} \left(\frac{dT}{dp_{s}}\right)^{2}, \qquad \left(\frac{\partial v}{\partial p}\right)_{S}^{'',\alpha\varphi} = -\frac{c_{v}^{'',\alpha\varphi}}{T} \left(\frac{dT}{dp_{s}}\right)^{2}.$$

Выражение для k(T,x) можно записать также в виде:

$$k(T,x) = \frac{T\left[v'(1-x) + v''x\left(\frac{dp_s}{dT}\right)^2\right]}{p\left[c_v'^{A\varphi}(1-x) + c_v''^{A\varphi}x\right]}$$

Следует отметить, что зависимость k(T,x) справедлива для двухфазной области и кривой насыщения при переходе к этой кривой из двухфазной области. При переходе к линии насыщения со стороны однофазной области получаются другие значения k, что связано с наличием разрыва производной ($\partial v / \partial p$) на линии насыщения.

Для расчета термодинамических процессов, описываемых уравнениями (3.1), (3.2), необходимо выразить в функции от переменных процесса величины массового прихода и расхода рабочего тела и удельного прихода и расхода энергии.

Величина удельного расхода энергии определяется зависимостью

$$h = u + pv$$
 или $h = h' + T(v - v') \frac{dp_s}{dT}$, (3.4)

$$h = h' + rx = h' + T(v'' - v')\frac{dp_s}{dT}\frac{v - v'}{v'' - v'} = h' + T(v - v')\frac{dp_s}{dT}$$

В общем случае параметры вытесняемого из полости рабочего тела могут отличаться от средних значений соответствующих величин в полости.

Удельный приход энергии в полость при отсутствии потерь в трубопроводе равен удельному расходу энергии из источника питания:

$$\mathbf{h}_{\mathbf{p}} = \mathbf{u}_{\mathbf{p}} + \mathbf{p}_{\mathbf{p}}\mathbf{v}_{\mathbf{p}}.$$

Величину массового расхода и прихода рабочего тела будем определять, пренебрегая теплообменом между рабочим телом и стенками.

Получим уравнение, связывающее параметры фиксированного количества двухфазного рабочего тела в термодинамическом процессе при отсутствии теплообмена (s=const):

$$s_p = s'_p + (s''_p - s'_p)x_p = s = s' + (s'' - s')x$$
,

 $s'_{p} + \frac{r_{p}}{T_{p}} \cdot \frac{v_{p} - v_{p}}{v'_{p} - v'_{p}} = s' + \frac{r}{T} \cdot \frac{v - v'}{v'' - v'}$ откуда после подстановки

формул для

теплоты парообразования r_p, r получим:
$$\dot{s_{p}} + (v_{p} - v_{p}') \left(\frac{dp_{s}}{dT}\right)_{p} = \dot{s} + (v - v') \frac{dp_{s}}{dT},$$

$$\frac{v - v'}{v_{p} - v_{p}'} \frac{dp_{s}/dT}{(dp_{s}/dT)_{p}} = 1 - \frac{\dot{s}' - \dot{s_{p}'}}{(v_{p} - v_{p}')(dp_{s}/dT)_{p}}.$$
(3.5)

В уравнении (3.5) индексом р отмечены величины, характеризующие начальное состояние рабочего тела. Массовый приход в полость определяется зависимостью

$$G_p = \mu_p S_p \frac{V_p}{V} \quad . \tag{3.6}$$

При отсутствии теплообмена скорость потока через дроссель определится выражением

$$V_p = \sqrt{2(h_p - h)}$$
, (3.7)

где h - значение удельной энтальпии рабочего тела в проходном сечении дросселя.

Из зависимости (3.6) с учетом (3.5) и (3.7) получим выражение для массового прихода. Из уравнения (3.7), подставляя в него уравнение (3.4), имеем

$$V_{p} = \sqrt{2} \left[\dot{h'_{p}} + (v_{p} - v'_{p})T_{p} \left(\frac{dp_{s}}{dT}\right)_{p} - \dot{h'} - (v - v')T \left(\frac{dp_{s}}{dT}\right) \right] ,$$

откуда, подставляя вместо v его выражение из (3.5)

$$v = v' + \frac{(v_p - v_p)(dp_s/dT)_p}{(dp_s/dT)} - \frac{(s' - s_p')}{(dp_s/dT)}$$
,

получим

$$V_{p} = \sqrt{2} \left[\dot{h'_{p}} - \dot{h'} + (v_{p} - v'_{p}) \left(\frac{dp_{s}}{dT} \right)_{p} (T_{p} - T) + T(s' - s'_{p}) \right],$$

$$G_{p} = \mu_{p} S_{p} \left(\frac{dp_{s}}{dT} \right) \frac{\sqrt{2} \left[\dot{h'_{p}} - \dot{h'} + (v_{p} - v'_{p}) \left(\frac{dp_{s}}{dT} \right)_{p} (T_{p} - T) + T(s' - s'_{p}) \right]}{v' \frac{dp_{s}}{dT} + (v_{p} - v'_{p}) (dp_{s}/dT)_{p} - (s' - s'_{p})} = 0$$

$$= \mu_{p} S_{p} \left(\frac{dp_{s}}{dT}\right) \frac{\sqrt{2T_{p}(v_{p} - v_{p}^{'})(dp_{s}^{'}/dT)_{p} \left[1 - \frac{T}{T_{p}} + \frac{h_{p}^{'} - h^{'} + T(s^{'} - s_{p}^{'})}{T_{p}(v_{p} - v_{p}^{'})(dp_{s}^{'}/dT)_{p}}\right]}}{v^{'} \frac{dp_{s}}{dT} + (v_{p} - v_{p}^{'})(dp_{s}^{'}/dT)_{p} - (s^{'} - s_{p}^{'})}$$

$$= \mu_{p} S_{p} \left(\frac{dp_{s}}{dT}\right) \frac{\sqrt{2T_{p}(v_{p} - v_{p}^{'})(dp_{s}^{'}/dT)_{p} \left[1 - \frac{T}{T_{p}} + \frac{h_{p}^{'} - h^{'} + T(s^{'} - s_{p}^{'})}{T_{p}(v_{p} - v_{p}^{'})(dp_{s}^{'}/dT)_{p}}\right]}}{(v_{p} - v_{p}^{'})\left(\frac{dp_{s}}{dT}\right)_{p} \left(1 + \frac{v^{'}(dp_{s}^{'}/dT)}{(v_{p} - v_{p}^{'})(dp_{s}^{'}/dT)_{p}} - \frac{(s^{'} - s_{p}^{'})}{(v_{p} - v_{p}^{'})(dp_{s}^{'}/dT)_{p}}\right)},$$

$$G_{p} = \mu_{p}S_{p}\left(\frac{dp_{s}}{dT}\right)\sqrt{\frac{2T_{p}}{(v_{p} - v_{p}^{'})\left(\frac{dp_{s}}{dT}\right)_{p}}} \frac{\sqrt{1 - \frac{T}{T_{p}} + \frac{h_{p}^{'} - h^{'} + T(s^{'} - s_{p}^{'})}{T_{p}(v_{p} - v_{p}^{'})(dp_{s}/dT)_{p}}}{\left(1 + \frac{v^{'}(dp_{s}/dT)}{(v_{p} - v_{p}^{'})(dp_{s}/dT)_{p}} - \frac{(s^{'} - s_{p}^{'})}{(v_{p} - v_{p}^{'})(dp_{s}/dT)_{p}}\right)} .(3.8)$$

При докритическом режиме течения величина давления в сечении дросселя равна давлению среды, куда происходит истечение, поэтому значения величин T, dp/dT, v, s, h в зависимости (3.8) совпадают с соответствующими параметрами рабочего тела в полости. При уменьшении давления в полости до значений, меньших критических, расход в полость будет оставаться постоянным. Скорость течения при этом будет равна местной скорости звука в сечении дросселя. В рамках сделанных допущений величина этой скорости может быть определена формулой Лапласа [25].

$$a = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{S}} = \sqrt{-v^{2}\left(\frac{\partial p}{\partial v}\right)_{S}} \quad .$$

Сложность использования этого уравнения связана с необходимостью выразить производную $(\partial p/\partial v)_s$ через параметры на линии насыщения и степень сухости. Для преобразования используются (при различных степенях приближенности) дифференциальные уравнения термодинамики. Наиболее полно их вывод проделан В.В. Сычевым [25, 98]. В окончательном виде его решение может быть записано так:

$$a_{\mathcal{A}\Phi} = \sqrt{\mathbf{v}^2 \left[-\left(\frac{\partial \mathbf{v}}{\partial p}\right)_{\mathbf{S}}^{'\mathcal{A}\Phi} (1-\mathbf{x}) - \left(\frac{\partial \mathbf{v}}{\partial p}\right)_{\mathbf{S}}^{''\mathcal{A}\Phi} \mathbf{x} \right]^{-1}}$$

ИЛИ

$$a_{\mu\phi} = v \frac{dp_s}{dT} \sqrt{\frac{T}{c_v' \phi} (1-x) + c_v'' \phi}},$$
 так как согласно [25]

$$\left(\frac{\partial \mathbf{v}}{\partial \mathbf{p}}\right)_{\mathbf{S}}^{\mathbf{A}\boldsymbol{\Phi}} = -\frac{\mathbf{c}_{\mathbf{v}}^{\mathbf{A}\boldsymbol{\Phi}}}{T} \left(\frac{\mathbf{d}T}{\mathbf{d}\mathbf{p}}\right)^{2}.$$

В результате подстановки х из уравнения $\frac{r_{\kappa p}}{T_{\kappa p}}x_{\kappa p} = \frac{r_p}{T_p}x_p + s_p' - s_{\kappa p}'$ (s=const) и (v'-v) из уравнения Клаузиуса получим

$$\begin{split} a_{\mathcal{A}\varphi} &= v \frac{dp_{s}}{dT} \sqrt{\frac{T}{c_{v}^{'} \mathcal{A}\varphi} + x(c_{v}^{''} \mathcal{A}\varphi - c_{v}^{'} \mathcal{A}\varphi)} = v \frac{dp_{s}}{dT} \sqrt{\frac{T}{c_{v}^{'} \mathcal{A}\varphi} + xT(v^{''} - v^{'}) \frac{d^{2}p_{s}}{dT^{2}}} \\ &= v \frac{dp_{s}}{dT} \sqrt{\frac{T}{c_{v}^{'} \mathcal{A}\varphi} + T\left(\frac{r_{p}x_{p}}{T_{p}} + s_{p}^{'} - s^{'}\right) \frac{d^{2}p_{s}}{dp}}{\frac{d^{2}p_{s}}{dT^{2}}} \quad . \end{split}$$

Для критического режима можно записать

$$a = v_{\kappa p} \left(\frac{dp_s}{dT}\right)_{\kappa p} \sqrt{\frac{T_{\kappa p}}{c'_{\kappa p}} + T_{\kappa p} \left(\frac{r_p x_p}{T_p} + s'_p - s'_{\kappa p}\right) \frac{\left(d^2 p_s / dT^2\right)_{\kappa p}}{\left(dp_s / dT\right)_{\kappa p}}}$$

После незначительных преобразований зависимость для массового прихода при критическом режиме течения будет иметь вид

$$G_{\kappa p} = \mu_{p} S_{p} \frac{V_{\kappa p}}{v_{\kappa p}} = \mu_{p} S_{p} \left(\frac{dp_{s}}{dT}\right)_{\kappa p} \sqrt{\frac{T_{\kappa p}}{c'_{\kappa p}} + T_{\kappa p} \left(\frac{r_{p} x_{p}}{T_{p}} + s'_{p} - s'_{\kappa p}\right) \left(\frac{d^{2} p_{s} / dT^{2}}{(dp_{s} / dT)_{\kappa p}}\right)}{(dp_{s} / dT)_{\kappa p}}}.$$
 (3.9)

Зависимости, определяющие значения параметров потока в критическом режиме, находятся из условия равенства скорости течения, определяемой формулой (3.7), местной скорости звука. Критические значения температуры $T_{\kappa p}$ и массовой степени сухости $x_{\kappa p}$ можно найти, решая систему уравнений, вывод которой имеет следующий вид:

$$s = const;$$
 тогда $s_{\kappa p} = s_p;$ $s'_{\kappa p} + (s''_{\kappa p} - s'_{\kappa p})x_{\kappa p} = s'_p + (s''_p - s'_p)x_p,$
откуда

$$\dot{s_{\kappa p}} + \frac{r_{\kappa p}}{T_{\kappa p}} x_{\kappa p} = \dot{s_p} + \frac{r_p}{T_p} x_p$$
, $a \ 3Ha4ut$ $\frac{r_{\kappa p}}{T_{\kappa p}} x_{\kappa p} = \frac{r_p}{T_p} x_p + \dot{s_p} - \dot{s_{\kappa p}}$;

$$V_{\kappa p} = a = \sqrt{2(h_{p} - h_{\kappa p})} = v_{\kappa p} \left(\frac{dp_{s}}{dT}\right)_{\kappa p} \sqrt{\frac{T_{\kappa p}}{c'_{\kappa p}} + T_{\kappa p} \left(\frac{r_{p}x_{p}}{T_{p}} + s'_{p} - s'_{\kappa p}\right) \frac{(d^{2}p_{s}/dT^{2})_{\kappa p}}{(dp_{s}/dT)_{\kappa p}}}$$

Используем вспомогательные уравнения:

$$\mathbf{h}_{\mathbf{K}\mathbf{p}} = \mathbf{h}_{\mathbf{K}\mathbf{p}}' + \mathbf{r}_{\mathbf{K}\mathbf{p}}\mathbf{x}_{\mathbf{K}\mathbf{p}};$$

$$\mathbf{v}_{\kappa p} - \mathbf{v}_{\kappa p}' = \frac{\mathbf{h}_{\kappa p} - \mathbf{h}_{\kappa p}'}{T_{\kappa p} (dp_s/dT)_{\kappa p}} = \frac{r_{\kappa p} x_{\kappa p}}{T_{\kappa p} (dp_s/dT)_{\kappa p}}; \quad \mathbf{v}_{\kappa p} = \mathbf{v}_{\kappa p}' + \frac{r_{\kappa p} x_{\kappa p}}{T_{\kappa p} (dp_s/dT)_{\kappa p}}.$$

Тогда

$$2\left[h_{p} - h_{kp}' - r_{kp} x_{kp}\right] = \left[v_{kp}' \left(\frac{dp_{s}}{dT}\right)_{kp} + \frac{r_{kp} x_{kp}}{T_{kp}}\right]^{2} \frac{T_{kp}}{c_{v_{kp}}' + r_{kp} x_{kp}} \frac{\left(\frac{d^{2}p_{s}}{dT^{2}}\right)_{kp}}{\left(\frac{dp_{s}}{dT}\right)_{kp}} = \frac{1}{2} \frac{1}{2} \frac{1}{\left(\frac{dp_{s}}{dT}\right)_{kp}} \frac{1}{\left(\frac{dp_{s}}{dT}\right)_{kp}} \frac{1}{\left(\frac{dp_{s}}{dT}\right)_{kp}} = \frac{1}{2} \frac{1}{2} \frac{1}{\left(\frac{dp_{s}}{dT}\right)_{kp}} \frac{1}{\left(\frac$$

$$= \frac{\left[v_{Kp}'^{2} \left(\frac{dp_{s}}{dT}\right)_{Kp}^{2} + 2v_{Kp}' \frac{r_{Kp} x_{Kp}}{T_{Kp}} \left(\frac{dp_{s}}{dT}\right)_{Kp} + \left(\frac{r_{Kp} x_{Kp}}{T_{Kp}}\right)^{2}\right] T_{Kp}}{c_{V_{Kp}}' + r_{Kp} x_{Kp}} \frac{\left(\frac{d^{2}p_{s}}{dT}\right)_{Kp}}{\left(\frac{d^{2}p_{s}}{dT}\right)_{Kp}}$$

$$2\left[h_{p} - h_{\kappa p}' - r_{\kappa p} x_{\kappa p}\right] \left[c_{v_{\kappa p}}' + r_{\kappa p} x_{\kappa p} \frac{\left(d^{2} p_{s} / dT^{2}\right)_{\kappa p}}{\left(d p_{s} / dT\right)_{\kappa p}}\right] =$$

$$= \left[\mathbf{v}_{\kappa p}^{'} \left(\frac{dp_s}{dT} \right)_{\kappa p}^2 + 2\mathbf{v}_{\kappa p}^{'} \frac{\mathbf{r}_{\kappa p} \mathbf{x}_{\kappa p}}{\mathbf{T}_{\kappa p}} \left(\frac{dp_s}{dT} \right)_{\kappa p} + \left(\frac{\mathbf{r}_{\kappa p} \mathbf{x}_{\kappa p}}{\mathbf{T}_{\kappa p}} \right)^2 \right] \mathbf{T}_{\kappa p} \quad .$$

$$\mathbf{v_{kp}'}^{2} \left(\frac{dp_{s}}{dT}\right)_{kp}^{2} + 2\mathbf{v_{kp}'} \frac{r_{kp} x_{kp}}{T_{kp}} \left(\frac{dp_{s}}{dT}\right)_{kp} + \left(\frac{r_{kp} x_{kp}}{T_{kp}}\right)^{2} = \frac{2(h_{p} - h_{kp}')}{T_{kp}} c_{v_{kp}}' - \frac{1}{2} c_{kp}' c_{$$

$$-\frac{2r_{\kappa p}x_{\kappa p}c_{\nu_{\kappa p}}^{'}}{T_{\kappa p}}+2(h_{p}-h_{\kappa p}^{'})\frac{r_{\kappa p}x_{\kappa p}}{T_{\kappa p}}\frac{\left(d^{2}p_{s}/dT^{2}\right)_{\kappa p}}{\left(dp_{s}/dT\right)_{\kappa p}}-2\frac{r_{\kappa p}^{2}x_{\kappa p}^{2}}{T_{\kappa p}}\frac{\left(d^{2}p_{s}/dT^{2}\right)_{\kappa p}}{\left(dp_{s}/dT\right)_{\kappa p}}.$$

Откуда

$$\left(\frac{r_{\kappa p} x_{\kappa p}}{T_{\kappa p}}\right)^{2} + 2 \frac{r_{\kappa p}^{2} x_{\kappa p}^{2}}{T_{\kappa p}} \frac{\left(d^{2} p_{s} / dT^{2}\right)_{\kappa p}}{\left(d p_{s} / dT\right)_{\kappa p}} + \frac{2r_{\kappa p} x_{\kappa p} c'_{v_{\kappa p}}}{T_{\kappa p}} + 2v'_{\kappa p} \frac{r_{\kappa p} x_{\kappa p}}{T_{\kappa p}} \left(\frac{d p_{s}}{dT}\right)_{\kappa p} - 2(h_{p} - h'_{\kappa p}) \frac{r_{\kappa p} x_{\kappa p}}{T_{\kappa p}} \frac{\left(d^{2} p_{s} / dT^{2}\right)_{\kappa p}}{\left(d p_{s} / dT\right)_{\kappa p}} - \frac{2(h_{p} - h'_{\kappa p})}{T_{\kappa p}} c'_{v_{\kappa p}} + v'_{\kappa p}^{2} \left(\frac{d p_{s}}{dT}\right)_{\kappa p}^{2} = 0.$$

Окончательно можно записать

$$\left(\frac{r_{Kp} x_{Kp}}{T_{Kp}}\right)^{2} \left[1 + 2T_{Kp} \frac{\left(d^{2} p_{s} / dT^{2}\right)_{Kp}}{\left(d p_{s} / dT\right)_{Kp}}\right] + 2\frac{r_{Kp} x_{Kp}}{T_{Kp}} \cdot \left[c'_{V_{Kp}} + v'_{Kp} \left(\frac{d p_{s}}{dT}\right)_{Kp} + (h_{p} - h'_{Kp}) \frac{\left(d^{2} p_{s} / dT^{2}\right)_{Kp}}{\left(d p_{s} / dT\right)_{Kp}}\right] + 2\frac{\left(h'_{Kp} - h_{p}\right)}{T_{Kp}}c'_{V_{Kp}} + v'_{Kp}^{2} \left(\frac{d p_{s}}{dT}\right)_{Kp}^{2} = 0;$$

$$(3.10a)$$

$$\frac{r_{\kappa p}}{T_{\kappa p}} x_{\kappa p} = \frac{r_{p}}{T_{p}} x_{p} + \dot{s_{p}} - \dot{s_{\kappa p}}$$
(3.106)

При известных значениях $x_{\kappa p}$ и $T_{\kappa p}$ однозначно находятся все остальные критические параметры потока.

Таким образом, величина массового прихода (расхода) рабочего тела может быть вычислена в следующей последовательности:

- в результате решения системы уравнений (3.10а) и (3.10б) находятся критические параметры потока, а также при известных параметрах рабочего тела в полости определяется режим течения через дроссель;
- если течение докритическое (давление в полости больше критического), величина прихода вычисляется по зависимости (3.8);
- если течение критическое, величина прихода определяется по зависимости (3.9) при известных значениях критических параметров потока.

Обозначения:

р - давление, Т - температура, W - объем, ρ - плотность, v удельный объем, u - удельная внутренняя энергия, h - удельная энтальпия (удельный приход (расход) энергии), r - удельная теплота парообразования, s - удельная энтропия, S - площадь, μ - коэффициент расхода, G - массовый секундный приход (расход), с - удельная теплоемкость, x - массовая степень сухости, τ - время.

Индексы:

([']), (["]) - относятся к величинам на нижней и верхней пограничной кривой соответственно; р - относится к источнику питания; кр относится к критическому режиму; дф - двухфазная система.

3.2. Определение термодинамических свойств рабочих веществ в двухфазной области

Интерес к использованию перспективных рабочих веществ во всем мире не ослабевает, особенно когда речь идет об экологически безопасных холодильных агентах.

Ниже приведена методика и результаты расчета ряда термодинамических свойств холодильного агента R134a, а именно: двухфазной изохорной теплоемкости, показателя изоэнтропы, скорости звука, теплоемкостей на пограничных кривых [46] (См. прил. 2). Полученные результаты могут быть полезны при математическом моделировании рабочих процессов, протекающих в тепловых машинах, использующих парожидкостные рабочие тела.

В приводимой методике в качестве исходных данных использовалась таблица насыщенных паров рабочего вещества, в частности таблица насыщенных паров холодильного агента R134a приведенная в [84] (табл. 3.1).

Изохорная теплоемкость

Теплоемкость влажного пара c_v при постоянном объеме, равная $(\partial u/\partial T)_v$, согласно свойству аддитивности внутренней энергии [17] будет равна

$$c_{v} = (1-x)c_{v}^{'tp} + xc_{v}^{"tp},$$

где c_v^{'tp}, c_v^{"tp} - изохорные теплоемкости жидкой и газообразной фаз при данной температуре на левой и правой пограничных кривых со стороны двухфазной области.

Продифференцировав уравнения v = (1 - x)v' + xv'' и u = (1 - x)u' + xu'' по температуре, при v = const, получаем:

$$0 = (1 - x)\frac{dv'}{dT} + x\frac{dv''}{dT} + (v'' - v')\left(\frac{\partial x}{\partial T}\right)_{v}$$

$$\mathbf{c}_{\mathbf{v}} = (1-\mathbf{x})\frac{\mathrm{d}\mathbf{u}'}{\mathrm{d}\mathbf{T}} + \mathbf{x}\frac{\mathrm{d}\mathbf{u}''}{\mathrm{d}\mathbf{T}} + (\mathbf{u}'' - \mathbf{u}')\left(\frac{\partial \mathbf{x}}{\partial \mathbf{T}}\right)_{\mathbf{v}}.$$

Подставляя из первого уравнения выражение $(\partial x/\partial T)_v$ во второе, получим:

$$c_{v} = (1-x) \left(\frac{du'}{dT} - \frac{u''-u'}{v''-v'} \frac{dv'}{dT} \right) + x \left(\frac{du''}{dT} - \frac{u''-u'}{v''-v'} \frac{dv''}{dT} \right),$$
откуда, полагая, x=0

находим, что теплоемкость c^{'tp} на левой пограничной кривой при подходе к ней из двухфазной области будет

$$c'_{v}^{tp} = \frac{du'}{dT} - \frac{u'' - u'}{v'' - v'} \frac{dv'}{dT}$$

Аналогично теплоемкость с^{"tp} на правой пограничной кривой при подходе к ней из двухфазной области будет равна:

$$c_{v}^{"tp} = \frac{du^{"}}{dT} - \frac{u^{"} - u^{'}}{v^{"} - v^{'}} \frac{dv^{"}}{dT}.$$

Таблица 3.1

Таблица насыщенных	паров холодильного	агента R134a

Τ,	p.10 ⁻	ρ,	ρ",	h',	h",	r,	s',	s",
K	⁵ , Па	кг/м ³	кг/м ³	кДж/кг	кДж/кг	кДж/кг	кДж	кДж
	-			, ,	, ,		$\overline{\kappa\Gamma \cdot K}$	кг • К
238	0,63	1419,6	3,44	347,8	573,3	225,5	3,8071	4,7536
243	0,81	1396,9	4,35	356,7	577,1	220,4	3,8423	4,7487
248	1,03	1379,5	5,43	364,4	581,1	216,7	3,8716	4,7452
253	1,29	1363,2	6,71	371,5	585,2	213,7	3,8983	4,7424
258	1,60	1347,3	8,21	378,4	589,2	210,8	3,9237	4,7403
263	1,96	1331,3	9,97	385,4	593,2	207,8	3,9489	4,7386
268	2,39	1315,2	12,02	392,6	597,2	204,6	3,9743	4,7372
273	2,89	1298,7	14,39	400,0	601,0	201,0	4,0000	4,7358
278	3,46	1281,8	17,13	407,6	604,7	197,1	4,0261	4,7344
283	4,12	1264,6	20,28	415,5	608,2	192,7	4,0523	4,7330
288	4,87	1246,8	23,87	423,4	611,5	188,1	4,0785	4,7314
293	5,71	1228,4	27,96	431,5	614,7	183,2	4,1045	4,7295
298	6,66	1209,6	32,61	439,5	617,6	178,1	4,1301	4,7274
303	7,72	1190,1	37,89	447,5	620,3	172,8	4,1551	4,7250
308	8,89	1169,9	43,87	455,5	622,7	167,2	4,1795	4,7222
313	10,19	1149,0	50,64	463,3	624,9	161,6	4,2030	4,7190
318	11,63	1127,2	58,32	471,0	626,6	155,8	4,2258	4,7154
323	13,21	1104,5	67,05	478,7	628,4	149,7	4,2480	4,7114
328	14,94	1080,6	77,03	486,3	629,8	143,5	4,2696	4,7068
333	16,84	1055,3	88,48	493,9	630,8	136,9	4,2907	4,7017
338	18,91	1028,2	101,73	501,5	631,4	129,9	4,3117	4,6958
343	21,18	998,8	117,25	509,3	631,6	122,3	4,3328	4,6891
348	23,65	966,5	135,68	517,4	631,3	113,9	4,3544	4,6814
353	26,35	930,0	158,06	526,0	630,3	104,3	4,3768	4,6722
358	29,28	887,6	186,12	535,3	628,4	93,1	4,4008	4,6609
363	32,48	835,8	223,23	545,6	625,1	79,5	4,4273	4,6463
368	35,96	766,1	277,80	557,9	619,2	61,3	4,4585	4,6252
373	39,76	633,8	393,85	576,4	605,0	28,6	4,5060	4,5825

Рис. 3.1. Зависимость изохорной теплоемкости с_v в двухфазной области состояния

Показатель изоэнтропы

Используя свойство аддитивности удельного объема и энтропии влажного пара v = (1 - x)v' + xv'' и s = (1 - x)s' + xs'', а также их производные по *p* при s = const зависимость для показателя изоэнтропы $k = -\frac{v}{p} \left(\frac{\partial p}{\partial v}\right)_{S}$ можно представить в виде [25]

$$k(T,x) = -\frac{v'(1-x) + v''x}{p\left[\left(\frac{\partial v}{\partial p}\right)_{S}^{'tp}(1-x) + \left(\frac{\partial v}{\partial p}\right)_{S}^{''tp}x\right]}, \quad \Gamma \text{дe}$$
$$\left(\frac{\partial v}{\partial p}\right)_{S}^{'tp} = -\frac{c_{v}^{'tp}}{T}\left(\frac{dT}{dp_{s}}\right)^{2}, \qquad \left(\frac{\partial v}{\partial p}\right)_{S}^{''tp} = -\frac{c_{v}^{''tp}}{T}\left(\frac{dT}{dp_{s}}\right)^{2}$$

Выражение для k(T,x) можно записать также в виде:

$$k(T,x) = \frac{T\left[v'(1-x) + v''x\right]\left(\frac{dp_s}{dT}\right)^2}{p\left[c_v'^{tp}(1-x) + c_v''^{tp}x\right]}$$

Следует отметить, что зависимость k(T,x) справедлива для двухфазной области и кривой насыщения при переходе к этой кривой из двухфазной области. При переходе к линии насыщения со стороны однофазной области получаются другие значения k(T, x), что связано с наличием разрыва производной $(\partial v/\partial p)_s$ на линии насыщения.

Рис. 3.2. Зависимость показателя изоэнтропы k(T,x)

Скорость звука

Величина скорости звука может быть определена формулой Лапласа [25].

$$a = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{s}} = \sqrt{-v^{2}\left(\frac{\partial p}{\partial v}\right)_{s}} \quad .$$

Сложность использования этого уравнения связана с необходимостью выразить производную $(\partial p / \partial v)_s$ через параметры на линии насыщения и степень сухости. Для преобразования используются (при различных степенях приближенности) дифференциальные уравнения термодинамики. Наиболее полно их вывод проделан В. В. Сычевым [25, 98]. В окончательном виде его решение может быть записано так:

$$a_{tp} = \sqrt{v^{2} \left[-\left(\frac{\partial v}{\partial p}\right)_{s}^{'tp} (1-x) - \left(\frac{\partial v}{\partial p}\right)_{s}^{'tp} x \right]^{-1}}$$
ИЛИ

$$a_{tp} = v \frac{dp_{s}}{dT} \sqrt{\frac{T}{c_{v}^{'tp} (1-x) + c_{v}^{''tp} x}}, \quad \text{так как согласно [25]}$$

$$\left(\frac{\partial v}{\partial p}\right)_{s}^{tp} = -\frac{c_{v}^{tp}}{T} \left(\frac{dT}{dp}\right)^{2}.$$
180

Рис. 3.3. Зависимость скорости звука а_{tp}

Теплоемкости на пограничных кривых

$$c' = T\left(\frac{ds'}{dT}\right), \qquad c'' = T\left(\frac{ds''}{dT}\right).$$

Рис. 3.4. Зависимость теплоемкости насыщенной жидкости с

Рис. 3.5. Зависимость теплоемкости сухого насыщенного пара с

Обозначения:

a_{tp} – скорость звука, м/с; с – удельная теплоемкость, кДж/(кг·К); с_v – удельная изохорная теплоемкость, кДж/(кг·К); h – удельная эн-

тальпия, кДж/кг; k(T,x) – показатель изоэнтропы, p – давление, Па; r – теплота парообразования, кДж/кг; s – удельная энтропия, кДж/(кг·К); T – температура, K; u – удельная внутренняя энергия, кДж/кг; v – удельный объем, м³/кг; x – степень сухости; ρ - плотность, кг/м³. Индексы: (), () – верхние индексы, которые относятся к величинам на нижней и верхней пограничной кривой соответственно; tp - двухфазная область.

3.3. Подход к математическому моделированию открытых систем с парожидкостными рабочими телами Н.В. Семенчевой

Рассмотрим еще один подход к математическому моделированию открытых систем с парожидкостными рабочими телами, приведенный в работах **Н.В. Семенчевой.**

Если в полости технического объекта находятся одновременно две фазы рабочего тела - жидкая и газообразная [86 - 88], то возможны следующие варианты (рис. 3.6):

1)каждая фаза рассматривается как индивидуальное рабочее тело со своим объемом V " (газ - пар) или V ' (жидкость). Давление во всей полости объемом V = V' + V" принимается равным р, но температура жидкости и газа различные: Т ' - у жидкости, Т " - у пара;

2)принимается допущение о термодинамическом равновесии в системе жидкость - газ, в этом варианте в полости одинаковое давление р и одинаковая температура Т.

Параметры рабочего тела в проточной полости могут меняться вследствие трех воздействий:

1) подвода (отвода) теплоты Q, Дж; $\frac{dQ}{d\tau} = \dot{Q}$, Bт; 2) работы расширения L, Дж; $\frac{dL}{d\tau} = \dot{L}$, Bт;

3) подвода (отвода) вещества в проточную полость; массовый расход вещества, втекающего в полость по i-му каналу с площадью проходного сечения F_{BTI} , обозначен G $_{BTI}$; массовый расход вещества, вытекающего из полости по j-му каналу с площадью проходного сечения F_{BbITj} , обозначен G_{BbITj} . Если в полости находятся одновременно две фазы - жидкая и газообразная и нет фазового равновесия, то масса вещества, переходящая из одной фазы в другую в единицу времени, обозначена G_0 и определяется по уравнению кинетической теории газов и жидкостей [110].

Рис. 3.6. Расчетная схема

К основным уравнениям термодинамики тела переменной массы, составляющим математическую модель изменения параметров рабочего тела в проточной полости, относят:

1. Закон сохранения массы:

а) для двухфазного рабочего тела при допущении фазового равновесия

$$\frac{dm}{d\tau} = \sum_{i=1}^{n_{BT}} G_{BT_i} - \sum_{j=1}^{n_{BbIT}} G_{BbIT_j} , \qquad (3.11)$$

где n_{вт} - число каналов, по которым вещество поступает в полость,

n_{выт} - число каналов, по которым вещество вытекает из полости;

 б) для двухфазного рабочего тела при отсутствии фазового равновесия

$$\frac{dm'}{d\tau} = \sum_{i=1}^{n'_{BT}} G'_{BT_i} - \sum_{j=1}^{n'_{BHT}} G'_{BHT_j} - G_0 \quad ; \qquad (3.11')$$

$$\frac{dm''}{d\tau} = \sum_{i=1}^{n''_{BT}} G''_{BT_i} - \sum_{j=1}^{n''_{BHT}} G''_{BHT_j} - G_0 \quad , \qquad (3.11'')$$

где m' - масса жидкости в полости; m" - масса газа в полости; n'_{вт} - число каналов, по которым вещество поступает в зону полости, заполненную жидкостью; n'_{выт} - число каналов, по которым жидкое рабочее тело вытекает из полости; n"_{вт} - число каналов, по которым вещество поступает в зону полости, заполненную газом; n"_{выт} число каналов, по которым газообразное рабочее тело вытекает из полости; G'_{вті} - расход вещества, поступающего в зону полости, заполненную жидкостью; G'_{вытј} - расход жидкой фазы рабочего тела, вытекающего из полости; G"_{вті} - расход вещества, поступающего в зону полости, заполненную газом; G"_{вытј} - расход вещества, поступающего в зону полости, заполненную газом; G"_{вытј} - расход газообразной фазы рабочего тела, вытекающего из полости.

2. Закон сохранения энергии:

а) для двухфазного рабочего тела при допущении о фазовом равновесии

$$\frac{du}{d\tau} = \dot{Q} - \dot{L} + \sum_{i=1}^{n_{BT}} h_{BT_i} G_{BT_i} - h \sum_{j=1}^{n_{BHT}} G_{BHT_j}, \qquad (3.12)$$

- где h_{вті} удельная энтальпия вещества, втекающего в полость по i-му каналу;
 - б) для двухфазного рабочего тела при отсутствии фазового равновесия

$$\frac{du'}{d\tau} = \dot{Q}' + \sum_{i=1}^{n'_{BT}} h'_{BT_i} G'_{BT_i} - h' \sum_{j=1}^{n'_{BbIT}} G'_{BbIT_j} - (h' + \phi) G_0, \qquad (3.12')$$

$$\frac{du''}{d\tau} = \dot{Q}'' - \dot{L} + \sum_{i=1}^{n''_{BT}} h''_{BT_i} G''_{BT_i} - h'' \sum_{j=1}^{n''_{BbT}} G''_{BbIT_j} + (h' + \phi) G_0, \qquad (3.12'')$$

где U' - внутренняя энергия жидкой фазы рабочего тела,

$$U' = mu'$$
,

где u' - удельная внутренняя энергия жидкой фазы рабочего тела,

U" - внутренняя энергия газообразной фазы рабочего тела,

$$U'' = mu'',$$

где и" - удельная внутренняя энергия газообразной фазы рабочего тела; \dot{Q}' - теплота, подведенная в единицу времени к жидкой фазе рабочего тела; \dot{Q}'' - теплота, подведенная в единицу времени к газообразной фазе рабочего тела; h'_{BTi} - удельная энтальпия вещества, поступающего в зону жидкой фазы рабочего тела по i-му каналу, соединенному с зоной жидкости; h' - удельная энтальпия жидкой фазы рабочего тела; h''_{BTi} - удельная энтальпия жидкой фазы рабочего тела; h''_{BTi} - удельная энтальпия кидкой фазы рабочего тела; h''_{BTi} - удельная энтальпия кидкой фазы рабочего тела; h''_{BTi} - удельная энтальпия вещества, поступающего в зоной кидкости; h' - удельная энтальпия вещества, поступающего в зоной газа; h''_{BTi} - удельная энтальпия вещества, поступающего в зоной газа; h'' - удельная энтальпия газообразной фазы рабочего тела.

В зависимости от того, какую конкретную двухфазную систему рассматривают, величина φ принимает определенное значение. Если рассматривается однокомпонентная двухфазная система (например, вода и водяной пар в паровом двигателе), то

$$\varphi = r , \qquad (3.13)$$

где r - удельная теплота парообразования.

В зависимости от того, какие конкретно параметры рабочего тела рассчитывают, выбирают соответствующий вариант записи уравнений законов сохранения массы и энергии. Например, при расчете поверхности испарения, необходим вариант «б». Но при использовании варианта «б» математическое описание сложнее, чем в варианте «а» и при возможности переходят к варианту «а».

В частности, при построении математического описания термодинамических процессов в парожидкостном двигателе внешнего сгорания во многих случаях можно принять допущение о фазовом равновесии между паром и жидкостью. При этом можно считать, что температура пара и жидкости одинаковы:

$$T' = T'' = T$$
, (3.14)

масса рабочего тела в полости

$$m = m' + m'' = \rho'V' + \rho''V'' . \qquad (3.15)$$

Складывая уравнения (3.11') и (3.11"), получим

$$\frac{d(\rho'V' + \rho''V'')}{d\tau} = \sum_{i=1}^{n_{BT}} G_{BT_i} - \sum_{j=1}^{n_{BbT}} G_{BbIT_j} \quad . \tag{3.16}$$

Уравнение (3.16) соответствует уравнению (3.11) при условии

$$n_{BT} = n'_{BT} + n''_{BT},$$
 (3.17)

$$n_{BBIT} = n'_{BBIT} + n''_{BBIT} . (3.18)$$

Складывая уравнения (3.12') и (3.12"), получим

$$\frac{d(\rho' u' V' + \rho'' u'' V'')}{d\tau} = \sum_{j=1}^{n_{BT}} h_{BT} G_{BT j} - \sum_{i=1}^{n_{BHT}} h_{BHT i} G_{BHT j} + \dot{Q} - \dot{L} \quad (3.19)$$

В уравнении (3.19)

$$\dot{Q} = \alpha (T_c - T)F \quad , \tag{3.20}$$

где α - коэффициент теплоотдачи от поверхности стенок двигателя к рабочему

телу; Т_с - средняя температура стенок двигателя; F - площадь внутренней поверхности теплоотдачи стенок двигателя.

Пусть втекание рабочего тела в цилиндр двигателя идет с расходом G_1 , а вытекание с расходом G_2 .

В этом случае уравнение (3.19) с учетом (3.20) примет вид

$$\frac{d(\rho' u' V' + \rho'' u'' V'')}{d\tau} = h_1 G_1 - h_2 G_2 + \alpha (T_c - T) F - p \frac{dV}{d\tau} , \qquad (3.21)$$

а уравнение (3.16) вид

$$\frac{d(\rho'V' + \rho''V'')}{d\tau} = G_1 - G_2 . \qquad (3.22)$$

Для практики важно знать давление и температуру пара в цилиндре двигателя. Уравнения (3.21) и (3.22) позволяют получить выражение для расчета этих параметров по уравнениям для dp/dt или dT/dt.

Обозначим V текущий объем цилиндра двигателя, определяемый угловой скоростью вала, конструкционными параметрами двигателя и кривошипно-шатунного механизма. Тогда очевидно, что

$$dV'' = dV - dV'$$
, $V = V' + V''$. (3.23)

Подставляя выражение (3.23) в уравнение (3.22), после преобразования получим

$$\frac{dV'}{d\tau} = \frac{G_2 - G_1 + \rho'' \frac{dV}{d\tau} + \left[V' \frac{d\rho'}{dT} + (V - V') \frac{d\rho''}{dT}\right] \frac{dT}{d\tau}}{\rho'' - \rho'} .$$
(3.24)

Преобразуем уравнение (3.21):

$$(\rho' u' - \rho'' u'') \frac{dV'}{d\tau} + \left[u'V' \frac{d\rho'}{dT} + V'\rho' \frac{du'}{dT} + u''(V - V') \frac{d\rho''}{dT} + \rho''(V - V') \frac{du''}{dT} \right] \frac{dT}{d\tau} =$$

$$= G_1 h_1 - G_2 h_2 + \alpha F(T_c - T) - p \frac{dV}{d\tau} - \rho'' u'' \frac{dV}{d\tau} \quad .$$
(3.25)

Подставляя уравнение (3.24) в (3.25) получаем уравнение dT/dt парожидкости (3.26):

$$\frac{dT}{d\tau} = \frac{G_{l}\left(h_{1} + \frac{\rho'u' - \rho''u''}{\rho'' - \rho'}\right) - G_{2}\left(h_{2} + \frac{\rho'u' - \rho''u''}{\rho'' - \rho'}\right) + \alpha F(T_{c} - T) - \frac{dV}{d\tau}\left[p + \frac{\rho'\rho''(u' - u'')}{\rho'' - \rho'}\right]}{V'\left[\left(\frac{\rho'u' - \rho''u''}{\rho'' - \rho'}\right)\frac{d\rho'}{dT} + u'\frac{d\rho'}{dT} + \rho'\frac{du'}{dT}\right] + (V - V')\left[\left(\frac{\rho'u' - \rho''u''}{\rho'' - \rho'}\right)\frac{d\rho''}{dT} + u''\frac{d\rho''}{dT} + \rho''\frac{du''}{dT}\right]} \quad (3.26)$$

Аналогично можно получить уравнение скорости изменения давления парожидкостного рабочего тела, которое будет иметь вид

$$\frac{dp}{d\tau} = \frac{G_1 \left(h_1 + \frac{\rho' u' - \rho'' u''}{\rho'' - \rho'}\right) - G_2 \left(h_2 + \frac{\rho' u' - \rho'' u''}{\rho'' - \rho'}\right) + \alpha F(T_c - T) - \frac{dV}{d\tau} \left[p + \frac{\rho' \rho''(u' - u'')}{\rho'' - \rho'}\right]}{V' \left[\left(\frac{\rho' u' - \rho'' u''}{\rho'' - \rho'}\right) \frac{d\rho'}{dp} + u' \frac{d\rho'}{dp} + \rho' \frac{du'}{dp}\right] + (V - V') \left[\left(\frac{\rho' u' - \rho'' u''}{\rho'' - \rho'}\right) \frac{d\rho''}{dp} + u'' \frac{d\rho''}{dp} + \rho'' \frac{du''}{dp}\right]} . \quad (3.27)$$

Значения производных dp'/dT, dp"/dT, du'/dT, du'/dT, dp'/dp, dp"/dp, du'/dp, du'/dp определяются вдоль кривой насыщения по таблицам насыщенных паров:

$$V' = (m - \rho''V)/(\rho' - \rho'')$$
,

$$V'' = (\rho'V - m)/(\rho' - \rho''),$$

$$m = m_0 + \int_{\tau_0}^{\tau} (G_1 - G_2) d\tau .$$
(3.28)

Температуру Т_с можно определить с помощью уравнений, описывающих тепловой баланс между охлаждаемой средой, стенкой двигателя и парообразным рабочим телом.

Замыкающим уравнением является уравнение кривой насыщения парожидкости в виде

$$p_{\rm H} = f(T)$$
. (3.29)

Покажем что уравнения (3.1) и (3.2) [73] идентичны уравнениям (3.24) и (3.26), полученным в работе [86]:

$$\frac{\mathrm{dT}}{\mathrm{d\tau}} = \frac{1}{\mathrm{C}_{\mathrm{V}}\rho\mathrm{V}} \left\{ \sum_{0}^{\mathrm{i}} [\mathrm{h}_{\mathrm{i}} - \mathrm{h}]\mathrm{G}_{\mathrm{i}} + \frac{\delta\mathrm{Q}}{\mathrm{d\tau}} + \frac{\mathrm{rv}}{\mathrm{v}'' - \mathrm{v}'} \left(\sum_{0}^{\mathrm{i}} \mathrm{G}_{\mathrm{i}} - \frac{1}{\mathrm{v}}\frac{\mathrm{dV}}{\mathrm{d\tau}} \right) \right\} ; \qquad (3.1)$$

$$\frac{\mathrm{d}v}{\mathrm{d}\tau} = -\frac{\mathrm{v}^2}{\mathrm{V}} \left(\sum_{0}^{\mathrm{i}} \mathrm{G}_{\mathrm{i}} - \frac{1}{\mathrm{v}} \frac{\mathrm{d}\mathrm{V}}{\mathrm{d}\tau} \right) \qquad ; \qquad (3.2)$$

$$\frac{dV'}{d\tau} = \frac{G_2 - G_1 + \rho'' \frac{dV}{d\tau} + \left[V' \frac{d\rho'}{dT} + (V - V') \frac{d\rho''}{dT}\right] \frac{dT}{d\tau}}{\rho'' - \rho'}; \quad (3.24)$$

$$\frac{dT}{d\tau} = \frac{G_1 \left(h_1 + \frac{\rho u - \rho u}{\rho - \rho}\right) - G_2 \left(h_2 + \frac{\rho u - \rho u}{\rho - \rho}\right) + \frac{\delta Q}{d\tau} - \frac{dV}{d\tau} \left[p + \frac{\rho \rho (u - u)}{\rho - \rho}\right]}{V' \left[\left(\frac{\rho u - \rho u}{\rho - \rho}\right) + \frac{\delta Q}{dT} + u' \frac{d\rho}{dT} + \rho' \frac{du'}{dT}\right] + (V - V') \left[\left(\frac{\rho u - \rho u}{\rho - \rho}\right) + \frac{\delta Q}{dT} + u' \frac{d\rho}{dT} + \rho' \frac{du'}{dT}\right]}.$$
 (3.26)

Преобразуем знаменатель уравнения (3.26):

$$\left(\frac{\rho \dot{u} - \rho \ddot{u}}{\rho - \rho \dot{v}}\right) \frac{d\rho}{dT} + u' \frac{d\rho}{dT} + \rho' \frac{du}{dT} = \rho' \frac{du}{dT} + \frac{d\rho}{dT} \left(\frac{\rho \dot{u} - \rho \ddot{u} + \rho \ddot{u} - \rho \dot{u}}{\rho - \rho \dot{v}}\right) =$$
$$= \rho' \frac{du}{dT} + \frac{d\rho'}{dT} \left[\frac{\rho'' (u' - u'')}{\rho - \rho \dot{v}}\right] = \frac{1}{v'} \left[\frac{du'}{dT} - \frac{u'' - u'}{v'' - v'} \frac{dv'}{dT}\right] .$$
Аналогично

$$\left(\frac{\dot{\rho u} - \rho \ddot{u}}{\rho - \rho \dot{v}}\right) \frac{d\rho}{dT} + u'' \frac{d\rho}{dT} + \rho'' \frac{du}{dT} = \frac{1}{v''} \left[\frac{du}{dT} - \frac{u'' - u}{v'' - v'} \frac{dv''}{dT}\right],$$

ГДЕ $\rho' = 1/v', \quad d\rho' = -\frac{1}{v'^2} dv', \quad \rho'' = 1/v'', \quad d\rho'' = -\frac{1}{v''^2} dv''.$

Так как для степени сухости х и массы М двухфазного рабочего тела можно записать

$$x = \frac{M''}{M' + M''}, \quad 1 - x = \frac{M'}{M' + M''}, \quad M = V / v = M' + M'' = V' / v' + V'' / v'',$$

то получается, что знаменатель уравнения (3.26) полностью идентичен выражению, стоящему перед фигурной скобкой уравнения (3.1),

где
$$C_{v} = C_{v}^{\pi\Phi} = (1-x) \left[\frac{du'}{dT} - \frac{u''-u'}{v''-v'} \frac{dv'}{dT} \right] + x \left[\frac{du''}{dT} - \frac{u''-u'}{v''-v'} \frac{dv''}{dT} \right]$$
 - теплоем-

кость влажного пара [17].

Следует отметить, что в работе [73] удельная теплоемкость влажного пара определяется неточно, так как учитываются только ее составляющие вдоль левой (x = 0) и правой (x = 1) пограничных кривых. Вблизи критической точки это расхождение может быть весьма существенным.

Преобразуем выражение, стоящее в фигурных скобках уравнения 3.1, применительно к схеме, изображенной на рис. 3.6:

$$\begin{split} &\sum_{0}^{i} [h_{i} - h]G_{i} + \frac{\delta Q}{d\tau} + \frac{rv}{v^{"} - v^{'}} \left(\sum_{0}^{i} G_{i} - \frac{1}{v} \frac{dV}{d\tau} \right) = \\ &= \left(h_{1} - h + \frac{rv}{v^{"} - v^{'}} \right) G_{1} - \left(h_{2} - h + \frac{rv}{v^{"} - v^{'}} \right) G_{2} - \frac{r}{v^{"} - v^{'}} \frac{dV}{d\tau} = \\ &= \left(h_{1} - h + \frac{rv}{v^{"} - v^{'}} \right) G_{1} - \left(h_{2} - h + \frac{rv}{v^{"} - v^{'}} \right) G_{2} - \frac{r\rho'\rho''}{\rho' - \rho''} \frac{dV}{d\tau} ; \\ &\quad - h + \frac{rv}{v^{"} - v^{'}} = \frac{(h^{"} - h^{'})v - h(v^{"} - v^{'})}{v^{"} - v^{'}} = \\ &\quad \frac{(h^{"} - h^{'})[v^{'} + x(v^{"} - v^{'})] - [h^{'} + x(h^{"} - h^{'})](v^{"} - v^{'})}{v^{"} - v^{'}} = \\ &= \frac{h^{"}v^{'} - h^{'}v^{"}}{v^{"} - v^{'}} = \frac{(u^{"} + pv^{"})v^{'} - (u^{'} + pv^{'})v^{"}}{v^{"} - v^{'}} = \frac{u^{"}v^{'} - u^{'}v^{"}}{v^{"} - v^{'}} = \frac{\rho'u^{'} - \rho^{"}u^{"}}{\rho^{"} - \rho^{'}}; \end{split}$$

$$\frac{r\rho'\rho''}{\rho'-\rho''} = \frac{(h''-h')\rho'\rho''}{\rho'-\rho''} = \frac{[(u''+pv'')-(u'+pv')]\rho'\rho''}{\rho'-\rho''} = \frac{(u''-u')\rho'\rho''}{\rho'-\rho''} = p + \frac{\rho'\rho''(u'-u'')}{\rho'-\rho''}.$$

В результате после подстановки полученных выражений в исходное уравнение получаем числитель уравнения (3.26).

Что касается уравнения (3.2), то оно, записанное через плотность парожидкости $\rho=1/v$, является исходным при получении уравнения (3.24).

3.4. Динамическая модель испарения рабочего тела

В известных динамических моделях процессов испарения [86 - 88] показано, что двухфазное рабочее тело целесообразно разбить на два рабочих тела: жидкое и паровое. Каждое из этих рабочих тел следует исследовать методом термодинамики открытых систем. Системы уравнений включают уравнения законов сохранения массы и энергии, а также единые уравнения состояния, записанные для жидкой и паровой фаз.

Единые уравнения состояния в настоящее время получены только для весьма ограниченного количества рабочих веществ (кислород, двуокись углерода, вода). Однако если предположить, что жидкое рабочее тело в процессе парообразования всегда находится в состоянии насыщения, то уравнение состояния для жидкости не понадобится и его можно заменить уравнением давления насыщенных паров.

Таким образом, математическая модель процесса испарения однокомпонентного рабочего тела (рис. 3.7), реализующая это положение, будет включать:

- уравнение изменения плотности паровой фазы

$$\frac{d\rho}{d\tau} = \frac{1}{V_{\Pi}} \left(G_{\mathcal{K}-\Pi} - G_{\Pi} - \rho \frac{dV_{\Pi}}{d\tau} \right), \qquad (3.30)$$

- уравнение изменения температуры паровой фазы

$$\frac{dT}{d\tau} = \frac{1}{C_{V}\rho V_{\Pi}} \left[\Pi G_{\mathcal{K}-\Pi} - \left(h - u - \frac{\rho RT^{2}}{1 + b\rho} \frac{da(T)}{dT} \right) G_{\Pi} + \frac{\delta Q_{\Pi}}{d\tau} + \frac{\delta Q_{\mathcal{K}-\Pi}}{d\tau} - \left(p - \frac{\rho^{2}RT^{2}}{1 + b\rho} \frac{da(T)}{dT} \right) \frac{dV_{\Pi}}{d\tau} \right]$$

$$(3.31)$$

- уравнение состояния паровой фазы (уравнение Редлиха - Квонга)

$$p = \rho RT \left[\frac{1}{1 - b\rho} - \frac{\rho a(T)}{1 + b\rho} \right], \qquad (3.32)$$

- уравнение изменения массы жидкой фазы

$$\frac{\mathrm{dm'}}{\mathrm{d\tau}} = -G_{\mathrm{m}-\mathrm{m}} - G_{\mathrm{m}} \qquad , \qquad (3.33)$$

- уравнение изменения температуры жидкой фазы

$$\frac{dT'}{d\tau} = \frac{1}{C_{V\mathcal{K}}m_{\mathcal{K}}} \left[-\Pi_{\mathcal{K}}G_{\mathcal{K}-\Pi} - (h'-u')G_{\mathcal{K}} + \frac{\delta Q_{\mathcal{K}}}{d\tau} - \frac{\delta Q_{\mathcal{K}-\Pi}}{d\tau} - p'\frac{dV'}{d\tau} \right], \quad (3.34)$$

- уравнение давления насыщенных паров (уравнение Гарлахера)

$$\ln p' = A + \frac{B}{T'} + C \ln T' + \frac{D p'}{{T'}^2}, \qquad (3.35)$$

- уравнение изменения температуры стенки ёмкости

$$\frac{dT_{c}}{d\tau} = \frac{1}{C_{M}m_{M}} \left(\frac{\delta Q_{H}}{d\tau} - \frac{\delta Q_{\mathcal{K}}}{d\tau} - \frac{\delta Q_{\Pi}}{d\tau} \right), \qquad (3.36)$$

уравнение изменения объема жидкой фазы

$$\frac{dV'}{d\tau} = -\frac{dV_{\Pi}}{d\tau} = \frac{1}{\rho'} \left(\frac{dm'}{d\tau} - \frac{m'}{\rho'} \frac{d\rho'}{dT'} \frac{dT'}{d\tau} \right), \qquad (3.37)$$

где V_п - объем паровой фазы V_п = V – $\frac{m'}{2}$; V - объем емкости; G_{ж-п} массовый расход при испарении, определяемый по формуле Герца -[110] $G_{m-n} = \xi F_{\mu} \frac{p'-p}{\sqrt{2\pi RT'}};$ если $G_{m-n} > 0,$ Кнудсена TO $\Pi = h'' - u - \frac{\rho R T^2}{1 + b\rho} \frac{da(T)}{dT}, \qquad \Pi_{\mathcal{K}} = h'' - u'; \qquad \text{если} \qquad G_{\mathcal{K}-\Pi} < 0,$ то $\Pi = h - u - \frac{\rho R T^2}{1 + b\rho} \frac{da(T)}{dT}$, $\Pi_{\mathcal{K}} = h - u'$; ξ - коэффициент испарения $\xi = \frac{\rho}{\rho'} \exp\left(-\frac{r}{RT'}\right)$ [112]; F_и – площадь испарения; $\rho'(T')$, $\frac{d\rho'}{dT'}$ - соответственно плотность насыщенной жидкости, определяемая по методу Ганна и Ямады [82] и ее производная по температуре; р'(T', p') плотность насыщенного пара; r(T') - теплота парообразования $r = T' \left(\frac{1}{o''} - \frac{1}{o'} \right) \frac{dp'}{dT'}; R - удельная газовая постоянная рабочего тела; h, u$ - удельные энтальпия и внутренняя энергия перегретого пара; h"(Т', р")- удельная энтальпия насыщенного пара; $u' = h' - \frac{p}{\rho} = h'' - r - \frac{p}{\rho};$ T_c - температура стенки емкости; C_v - удельная изохорная теплоемкость перегретого пара; С_{vж}(T') - теплоемкость насыщенной жидкости, определяемая по методу Лимана - Деннера [82]; С_м, m_м - удельная теплоемкость стенки и ее масса; А, В, С, D аппроксимирующие коэффициенты в формуле Гарлахера для определения давления насыщенных паров [82]; $\frac{dp}{dT}$ - производная давления насыщения по температуре; G_{π}, G_{κ} - удельные массовые расходы па-

97

ра и жидкости из емкости; $\frac{\delta Q_{H}}{d\tau}, \frac{\delta Q_{\Pi}}{d\tau}, \frac{\delta Q_{\#}}{d\tau}, \frac{\delta Q_{\#-\Pi}}{d\tau}$ - соответственно тепловые потоки между окружающей средой и стенкой, стенкой и паром, стенкой и жидкостью, жидкостью и паром, определяемые по закону Ньютона - Рихмана.

На рис. 3.8 представлены результаты расчета процессов испарения диметилового эфира в емкости. Диметиловый эфир является холодильным агентом и, возможно, уже в недалеком будущем будет являться также и перспективным моторным топливом. Имитировались условия выдачи диметилового эфира потребителю из паровой фазы. В качестве потребителя использовался двигатель ЗИЛ-130, объём ёмкости составлял 100 л, температура окружающей среды 20 °C, масса жидкой фазы 50 кг, расход пара 0,01 кг/с.

Из произведенных расчетов оказалось, что поддерживать заданный уровень давления в емкости без терморегуляции невозможно. Поэтому была смоделирована работа теплообменного устройства, установленного в жидкой фазе, позволившего стабилизировать давление в заданном диапазоне. Теплообменное устройство работало в автоматическом режиме, т.е. включалось и отключалось по сигналу терморегулятора с дифференциалом в 6 °C. Необходимая тепловая мощность теплообменного устройства в данном случае составила 5000 - 5500 Вт.

Рис. 3.7. Расчетная схема процесса испарения

Рис. 3.8. Характер изменения давления в емкости

Для случая испарения углекислого газа из емкости постоянного объема были получены результаты представленные на рис. 3.9 -3.13. Рассматривалось истечение из баллона объемом 16 см³, заполненного углекислотой в окружающую среду через отверстие площадью $0,1\cdot10^{-8}$ м².

Рис. 3.9. Расход углекислого газа

Рис. 3.10. Расход углекислого газа при испарении из жидкости

Рис. 3.11. Зависимости температуры жидкости и пара углекислоты

Рис. 3.12. Зависимость изменения давления в баллоне

Рис. 3.13. Изменение массы жидкой углекислоты

Разработанное математическое описание можно использовать для моделирования работы газовых систем топливоподачи, а также

для моделирования рабочих процессов, протекающих в углекислотных двигателях.

3.5. Расчет рабочего процесса в углекислотном авиамодельном двигателе

Микродвигатель ДП-03 может быть установлен на летающие авиационные модели массой не более 100 г с нагрузкой на единицу несущей площади крыла и стабилизатора не более 10 г/см². Кроме этого его можно устанавливать на аэроглиссеры и аэромобили.

Схема и принцип работы двигателя показан на рис. 3.14.

При резком повороте воздушного винта против часовой стрелки (при виде спереди) шатун перемещает вверх поршень, который поднимает шарик впускного клапана, открывая доступ сжатому газу в рабочую полость двигателя. Расширяясь, газ толкает поршень вниз, осуществляя тем самым вращение воздушного винта. При достижении поршнем нижней мертвой точки открываются выхлопные отверстия гильзы, через которые происходит выпуск отработавшего газа.

Дальнейшее движение поршня до верхней мертвой точки происходит благодаря инерции воздушного винта.

Затем цикл повторяется до израсходования запаса газа в системе питания.

Рис. 3.14. Схема и принцип работы углекислотного двигателя

Технические характеристики двигателя приведены в таблице

Таблица 3.2

Наименование	Значение
Рабочий объем, см ³	0,27
Масса двигателя, г	30
Число оборотов двигателя, об/мин	2500 ± 500
Рабочее тело	углекислый газ CO ₂
Время работы двигателя на одной	15
заправке не менее, с	
Источник углекислого газа	баллончик для бытового сифона
Температура воздуха при эксплуа-	10
тации двигателя не ниже, °С	
Параметры воздушного винта (диа-	180/200
метр/шаг), мм	
Габаритные размеры двигателя	138×100×24
(длина×высота×ширина), мм	

Технические характеристики двигателя ДП-03

3.2.

Используя разработанную динамическую математическую модель испарения углекислого газа в ёмкости постоянного объема [43], а также известный принцип кинематики двигателя, была разработана программа расчета рабочего процесса углекислотного авиамодельного двигателя (Прил. 14).

Результаты расчетов представлены на рис. 3.15-3.17.

Рис. 3.15. Изменение давления в цикле углекислотного двигателя

Рис. 3.16. Характер изменения мощности двигателя при его работе

Рис. 3.17. Изменение расхода газа

Разработанная модель может быть полезна при создании углекислотных двигателей более крупного размера, с большим ресурсом работы, например для фотосъёмки объектов транспортной инфраструктуры, в режиме реального времени. При этом стоимость таких двигателей невелика.

3.6. Расчет термодинамических свойств важнейших рабочих веществ на линии насыщения

Вода является основным рабочим веществом современной теплоэнергетики.

Термодинамические свойства водяного пара вдоль нижней и верхней пограничных кривых (v, pv, h, h, s, s, s, μ) описываются однотипными уравнениями [80]

$$y = \sum_{i=0}^{n} a_i \left(\frac{T}{647,2665} \right)^i$$
,

где v[°], м³/кг; рv[°], м³·бар/кг; μ , h[°], h[°], кДж/кг; s[°], s[°], кДж/(кг·К); T, K; a_i - коэффициенты, приведенные в табл. 3.3.

Таблица 3.3

-				
i	, V	pv"	ĥ	h
0	0,105506870	$-0,113877427 \cdot 10^{3}$	0,295918638·10 ⁵	$-0,245090850\cdot10^{5}$
1	$-0,133737977 \cdot 10^{1}$	$0,145614699 \cdot 10^4$	$-0,294899186 \cdot 10^{6}$	$0,343138528 \cdot 10^{6}$
2	$0,742997633 \cdot 10^{1}$	$-0,802294912 \cdot 10^4$	$0,168533091 \cdot 10^7$	$-0,191174351\cdot10^{7}$
3	$-0,234015993 \cdot 10^2$	$0,250397989 \cdot 10^{5}$	$-0,539468966 \cdot 10^7$	$0,605373655 \cdot 10^7$
4	$0,456909720 \cdot 10^2$	$-0,483449130\cdot10^{5}$	$0,106814779 \cdot 10^8$	$-0,1188622165 \cdot 10^8$
5	$-0,566217816 \cdot 10^2$	0,591684160·10 ⁵	$-0,134040540\cdot10^{8}$	$0,148342520 \cdot 10^8$
6	$0,434983366 \cdot 10^2$	$-0,448590775 \cdot 10^5$	$0,104168615 \cdot 10^8$	$-0,115037973 \cdot 10^8$
7	$-0,189459451\cdot10^{2}$	0,192719313·10 ⁵	$-0,458635700 \cdot 10^7$	$0,507143921 \cdot 10^7$
8	$0,358401536 \cdot 10^{1}$	$-0,359442541\cdot10^{5}$	$0,876636090 \cdot 10^6$	$-0,973927618 \cdot 10^{6}$

Окончание табл. 3.3

i	, S	s	μ
0	$0,998276060 \cdot 10^{1}$	$0,271669973 \cdot 10^2$	$-0,7811587 \cdot 10^{3}$
1	$-0,216409052 \cdot 10^3$	$0,672212793 \cdot 10^{1}$	$0,43895532 \cdot 10^4$
2	$0,144031477 \cdot 10^4$	$-0,747510787 \cdot 10^{3}$	$-0,80605739 \cdot 10^4$
3	$-0,494997083 \cdot 10^4$	$0,358212673 \cdot 10^4$	$0,59650131 \cdot 10^4$
4	$0,102815156\cdot10^5$	$-0,851820171 \cdot 10^4$	$-0,29255230 \cdot 10^4$
5	$-0,133958920 \cdot 10^5$	$0,119151822 \cdot 10^5$	$0,6445090 \cdot 10^3$
6	$0,197466052 \cdot 10^5$	$-0,999463182 \cdot 10^4$	-
7	$-0,486608948 \cdot 10^4$	$0,467730830 \cdot 10^4$	-
8	$0,954059921 \cdot 10^{3}$	$-0,943313412 \cdot 10^{3}$	-

Для давления насыщения рекомендуется уравнение [81], справедливое от 17 до 320 °С, погрешность которого не превышает 0,15 %:

$$\ln p_{\rm S} = \sum_{i=-1}^{1} a_i \left(\frac{T}{1000}\right)^i + a_2 \ln T \,,$$

где p_S , МПа; T, K; $a_{-1} = -7,821541$; $a_0 = 82,86568$; $a_1 = 10,28003$; $a_2 = -11,48776$.

Для нахождения температуры насыщения по известному давлению с погрешностью, не превышающей 0,04 К, рекомендуется уравнение [81]

$$T_{S} = 1000 / \sum_{i=0}^{5} b_{i} (\ln p)^{i}$$
,

где T_s, K; p, MПa; $b_0 = 2,20732$; $b_1 = -2,117187 \cdot 10^{-1}$; $b_2 = -2,166605 \cdot 10^{-3}$; $b_3 = 1,619692 \cdot 10^{-4}$; $b_4 = 4,8998 \cdot 10^{-5}$; $b_5 = 3,691725 \cdot 10^{-6}$.

Для нахождения давления насыщенных паров p_s и плотности насыщенной жидкости р['] различных холодильных агентов используются зависимости, приведенные в [74]:

 $\ln p_{s} = \ln p_{\kappa p} + R_{i} \ln \tau + (R_{i} - 4 + P_{\alpha})\psi(\tau),$

 $\ln \rho' = \ln \rho_{\rm KP} + a_1 (1-\tau)^{1/3} + a_2 s(\tau),$

 $ln \rho_{\kappa p} = 0.728 + 0.088(R_i - P_{\alpha}) + ln(p_{\kappa p} / RT_{\kappa p}) + L_{\rho},$

$$\psi(\tau) = \frac{4(\tau-1)}{\tau} - 5,3 \ln \tau + s(\tau),$$

$$s(\tau) = (\tau - 1) \left[\frac{(\tau + 1)^2}{5} + 0.5 \right],$$

$$a_1 = 1,4 + 0,03 \ln(p_{\kappa p} / RT_{\kappa p}^{1,5}) + 0,03R_i - 0,2P_{\alpha} + L_{\beta} + L_{\alpha},$$

$$a_2 = 0.68 - 0.07 R_i - 0.5 P_{\alpha} + L_{\alpha}$$
, $\tau = T/T_{\kappa p}$.

В представленных уравнениях используются следующие размерности: Т, К; р, бар; ρ , г/см³; R, $\frac{\text{бар} \cdot \text{см}^3}{\Gamma \cdot \text{K}}$.

Значения параметров представленных уравнений, а также критические параметры для ряда веществ приведены в табл. 3.4.

Таблица 3.4

Веще-	R, fap.cm ³	Т _{кр} , К	р _{кр} , бар	$\rho_{\kappa p},$	R _i	Pα	Lα	L _β
CIDO			Uap					
	1.1							
Не	20,772	5,20	2,29	0,0577	3,7404	+0,6512	0,9904	-0,4377
H ₂	41,246	32,98	12,96	0,0300	4,7430	0	0,1230	-0,0400
N ₂	2,9680	126,25	34,01	0,3159	5,9000	0	0	0
O ₂	2,5983	154,70	50,44	0,4338	5,8234	0	0	0
СО	2,9684	132,91	35,16	0,3122	5,9720	0	-0,0410	0
CO ₂	1,8892	304,20	73,78	0,4816	6,7540	0	0	0
NH ₃	4,8876	405,55	113,97	0,2291	7,0284	-0,3958	0	0,1696
R11	0,6053	471,15	43,70	0,5702	6,5974	-0,0617	0	0
R12	0,6876	385,15	41,19	0,5791	6,5741	-0,0913	-0,0317	0
R13	0,7959	301,90	38,69	0,5989	6,5553	-0,1198	-0,0555	0
R22	0,9616	369,28	49,90	0,5372	6,7964	-0,1644	0	0
R23	1,1874	299,45	48,18	0,5280	6,9721	-0,2113	0	0,0626
R32	1,5982	351,55	58,43	0,4251	7,1744	-0,5506	0	0,1150
R115	0,5383	353,09	31,92	0,6673	7,0387	-0,3664	-0,2998	0
R142в	0,8274	409,60	41,38	0,4795	6,9526	-0,3192	-0,4542	0,1664
R218	0,4422	345,05	26,77	0,7045	7,2817	-0,2431	-0,3286	0
R502	0,7448	355,31	40,10	0,5717	6,7280	-0,0889	0	0
CH ₄	5,1827	190,55	45,33	0,1366	5,6628	+0,2106	0,5852	0
C_2H_6	2,7651	305,42	49,34	0,2138	6,2724	-0,1961	0	0,0147
C_3H_8	1,8855	369,96	42,69	0,2254	6,4618	-0,0799	0	0,0227
C ₄ H ₁₀	1,4305	425,16	37,79	0,2347	6,6834	-0,1478	0	0,0184
C_5H_{12}	1,1524	469,77	33,89	0,2426	6,9421	-0,1778	0	0

Для CH₄ L_{ρ} = - 0,1169, для всех остальных веществ L_{ρ} = 0.

Изохорная теплоемкость в идеально-газовом состоянии рассчитывается по аппроксимационному уравнению вида:

$$C_{V ИД} = \sum_{i=0}^{n} C_i \tau^i$$
.

Коэффициенты последнего уравнения для ряда холодильных агентов приведены в табл. 3.5.

Таблица 3.5

i	Коэффициенты C _i							
	R12	R13	R12B1	R13B1	R22	NH ₃		
0	0,07744	0,21793	0,04169	0,06079	0,23533	1,7673		
1	0,70715	-0,24414	0,81975	0,54835	0,14005	-1,6973		
2	0,09197	1,82858	-0,55139	-0,18181	0,68703	3,1065		
3	-0,51322	-2,13958	0,19022	0,011472	-0,62714	-1,8450		
4	0,30238	1,21411	-0,02698	0,00388	0,22932	0,5219		
5	-0,05766	-0,34703	_	_	-0,03191	-0,05785		
6	-	0,03980	-	-	-	-		

3.7. Алгоритм определения термодинамических свойств веществ на линии насыщения (уравнение состояния Редлиха - Квонга)

Расчетные зависимости, используемые в алгоритме, позволяют определить термодинамические свойства веществ, в частности - холодильных агентов.

1. Расчет давления насыщения:

$$\ln p_{\rm S} = \ln p_{\rm Kp} + R_{\rm i} \ln \tau + (R_{\rm i} - 4 + P_{\alpha})\psi(\tau).$$

2. Расчет плотности насыщенной жидкости:

$$\ln \rho' = \ln \rho_{\kappa p} + a_1 (1 - \tau)^{1/3} + a_2 s(\tau) \,.$$
3. Определение производной давления насыщения по температуре:

$$\frac{dp_{s}}{dT} = \frac{p_{s}}{T_{\kappa p}} \left(\frac{R_{i}}{\tau} + \left[R_{i} - 4 + P_{\alpha} \right] \left[\frac{4}{\tau^{2}} - \frac{5,3}{\tau} + 0,6\tau^{2} + 0,4\tau + 0,3 \right] \right).$$

4. Определение второй производной давления насыщения по температуре:

$$\frac{d^2 p_{s}}{dT^2} = \frac{1}{p_{s}} \left(\frac{dp_{s}}{dT} \right)^2 + \frac{p_{s}}{T_{\kappa p}^2} \left[-\frac{R_{i}}{\tau^2} + \left(R_{i} - 4 + P_{\alpha} \right) \left(-\frac{8}{\tau^3} + \frac{5,3}{\tau^2} + 1,2\tau + 0,4 \right) \right].$$

5. Определение плотности сухого насыщенного пара $\rho'' = f(T, p_s)$:

$$p_{s} = RT\rho'' \left[\frac{1}{1 - b\rho''} - \frac{\rho''a(T)}{1 + b\rho''} \right].$$

6. Расчет удельной теплоты парообразования по зависимости Клапейрона – Клаузиуса:

$$\mathbf{r} = \mathbf{T} \left(\frac{1}{\rho''} - \frac{1}{\rho'} \right) \frac{d\mathbf{p}_{s}}{d\mathbf{T}} \,.$$

7. Определение удельной энтальпии сухого насыщенного пара:

$$h'' = h_0 + \int_{T_0}^{T} C_{V \mu \mu}(T) dT + \frac{RT}{1 - b\rho''} - RT \left(\frac{a(T)\rho''}{1 + b\rho''} - T \frac{da(T)}{dT} \frac{1}{b} ln(1 + b\rho'') \right),$$

где С_{v ид}(T)- зависимость идеально-газовой теплоемкости от температуры.

$$C_{V MZ}(T) = C_0 + C_1 T + C_2 T^2 + C_3 T^3 + \dots + C_i T^i + \dots + C_n T^n = \sum_{i=0}^{n} C_i T^i;$$

 h_0 – произвольная const.

8. Определение удельной энтальпии насыщенной жидкости:

- $\mathbf{h}' = \mathbf{h}'' \mathbf{r}$.
- 9. Определение удельной внутренней энергии насыщенной жид-кости и пара:

$$u' = h' - pv'$$
, $u'' = h'' - pv''$,

где $v' = 1/\rho'$, $v'' = 1/\rho''$.

10. Определение удельной энтропии сухого насыщенного пара:

$$s = s_0 + \int_{T_0}^{T} C_{V M A}(T) \frac{dT}{T} - R \ln \frac{\rho''}{1 - b\rho''} + \frac{R}{b} \left[a(T) + \frac{T \cdot da(T)}{dT} \right] \ln(1 + b\rho''),$$

- где s₀ произвольная const.
 - 11. Расчет удельной энтропии насыщенной жидкости:

$$\mathbf{s'} = \mathbf{s''} - \frac{\mathbf{r}}{\mathbf{T}}.$$

Расчетным путем также можно найти производные на линии насыщения:

$$\frac{du'}{dT}, \quad \frac{du''}{dT}, \quad \frac{dv'}{dT}, \quad \frac{dv''}{dT}.$$

Программы расчета термодинамических свойств воды и водяного пара, холодильных агентов на линии насыщения и результаты расчетов для H₂O, R12 и R134a приведены в прил. 1-5.

Глава 4

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕРМОДИНАМИЧЕСКИХ ПРОЦЕССОВ ВЫДЕЛЕНИЯ И РАСТВОРЕНИЯ РЕАЛЬНОГО РАБОЧЕГО ТЕЛА ИЗ ЖИДКОЙ СМЕСИ

Необходимость решения данной задачи возникла при математическом моделировании рабочих процессов в бытовой холодильной машине, в частности, в кожухе герметичного компрессора, в котором всегда находится значительное количество смазочного масла и растворенный нем холодильный агент.

При пуске бытовой (малой) холодильной машины из отепленного состояния в смазочном масле в растворенном виде может находиться 50 – 70 % дозы заправки хладагентом ее агрегата [13, 38]. Так как при этом бытовая холодильная машина постоянно работает в неустановившемся режиме, то процессы растворения и выделения хладагента из смазочного масла, особенно при ее запуске из отепленного состояния, являются чрезвычайно существенным фактором при оценке ее текущих, интегральных показателей, расчете дозы заправки, исследовании неустановившихся режимов работы и т.д.

Во время пуска компрессора при резком падении давления в кожухе (картере) происходит вскипание масла (раствора). Образующаяся пена нарушает работу масляного насоса и всей системы смазки. Несжимаемая смесь жидкого хладагента с маслом поступает в цилиндр, вызывая тяжелые повреждения компрессора в виде поломанных клапанов и поршней, изогнутых или поломанных шатунов и валов.

Таким образом, взаимная растворимость масла с хладагентом оказывает существенное влияние на характеристики и надежность работы компрессора.

Рассмотрим процесс изменения параметров хладагента (фреона) и маслофреоновой смеси в кожухе герметичного компрессора.

Состояние хладагента и смеси меняются вследствие втекания хладагента G₁ в кожух, вытекания его G₂, выделения или растворения хладагента в смазочном масле G₃, а также теплообмена смеси и пара хладагента с элементами конструкции (рис. 4.1, 4.2).

Следует отметить, что имеются две схемы работы герметичных компрессоров. Согласно первой пар хладагента из испарителя посту-

пает в кожух компрессора (рис. 4.1), а затем из компрессора сразу поступает в конденсатор. По такой схеме работают поршневые компрессоры бытовых холодильников. По второй схеме пар из испарителя сразу всасывается компрессором (рис. 4.2), а нагнетание происходит в кожух, откуда пар поступает в конденсатор. По такой схеме работают ротационные компрессоры бытовых кондиционеров.

В первом случае выделение хладагента из смазочного масла происходит за счет падения давления и увеличения температуры среды в кожухе, а во втором случае выделение происходит за счет увеличения температуры вследствие значительных теплопритоков от встроенного электродвигателя и деталей самого компрессора.

Рис. 4.1. Расчетная схема процессов в кожухе герметичного компрессора $V_{M-a} = V^*$

Рис. 4.2. Расчетная схема процессов в кожухе герметичного компрессора $V_{M-a} = V^*$

Ниже предлагается математическая модель процессов выделения и растворения хладагента в смазочном масле (отсутствует фазовое равновесие между смесью и паром), справедливая для обеих схем, построенная на основе методологии термодинамики открытых систем [67].

Допущения, положенные в основу модели:

- в паровой фазе находится только пар хладагента (m_м=const), подчиняющийся уравнению состояния Боголюбова - Майера;

- тепловой эффект реакции растворения Δh пренебрежимо мал (данное допущение введено вследствие отсутствия достоверных данных по тепловым эффектам растворения).

Математическая модель, положенная в основу расчета, состоит из следующих уравнений.

1. Уравнение скорости изменения массы маслофреоновой смеси:

 $\frac{d(m_{M-a})}{d\tau} = -G_3$, T.K. $m_{M-a} = m_M + m_a$, $a m_M = const$ TO,

$$\frac{\mathrm{dm}_{\mathrm{a}}}{\mathrm{d\tau}} = -\mathrm{G}_{3} \tag{4.1}$$

2. Уравнение скорости изменения температуры маслофреоновой смеси:

$$\frac{dT_{M-a}}{d\tau} = \frac{1}{(c_{Va}m_a + c_{VM}m_M)} \left[-\Pi_2 G_3 + p_{M-a} \frac{dV_{M-a}}{d\tau} + \frac{dQ_{M-a}}{d\tau} \right]$$
(4.2)

3. Выделение (растворение) хладагента из смазочного масла происходит за счет постоянного смещения равновесия между хладагентом, растворенным в смазочном масле, и его паром в кожухе вследствие работы компрессора и теплообмена.

При этом расход хладагента при переходе из раствора в пар и наоборот можно определить по зависимости [89].

$$G_3 = \varphi \frac{(p_{M-a} - p)}{\sqrt{T_{M-a}}} \sqrt{\frac{m}{2\pi k}} F_p \quad , \label{eq:G3}$$

где p_{M-a} – давление в системе пар - раствор при фазовом равновесии; р – текущее давление пара в условиях нарушения равновесия; m – масса молекулы холодильного агента; k – постоянная Больцмана; F_p – площадь соприкосновения пара и раствора; φ - коэффициент расхода, величина которого меняется в интервале 0...1. Следует отметить, что точное определение коэффициента расхода в случае выделения (растворения) хладагента из смазочного масла в кожухе герметичного холодильного компрессора не требуется вследствие достаточной продолжительности неустановившегося процесса. Однако при быстропротекающих процессах этот коэффициент должен быть определен точно и для этого, как правило, лучше использовать экспериментальные данные.

Равновесные характеристики раствора (p-t- ξ_{M} - диаграммы) строят также в основном на базе экспериментальных данных.

Масло повышает температуру кипения хладагента при заданном давлении. На рис. 4.3 приведены кривые p=f(t) пара R12 над раствором его в масле при изменении содержания масла от 0 до 95 % ($\xi_{\rm M}$ =0,95; $\xi_{\rm a}$ =0,05), а также кривые снижения давления при t=const и повышения температуры насыщения при p=const по мере увеличения доли масла в растворе.

Рис. 4.3. Зависимость p-t-ξ_м для раствора XФ 12-16 – R12

Ниже приведено эмпирическое уравнение, позволяющее рассчитать давление пара над жидкой фазой раствора с минеральными маслами в равновесном состоянии [108].

$$lgp_{M-a} = \left(\frac{1}{T_{M-a}} - 7,9151 \cdot 10^{-3} + 2,6726 \cdot 10^{-3} lgT_{M-a} - 0,8625 \cdot 10^{-6} T_{M-a}\right) A(\xi_a) + B(\xi_a),$$
(4.3)

где А и В – безразмерные коэффициенты, зависящие от типа хладагента и его концентрации в растворе (значения их для смеси R12 и масла с неограниченной растворимостью [108] приводятся в табл. 4.1), $\xi_{\rm M}$, ξ_{a} – соответственно массовые концентрации масла и хладагента в смеси (ξ_{a} =1- $\xi_{\rm M}$),

$$\xi_a = \frac{m_a}{m_M + m_a}$$
, $\xi_M = \frac{m_M}{m_M + m_a}$.

Растворимость хладагента в масле возрастает с понижением температуры и увеличением давления. С повышением вязкости масел растворимость ухудшается.

Таблица 4.1

ξ _a ,%	А	В
100	-1448,0	3,4204
90	-1447,7	3,4168
80	-1445,8	3,4083
70	-1440,7	3,3921
60	-1430,6	3,3610
50	-1414,0	3,3071
40	-1389,2	3,2355
30	-1354,7	3,1097
20	-1308,7	2,9107
10	-1249,7	2,5558

4. Уравнение скорости изменения плотности пара хладагента:

$$\frac{d\rho}{d\tau} = \frac{1}{V_{cB}} \left(G_1 - G_2 + G_3 - \rho \frac{dV_{cB}}{d\tau} \right) .$$
(4.4)

5. Уравнение скорости изменения температуры пара в кожухе:

$$\frac{dT}{d\tau} = \frac{1}{c_V \rho V_{CB}} \left[\left(h_{BX} - u + RT \frac{dz}{dT} \right) G_1 - \left(h - u + RT \frac{dz}{dT} \right) G_2 + \Pi_1 G_3 - p \frac{dV_{CB}}{d\tau} + \frac{dQ}{d\tau} \right]. \quad (4.5)$$

6. Уравнение состояния пара хладагента:

$$p = \rho RTz. \qquad (4.6)$$

В уравнениях (4.1) - (4.6): τ - время; m_a – масса хладагента, растворенного в смазочном масле; m_м – масса смазочного масла; $\Pi_1 = h_{M-a} + r(T_{M-a}) - u + RT(dz/dT)$, если идет процесс выделения хлада-ИЗ смазочного масла т.е. гента $G_{3} > 0$ И $\Pi_1 = h - u + RT(dz/dT) = RT(z + dz/dT)$, если идет процесс поглощения смазочным $G_3 < 0;$ хладагента т.е. маслом $\Pi_2 = h_{M-a} + r(T_{M-a}) - u_{M-a} = p_{M-a} \frac{V_{M-a}}{m_a} + r(T_{M-a}),$ если $G_{3} > 0$ И $\Pi_2 = h - u_{M-a}$, если $G_3 < 0$; V_{M-a} – объем маслофреоновой смеси; $V_{cB} = V_{K} - V_{M-a} = V_{K} - (m_{M} + m_{a}) \vartheta_{M-a};$ $\vartheta_{M-a} - удельный объем масло$ смеси; фреоновой $\frac{\overline{dV}_{CB}}{d\tau} = -\frac{dV_{M-a}}{d\tau} = -\frac{d[(m_M + m_a)\vartheta_{M-a}]}{d\tau} = -\frac{dm_a}{d\tau}\vartheta_{M-a} - (m_M + m_a)\frac{d\vartheta_{M-a}}{d\tau}; V_K - \frac{d\Psi_{M-a}}{d\tau}$ внутренний (свободный) объем кожуха компрессора; $dQ_{M-a}/d\tau$ - суммарный тепловой поток в зоне смеси, включающий тепловой поток от парообразного хладагента, стенок кожуха; dQ/dt - суммарный тепловой поток в зоне пара, включающий тепловой поток от встроенного электродвигателя, элементов конструкции компрессора, стенок кожуха, смеси смазочного масла и хладагента; суа – удельная теплоемкость жидкого хладагента на линии насыщения, растворенного в масле, определяемая с помощью аппроксимационного уравнения вида $c_{va} = c_1 + c_2 T_{M-a} + c_3 T_{M-a}^2 + c_4 T_{M-a}^3$ ($c_1 = -15160, 54$; $c_2 = 170, 9$; $c_3 = -15160, 54$; $c_2 = 170, 9$; $c_3 = -15160, 54$; $c_4 = -15160, 54$; $c_5 = -15160, 54$; $c_7 = -15160, 54$; $c_8 = -150, 54$; $0,60625; c_4 = 7,18933 \cdot 10^{-4}),$ полученного обработкой результатов расчета по данным таблиц насыщенных паров R12, $(c_{va} = c' = T_{M-a} (ds'/dT_{M-a}), s'$ - удельная энтропия насыщенной жидкости); с_V – удельная теплоемкость пара хладагента; z, dz/dT - критерий сжимаемости и его производная по температуре; h_{вх} – удельная энтальпия пара хладагента на входе в кожух; h, u – удельные энтальпия и внутренняя энергия пара в кожухе компрессора; h_{м-a}, u_{м-a} – удельные энтальпия и внутренняя энергия маслофреоновой смеси, определяемые по закону аддитивности; r(T_{м-а}) удельная теплота парообразования холодильного агента, определяемая при Т_{м-а}; с_{ум} – удельная теплоемкость смазочного масла в интервале температур -60...+120 °С, определяемая по уравнению приведенному в [108] $c_{VM} = c_{30}[1 + \alpha_c(T_{M-a} - 303)]; c_{30}$ - теплоемкость масла при 30 °C, α_c температурный коэффициент, значения которого для ряда смазочных масел приведены в табл. 4.2.

Таблица 4.2

Смазочное	с ₃₀ , кДж/(кг·К)	$\alpha \cdot 10^3$, 1/°C
масло		
XA	1,873	1,678
XA 30	1,949	1,803
XΦ 12 – 16	1,932	1,612
XΦ 22 – 24	1,895	1,658
XΦ 22c – 16	1,903	1,644
ФМ5, 6АП	1,605	0,792

Более точно удельную энтальпию и внутреннюю энергию маслофреоновой смеси (h_{M-a} , u_{M-a}) можно определить с помощью диаграммы $h-\xi_a$ (энтальпия-концентрация холодильного агента в растворе) растворов (смесей), характеризующей зависимость термодинамических характеристик смесей масел с холодильными агентами от состава смеси.

Диаграммы h- ξ_a (диаграммы состояния) строят на основе экспериментальных данных. На рис. 4.4 приведена диаграмма h- ξ_a для смеси R12 с минеральным маслом [108].

Диаграмма состоит из двух частей: верхняя часть - для газовой фазы раствора, нижняя - для жидкой. В газовой фазе находится практически чистый перегретый пар холодильного агента, так как давление паров масел мало. С помощью диаграммы по известным давлению и температуре определяют состав жидкой фазы кипящего раствора и энтальпию жидкой фазы. По диаграмме можно рассчитать и построить практически все рабочие процессы, происходящие в кожухах герметичных поршневых, маслозаполненных винтовых и ротационных компрессоров, а также в теплообменных аппаратах холодильных машин. Тем не менее при использовании диаграммы h- ξ_a для расчетов необходимо учитывать, что они построены для равновесных состояний растворов [108]. Так как в малых холодильных машинах происходят достаточно продолжительные переходные (неустановившиеся) процессы, то использование таких диаграмм вполне оправдано.

Однако использование диаграмм, таблиц в алгоритмах расчета различных рабочих процессов тепломеханических систем неудобно, поэтому, используя метод регрессионного анализа, были получены высокоточные уравнения, являющиеся аналогом h- ξ_a - диаграммы для

смеси минерального масла XФ12-16 и холодильного агента R12. Структура полученного уравнения имеет вид

$$h_{M-a} = A + B\xi_a + C\xi_a^2 + DT_{M-a} + ET_{M-a}^2 + F(\xi_a T_{M-a}) + G(\xi_a^2 T_{M-a}),$$

где A = 25,09097; B = 83,982; C = -31,757; D = 0,13651; $E = 5,12286 \cdot 10^{-4}$; F = -0,29235; $G = 9,66818 \cdot 10^{-2}$.

Средняя относительная погрешность составила 0,3 %. С помощью разработанного алгоритма аналогичные уравнения могут быть получены и для других смесей с неограниченной растворимостью.

Ниже в табл. 4.3 представлен табличный вариант диаграммы для жидкой фазы раствора. В указанной таблице приведены значения удельной энтальпии (кДж/кг) смеси минерального масла ХФ12-16 и холодильного агента R12.

Таблица 4.3

Τ,	Массовая концентрация (ξ _a) холодильного агента R12											
Κ	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	
233	85,0	86,7	87,7	89,0	90,0	90,6	90,7	90,7	90,8	90,8	90,8	
243	88,3	90,0	91,0	91,9	92,4	92,8	92,9	93,0	93,1	93,1	93,1	
253	92.5	93,8	94,5	95,1	95,5	95,8	96,0	95,8	95,6	95,4	95,3	
263	96,3	96,9	97,6	97,7	97,8	98,0	98,0	98,0	97,8	97,7	97,7	
273	100,0	100,8	101,3	101,4	101,5	101,4	101,3	100,8	100,4	100,0	100,0	
283	104,2	104,9	105,1	105,1	105,0	104,5	103,8	103,4	102,7	102,5	102,4	
293	108,7	108,7	108,6	108,5	108,3	107,7	107,4	106,7	105,8	105,0	104,8	
303	113,0	112,8	112,6	112,2	111,3	110,8	109,9	108,8	108,0	107,5	107,3	
313	117,4	117,2	116,7	115,8	115,0	114,0	112,6	111,7	110,8	110,2	109,8	
323	122,0	121,6	120,8	120,0	118,7	117,5	116,3	114,5	113,4	112,6	112,4	
333	126,5	125,5	124,3	123,3	122,4	121,0	119,2	117,9	116,6	115,6	115,1	
343	131,5	130,0	128,7	127,4	126,0	124,2	122,5	121,0	119,2	118,2	117,8	
353	136,3	135,0	133,7	132,0	130,0	127,5	125,6	123,8	122,5	121,3	120,8	
363	141,6	140,4	138,5	136,8	134,5	132,2	129,6	127,5	125,8	124,6	124,1	
373	147,0	145,5	143,4	141,2	138,3	136,0	133,3	131,3	128,9	128,5	127,8	
383	152,1	150,2	148,2	145,6	142,6	140,2	137,5	135,0	132,5	131,1	129,9	

Рис. 4.4. Диаграмма h-ξ_а Бамбаха для раствора R12 с минеральным маслом

Давление в жидкой и паровой фазе раствора холодильного агента с минеральным маслом в равновесном состоянии можно определить с помощью эмпирического уравнения (4.3).

Указанное давление можно определить с помощью уравнения, полученного автором для смеси холодильного агента R12 и минерального смазочного масла XФ12-16 методом регрессионного анали-

за экспериментальных данных представленных в [108]. По сравнению с ранее представленным эмпирическим уравнением данное уравнение при той же точности более компактно и удобно при расчетах:

$$p_{M-a} = \exp\left(a + b\,\xi_{M} + c\,\xi_{M}^{2} + d\frac{1}{T_{M-a}} + e\,T_{M-a} + f\,\ln T_{M-a}\right),\,$$

где a = 2,67362; b = 1,2056; c = -2,4763; d = -2180,7; $e = -8,94915 \cdot 10^{-3}$; f = 3,6188; $\xi_{\rm M}$ — концентрация смазочного масла в смеси ($\xi_{\rm M} = 1 - \xi_a$).

Действительная плотность и удельный объем смесей масел с хладагентами отличается от этих же характеристик, определенных методом аддитивности. При отсутствии экспериментальных данных удельный объем жидкой фазы раствора с минеральным маслом с учетом поправок [108] рассчитывают по формуле

$$\vartheta_{M-a} = \vartheta_{HA} (1 + \Delta \vartheta / \vartheta_{HA}) = [\xi_M \vartheta_M + (1 - \xi_M) \vartheta] (1 + \Delta \vartheta / \vartheta_{HA}) \quad , \qquad (4.7)$$

где 9[°] – удельный объем жидкого хладагента при данной температуре; $\Delta 9$ - поправка на изменение удельного объема для данной температуры и концентрации; $9_{\rm M} = 1/\rho_{\rm M} = 1/\rho_{20}[1-\beta(T_{\rm M-a}-293)]$ - удельный объем смазочного масла в интервале температур -80...+120 °C, рассчитываемый по данным приведенным в [108]; ρ_{20} – плотность при 20 °C, β - температурный коэффициент значения которого для ряда смазочных масел приведены в табл. 4.4.

Таблица 4.4

Смазочное	ρ ₂₀ , кг/м ³	$\beta \cdot 10^{3}, 1/{}^{\circ}C$
масло		
XA	912,7	0,524
XA 30	881,6	0,699
XΦ 12 – 16	870,8	0,739
XΦ 22 – 24	881,9	0,751
XΦ 22c – 16	986,1	0,756
ФМ5, 6АП	967,2	0,896

Отклонение идеального удельного объема $\Delta 9/9_{ud}$ (в %) по уравнению (4.7) для жидкой фазы раствора минерального масла с R12 можно определить по табл. 4.5 или по зависимости, которая справедлива для $\xi_{M} = 0,1...0,9$ и $T_{M-a}/T_{Kp} = 0,60...1,00$, полученной методом регрессионного анализа данных приведенных в [108]:

$$\frac{\Delta \vartheta}{\vartheta_{\rm HA}} = \frac{1}{100} \exp \left[A + B\xi_{\rm M} + C\xi_{\rm M}^2 + D\frac{T_{\rm M-a}}{T_{\rm Kp}} + E \left(\frac{T_{\rm M-a}}{T_{\rm Kp}}\right)^2 \right] \quad , \qquad (4.8)$$

где A = -6,20673; B = 4,1009; C = -5,5645; D = 8,1921; E = -1,5230.

Таблица 4.5	a 4.5	Таблица
-------------	-------	---------

Т _{м-а}					ξ_{M}				
Ткр	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
1,00	12,20	13,05	13,52	13,05	12,15	10,40	8,10	5,75	2,95
0,98	10,35	11,54	11,89	11,54	10,60	9,00	7,08	4,99	2,55
0,96	8,60	10,10	10,45	10,11	9,19	7,80	6,15	4,25	2,19
0,94	7,09	8,79	9,18	8,83	7,94	6,73	5,27	3,66	1,89
0,92	5,82	7,53	8,01	7,65	6,79	5,75	4,49	3,13	1,62
0,90	4,73	6,39	6,92	6,57	5,79	4,93	3,83	2,66	1,39
0,88	3,86	5,42	5,89	5,61	5,03	4,20	3,27	2,23	1,15
0,86	3,16	4,55	4,97	4,73	4,23	3,56	2,77	1,91	0,98
0,84	2,58	3,82	4,23	4,03	3,61	3,04	2,37	1,62	0,85
0,82	2,16	3,22	3,59	3,42	3,06	2,59	2,02	1,37	0,73
0,80	1,82	2,72	3,09	2,93	2,67	2,21	1,69	1,16	0,62
0,78	1,57	2,33	2,65	2,55	2,26	1,89	1,44	0,99	0,51
0,76	1,32	2,03	2,28	2,18	1,95	1,62	1,22	0,85	0,45
0,74	1,12	1,73	1,95	1,87	1,65	1,37	1,05	0,72	0,37
0,72	0,95	1,47	1,68	1,60	1,42	1,17	0,88	0,60	0,31
0,70	0,79	1,25	1,43	1,36	1,20	0,99	0,74	0,52	0,26
0,68	0,66	1,05	1,21	1,15	1,01	0,84	0,62	0,43	0,23
0,66	0,55	0,89	1,03	0,97	0,85	0,71	0,54	0,37	0,19
0,64	0,46	0,75	0,86	0,80	0,72	0,59	0,45	0,31	0,16
0,62	0,38	0,62	0,71	0,66	0,59	0,48	0,36	0,25	0,13
0,60	0,31	0,51	0,59	0,55	0,49	0,40	0,29	0,21	0,11

Для нахождения плотности насыщенной жидкости р различных хладагентов используются зависимости, приведенные в [74, 104]. Точность расчета по этим зависимостям не ниже 0,5 %.

$$\ln \rho' = \ln \rho_{Kp} + a_1 (1 - \tau)^{1/3} + a_2 s(\tau) ,$$

$$\ln \rho_{Kp} = 0,728 + 0,088 (R_1 - P_\alpha) + \ln(p_{Kp} / RT_{Kp}) + L_\rho ,$$

$$s(\tau) = (\tau - 1) \left[\frac{(\tau + 1)^2}{5} + 0,5 \right],$$

$$a_1 = 1,4 + 0,03 \ln(p_{\kappa p} / RT_{\kappa p}^{1,5}) + 0,03R_i - 0,2P_{\alpha} + L_{\beta} + L_{\alpha},$$

$$a_2 = 0.68 - 0.07 R_i - 0.5 P_{\alpha} + L_{\alpha}, \quad \tau = T_{M-a} / T_{KP}, \quad \vartheta = 1 / \rho'$$

В представленных уравнениях $\rho_{\kappa p}$ (г/см³), $T_{\kappa p}$ (К), $p_{\kappa p}$ (бар) – критические параметры хладагента; $R\left(\frac{\delta a p \cdot c M^3}{\Gamma \cdot K}\right)$ - газовая постоянная. Для большинства холодильных агентов $L_{\rho}=0$.

Значения параметров представленных уравнений, а также критические параметры для некоторых хладагентов приведены в таблице 4.6.

Таблица 4.6

Хлад- агент	$\frac{R}{\frac{\delta a p \cdot c m^{3}}{r \cdot K}}$	Т _{кр} , К	р _{кр} , бар	ρ _{кр} , г/см ³	R _i	Pα	L_{α}	Lβ
NH ₃	4,8876	405,55	113,9	0,2291	7,0284	-0,3958	0	0,1696
R11	0,6053	471,15	43,70	0,5702	6,5974	-0,0617	0	0
R12	0,6876	385,15	41,19	0,5791	6,5741	-0,0913	-0,0317	0
R22	0,9616	369,28	49,90	0,5372	6,7964	-0,1644	0	0
R115	0,5383	353,09	31,92	0,6673	7,0387	-0,3664	-0.2998	0
R142в	0,8274	409,60	41,38	0,4795	6,9526	-0,3192	-0,4542	0,1664
R502	0,7448	355,31	40,10	0,5717	6,7280	-0,0889	0	0

Рассмотрим подробно определение производной $d\vartheta_{{}_{M}-a}/d\tau$ в ранее представленном уравнении

$$\frac{dV_{CB}}{d\tau} = -\frac{dV_{M-a}}{d\tau} = -\frac{d[(m_M + m_a)\vartheta_{M-a}]}{d\tau} = -\frac{dm_a}{d\tau}\vartheta_{M-a} - (m_M + m_a)\frac{d\vartheta_{M-a}}{d\tau}$$

Используя уравнение (4.7), найдем производную $d\vartheta_{m-a}/d\tau$:

$$\begin{aligned} \frac{d\vartheta_{M-a}}{d\tau} &= \left[\xi_{M} \frac{d\vartheta_{M}}{d\tau} + \vartheta_{M} \frac{d\xi_{M}}{d\tau} + (1 - \xi_{M}) \frac{d\vartheta'}{d\tau} - \vartheta' \frac{d\xi_{M}}{d\tau} \right] \left(1 + \frac{\Delta \vartheta}{\vartheta_{H,I}} \right) + \\ &+ \left[\xi_{M} \vartheta_{M} + (1 - \xi_{M}) \vartheta' \right] \frac{d(\Delta \vartheta / \vartheta_{H,I})}{d\tau} = \\ &= \left[\xi_{M} \frac{d\vartheta_{M}}{dT_{M-a}} \frac{dT_{M-a}}{d\tau} + (1 - \xi_{M}) \frac{d\vartheta'}{dT_{M-a}} \frac{dT_{M-a}}{d\tau} + \frac{d\xi_{M}}{d\tau} (\vartheta_{M} - \vartheta') \right] \left(1 + \frac{\Delta \vartheta}{\vartheta_{H,I}} \right) + \\ &+ \left[\xi_{M} \vartheta_{M} + (1 - \xi_{M}) \vartheta' \right] \frac{d(\Delta \vartheta / \vartheta_{H,I})}{dT_{M-a}} \frac{dT_{M-a}}{d\tau} \cdot \frac{dT_{M-a}}{d\tau} . \end{aligned}$$

Производные
$$\frac{d\vartheta_{M}}{dT_{M-a}}, \frac{d\vartheta'}{dT_{M-a}}, \frac{d\xi_{M}}{d\tau}$$
 легко находятся с помощью ранее приведенных уравнений для ρ_{M}, ρ', ξ_{M} :

dτ

$$\frac{\mathrm{d}\vartheta_{\mathrm{M}}}{\mathrm{d}\mathrm{T}_{\mathrm{M}-a}} = -\frac{1}{\rho_{\mathrm{M}}^2} \frac{\mathrm{d}\rho_{\mathrm{M}}}{\mathrm{d}\mathrm{T}_{\mathrm{M}-a}} = \frac{\rho_{20}}{\rho_{\mathrm{M}}^2} \beta \quad ;$$

$$\frac{d\vartheta'}{dT_{M-a}} = -\frac{1}{\rho' T_{Kp}} \left[\frac{1}{3} a_1 (1-\tau)^{-2/3} + a_2 (0.6\tau^2 + 0.4\tau + 0.3) \right], \quad \Gamma \square e \quad \tau = \frac{T_{M-a}}{T_{Kp}};$$

$$\frac{d\xi_{\rm M}}{d\tau} = \frac{\xi_{\rm M}^2}{m_{\rm M}} \frac{dm_a}{d\tau} \, . \label{eq:delta_matrix}$$

неральным маслом можно определить по табл. 4.7 или по зависимости, которая справедлива для $\xi_{\rm M} = 0, 1...0, 9$ и $T_{\rm M-a}/T_{\rm Kp} = 0,60...1,00$, полученной методом регрессионного анализа данных приведенных в [108]:

Таблица 4.7

Т _{м-а}					$\xi_{\mathbf{M}}$				
Т _{кр}	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0,99	92,50	75,50	81,50	75,50	77,50	70,00	51,00	38,00	20,00
0,97	87,50	72,00	72,00	71,50	70,50	60,00	46,50	37,00	18,00
0,95	75,50	65,50	63,50	64,00	62,50	53,50	44,00	29,50	15,00
0,93	63,50	63,00	58,50	59,00	57,50	49,00	39,00	26,50	13,50
0,91	54,50	57,00	54,50	54,00	50,00	41,00	33,00	23,50	11,50
0,89	43,50	48,50	51,50	48,00	38,00	36,50	28,00	21,50	12,00
0,87	35,00	43,50	46,00	44,00	40,00	32,00	25,00	16,00	8,50
0,85	29,00	36,50	37,00	35,00	31,00	26,00	20,00	14,50	6,50
0,83	21,00	30,00	32,00	30,50	27,50	22,50	17,50	12,50	6,00
0,81	17,00	25,00	25,00	24,50	19,50	19,00	16,50	10,50	5,50
0,79	12,50	19,50	22,00	19,00	20,50	16,00	12,50	8,50	5,50
0,77	12,50	15,00	18,50	18,50	15,50	13,50	11,00	7,00	3,00
0,75	10,00	15,00	16,50	15,50	15,00	12,50	8,50	6,50	4,00
0,73	8,50	13,00	13,50	13,50	11,50	10,00	8,50	6,00	3,00
0,71	8,00	11,00	12,50	12,00	11,00	9,00	7,00	4,00	2,50
0,69	6,50	10,00	11,00	10,50	9,50	7,50	6,00	4,50	1,50
0,67	5,50	8,00	9,00	9,00	8,00	6,50	4,00	3,00	2,00
0,65	4,50	7,00	8,50	8,50	6,50	6,00	4,50	3,00	1,50
0,63	4,00	6,50	7,50	7,00	6,50	5,50	4,50	3,00	1,50
0,61	3,50	5,50	6,00	5,50	5,00	4,00	3,50	2,00	1,00

$$\frac{d(\Delta \vartheta/\vartheta_{\rm M,I})}{dT_{\rm M-a}} = \frac{1}{100 \, T_{\rm Kp}} \exp \left[F + G\xi_{\rm M} + H\xi_{\rm M}^2 + K \frac{T_{\rm M-a}}{T_{\rm Kp}} + L \left(\frac{T_{\rm M-a}}{T_{\rm Kp}} \right)^2 \right]$$

где F = -3,93592; G = 3,5640; H = -5,0616; K = 8,6476; L = -0,6440.

Согласно полученной математической модели были разработаны алгоритм и программа расчета неустановившегося процесса в бытовой холодильной машине при пуске ее из отепленного состояния.

В качестве объекта исследования был взят бытовой холодильник «ОКА-6М» с герметичным компрессором КХ-0,125 на хладагенте R12, в кожухе которого находилось 340 г. смазочного масла ХФ 12-16 и для которого имелась экспериментальная кривая давления пара хладагента в кожухе от начала запуска до выхода на циклическую работу холодильного агрегата [38]. Экспериментальные исследования проводились в КБ компрессоров Тульского оружейного завода в лаборатории испытаний компрессоров. Схема размещения датчиков давления и температуры на агрегате холодильника «ОКА–6М» представлена на рис. 4.5. Датчик Д8 использовался для определения давления в кожухе компрессора. На кожухе компрессора также был установлен образцовый манометр. Погрешность при обработке экспериментальных результатов составила на линии низкого давления (в кожухе) не более 8,5 %, по температурам - не более 2 %. Результаты расчетов и экспериментальных исследований представлены на рис. 4.6, 4.7. Среднее квадратическое отклонение результатов расчета от эксперимента составило по давлениям 7,4 %, по температурам 2,4 %.

Рис. 4.5. Схема размещения датчиков на холодильном агрегате:

Д1-Д8 – реостатные датчики давления типа ДМП; ТФ1-ТФ5 – датчики температуры хладагента; ТС1-ТС6 – датчики температуры элементов конструкции; ТВ – датчик температуры воздуха в геометрическом центре низкотемпературного отделения

Рис. 4.6. Характер изменения давления в кожухе герметичного компрессора при запуске его из отепленного состояния с учетом и без учета выделения хладагента из смазочного масла

Рис. 4.7. Характер изменения массы m_a хладагента, растворенного в смазочном масле и массовой концентрации ξ_м масла при запуске холодильной машины из отепленного состояния

Анализ представленных результатов позволил сделать следующие выводы:

1. Разработанная математическая модель позволяет точно описать динамику выделения и растворения хладагента в смазочном масле.

2. Расчеты без учета растворения хладагента в масле настолько не точны, что последнее не позволяет в принципе исследовать неустановившиеся режимы работы малых холодильных машин, к которым можно отнести бытовые холодильники и кондиционеры, в том числе и автомобильные.

3. В отличие от работы [89], в которой раствор хладагента в масле и пар всегда находились в состоянии фазового равновесия, в данной работе исследовались неравновесные процессы происходящие, в частности, при пуске бытового холодильника из отепленного состояния. Сравнивая точность полученного решения с результатами работы [35] можно указать на их практически полное совпадение, что объясняется значительной продолжительностью переходного процесса, происходящего в кожухе герметичного компрессора при запуске бытового холодильника из отеплённого состояния.

4. Таким образом, предлагаемая модель полезна для исследования и быстропротекающих процессов (например, процессов вспенивания смазочного масла в кожухе (картере) герметичного компрессора). Однако, в этом случае необходимо уточнить методику определения коэффициентов расхода, как при выделении, так и при растворении хладагента в смазочном масле.

Глава 5

ДВУХЗОННАЯ ТЕРМОДИНАМИЧЕСКАЯ МОДЕЛЬ ТЕПЛОВЫДЕЛЕНИЯ В ДВИГАТЕЛЕ С ВНЕШНИМ СМЕСЕОБРАЗОВАНИЕМ

О полноте, скорости, своевременности, а значит о качестве процесса сгорания можно судить по развернутой индикаторной диаграмме, в которой условно выделяют три фазы [21, 92] (рис. 5.1).

Первая фаза сгорания Θ_1 , в которой формируется фронт пламени, начинается в момент зажигания смеси. Заканчивается первая фаза, когда давление в цилиндре в результате выделения теплоты становится выше, чем при сжатии смеси до ВМТ без сгорания.

Для своевременного выделения теплоты при наивыгодных условиях

электрический разряд на электроды свечи подается в конце хода сжатия за 20 - 55° поворота коленчатого вала до прихода поршня в ВМТ (угол опережения зажигания ϕ_{03}). В течение первой фазы сгорает около 2 - 3 % топлива, поданного в цилиндр. Продолжительность первой фазы 0,5 - 1мс, что соответствует 10 - 30° поворота коленчатого вала.

Рис. 5.1. Развернутая индикаторная диаграмма и зависимость изменения температуры газов от угла поворота коленчатого вала в двигателе с искровым зажиганием

Вторая фаза сгорания Θ_2 - основная, во время которой происходит распространение пламени по всему объему камеры сгорания. Начинается данная фаза с окончанием первой фазы и заканчивается в момент достижения максимального давления в цикле. Продолжительность второй фазы 1 - 1,2 мс, т.е. 25 - 30° поворота коленчатого вала. За это время выделяется примерно 75 – 85 % теплоты. Температура рабочего тела в конце этой фазы повышается до 2300 К, а давление достигает 3,5 - 5 МПа. К моменту окончания второй фазы сгорание не заканчивается, поэтому средняя температура газов продолжает расти.

Третья фаза сгорания Θ_3 - догорание смеси, которое начинается в момент достижения максимального давления цикла. Эта фаза характеризуется замедлением горения, так как у стенок камеры сгорания усиливается теплоотвод, ослабляется турбулентность и догорание обычно происходит в условиях недостатка кислорода. Вследствие замедления конечных процессов горения третья фаза не имеет четко выраженного окончания. Ориентировочно можно считать, что ее продолжительность составляет 1 - 1,5 мс, т.е. 20 - 35° угла поворота коленчатого вала.

В третьей фазе выделяется еще 10 - 15 % теплоты. В итоге общее тепловыделение за весь процесс сгорания составляет 80 - 91 %. Остальные 9 - 20 % теплоты теряются на теплопередачу через стенки цилиндра и на неполноту сгорания. Максимальная температура в третьей фазе сгорания 2300 - 2600 К.

В настоящее время отсутствует универсальная модель тепловыделения при сгорании топлива в цилиндре двигателя. Имеющиеся эмпирические и полуэмпирические зависимости [15, 85] малопригодны для математического моделирования, так как, не обладая свойствами универсальности, они не могут быть использованы при расчетах рабочих процессов проектируемых двигателей [113].

Рассмотрим процесс сгорания топлива в двигателе с внешним смесеобразованием, где выделение теплоты определяется скоростью распространения фронта пламени в цилиндре. Известны два механизма сгорания гомогенных топливовоздушных смесей: мелкомасштабный и крупномасштабный. Заряд топливовоздушной смеси в цилиндре двигателя на всех стадиях процесса турбулизован. Кроме этого, в процессе сгорания из-за неоднородности распределения плотности по объему камеры сгорания, ускорения фронта пламени и самого движения газа возникают условия дополнительной турбулентности.

Однако, если масштаб турбулентности не превосходит ширины зоны горения, то такой вид сгорания можно считать мелкомасштабным [113].

Следует отметить, что строгое математическое описание турбулентного сгорания в ДВС можно построить на основе уравнений сохранения энергии, массы, количества движения и концентраций химических элементов. Однако отсутствие достоверных знаний о химической кинетике горения углеводородных топлив и механизме турбулентного тепломассообмена в реагирующей среде делают недоступным применение такой модели для решения практических задач двигателестроения. Наиболее приемлемой в настоящее время является модель, основанная на использовании скоростей турбулентного горения в замкнутом объеме.

В результате многочисленных экспериментов, выполненных как в условиях манометрической бомбы, так и двигателя внутреннего сгорания, разработана методика для расчета турбулентной скорости выгорания в замкнутом объеме $\omega_{пл}$, представленная в работе [70].

После расчета скорости турбулентного горения ω_{nn} можно определить элементарное приращение сферического радиуса продуктов сгорания.

Основные допущения модели выделения теплоты при сгорании топлива в карбюраторном двигателе [113]:

1. Выгорание топлива в пристеночных областях (30...50 % объема камеры сгорания) подчиняется закономерностям мелкомасштабного горения; за пределами пристеночной области может быть как мелко, так и крупномасштабным;

2. Граница области сгорания сферическая; толщина зоны горения - мала; пламя от источника воспламенения распространяется со скоростью ω_{nn} по несгоревшей смеси. Поверхность сферы разделяет объем камеры сгорания на две области: область сгоревшей топливовоздушной смеси (зона 1) и область свежей смеси (зона 2). В результате можно осуществить переход от объемной скорости выгорания к линейной;

3. Температура сгоревшей смеси (внутри сферы) близка к адиабатной; давления внутри сферы и вне ее одинаковы; температуры существенно различны. Применительно к двум областям (рис. 5.2) получим основные уравнения термодинамики открытых систем, для чего используем интегральные уравнения газовой динамики в комбинированной форме:

- уравнение неразрывности

$$\frac{\partial}{\partial \tau} \iiint_{W} \rho dW + \oiint_{S} \rho (V_{n} - V_{\Gamma n}) dS = 0 ;$$

- уравнение энергии, в котором пренебрежем работой массовых сил и сил трения

$$\frac{\partial}{\partial \tau} \iiint \rho \left(u + \frac{V^2}{2} \right) dW + \oiint \rho \left(V_n - V_{\Gamma n} \right) \left(u + \frac{V^2}{2} \right) dS = - \oiint \overline{v} \overline{v} \overline{v} dS + \oiint \overline{q}_n dS + \iiint \rho \varepsilon dW$$

где $\oiint_{S} \overline{q}_{n} dS = \frac{\delta Q_{T}}{dt}$ - тепловой поток через граничную поверхность;

 $\iiint_W \rho \varepsilon \, dW = \frac{\delta Q_X}{d\tau}$ - количество теплоты, выделяемое в единицу време-

ни при сгорании топливовоздушной смеси.

Рис. 5.2. Расчетная схема

Запишем граничные условия согласно сделанным допущениям и расчетной схеме. Воздействие по S_{nn} разделим на два этапа:- этап расширения и этап присоединения массы свежей смеси из несгоревшей зоны.

$$\begin{split} S_{\Pi\Pi} &: \text{ на этапе расширения } \rho = \rho_1; \ u = u_1; \ V_n = V_{\Gamma n} = \omega_{\Pi\Pi} , \\ \text{ на этапе присоединения } \rho = \rho_2; \ u = u_2; \ V_n = -\omega_{\Pi\Pi} ; V_{\Gamma n} = 0; \\ S_{\Pi} : \ V_{\Gamma n} = V_n = V_{\Pi}; \ q_n = q_{\Pi} , \ S_{\delta} : V_{\Gamma n} = V_n = 0; \ q_n = q_{\delta} , \\ p_1 = p_2. \end{split}$$

Используя уравнения неразрывности, энергии и граничные условия, а также допущение о равновесности рабочего тела, в указанных зонах получим ряд расчетных уравнений:

- скорости изменения плотности рабочего тела в зоне 1:

$$\frac{\mathrm{d}(\rho_1 \mathrm{W}_1)}{\mathrm{d}\tau} = - \oiint_{\mathrm{S}} \rho (\mathrm{V}_n - \mathrm{V}_{\mathrm{rn}}) \mathrm{d}\mathrm{S},$$

$$\begin{split} S &= S_{\Pi\Pi} + S_{\Pi} + S_{\delta} , \qquad W_1 \frac{d\rho_1}{d\tau} + \rho_1 \frac{dW_1}{d\tau} = \rho_2 \omega_{\Pi\Pi} S_{\Pi\Pi} - 0 - 0 , \text{ откуда} \\ &\frac{d\rho_1}{d\tau} = \frac{1}{W_1} \left(\rho_2 S_{\Pi\Pi} \, \omega_{\Pi\Pi} - \rho_1 \frac{dW_1}{d\tau} \right) ; \end{split}$$

- скорости изменения плотности рабочего тела в зоне 2:

$$\frac{\mathrm{d}(\rho_2 \mathrm{W}_2)}{\mathrm{d}\tau} = - \oiint \rho (\mathrm{V}_n - \mathrm{V}_{\Gamma n}) \mathrm{d}\mathrm{S},$$

$$\begin{split} W_2 \, \frac{d\rho_2}{d\tau} + \rho_2 \, \frac{dW_2}{d\tau} &= -\rho_2 \, \omega_{\Pi\Pi} \, S_{\Pi\Pi} - 0 - 0 \,, \quad \text{откуда} \\ \frac{d\rho_2}{d\tau} &= \frac{1}{W_2} \bigg(-\rho_2 \, S_{\Pi\Pi} \, \omega_{\Pi\Pi} - \rho_2 \, \frac{dW_2}{d\tau} \bigg) \quad ; \end{split}$$

- скорости изменения температуры рабочего тела в зоне 1:

$$\frac{d(\rho_1 u_1 W_1)}{d\tau} = -\oiint_S \rho \left(V_n - V_{rn} \right) \left(u + \frac{V^2}{2} \right) dS - \oiint_S p V_n dS + \frac{\delta Q'_T}{d\tau} + \frac{\delta Q_x}{d\tau},$$

$$S = S_{\Pi\Pi} + S_{\Pi}' + S_{\bar{0}},$$

$$\rho_{1}u_{1}\frac{dW_{1}}{d\tau} + \rho_{1}W_{1}\frac{du_{1}}{d\tau} + u_{1}W_{1}\frac{d\rho_{1}}{d\tau} = -0 - 0 + \rho_{2}\omega_{\Pi\Pi}(u_{2} + \frac{\omega_{\Pi\Pi}^{2}}{2})S_{\Pi\Pi} - p_{1}\omega_{\Pi\Pi}S_{\Pi\Pi} + p_{1}\omega_{\Pi\Pi}S_{\Pi\Pi} - p_{1}V_{\Pi}S_{\Pi}' + \frac{\delta Q_{T}'}{d\tau} + \frac{\delta Q_{x}}{d\tau} ,$$

$$\frac{du_{1}}{d\tau} = \frac{1}{\rho_{1}W_{1}} \left[\frac{\delta Q_{T}'}{d\tau} + \frac{\delta Q_{x}}{d\tau} + \rho_{2}\omega_{\Pi\Pi}S_{\Pi\Pi} \left(u_{2} + \frac{\omega_{\Pi\Pi}^{2}}{2} + \frac{p_{1}}{\rho_{2}} \right) - p_{1}(\omega_{\Pi\Pi}S_{\Pi\Pi} + V_{\Pi}S_{\Pi}') - dW_{\Pi} \right]$$

$$-\rho_1 u_1 \frac{dW_1}{d\tau} - u_1 \rho_2 \omega_{\Pi \Pi} S_{\Pi \Pi} + \rho_1 u_1 \frac{dW_1}{d\tau} \bigg].$$

Так как

$$C_{V}(T_{1})\frac{dT_{1}}{d\tau} = \frac{du_{1}}{d\tau} ; \ u_{2} + \frac{\omega_{\Pi\Pi}^{2}}{2} + \frac{p_{1}}{\rho_{2}} = h_{2} ; \ \omega_{\Pi\Pi}S_{\Pi\Pi} + V_{\Pi}S_{\Pi}' = \frac{dW_{1}}{d\tau},$$
 To

$$\frac{dT_1}{d\tau} = \frac{1}{C_v(T_1) \cdot \rho_1 \cdot W_1} \left(\frac{\delta Q_T'}{d\tau} + \frac{\delta Q_x}{d\tau} + (h_2 - u_1)\rho_2 \omega_{\Pi \Pi} S_{\Pi \Pi} - p_1 \frac{dW_1}{d\tau} \right),$$

- скорости изменения температуры рабочего тела в зоне 2:

$$\frac{d(\rho_2 u_2 W_2)}{d\tau} = - \oiint S \rho \left(V_n - V_{\Gamma n} \right) \left(u + \frac{V^2}{2} \right) dS - \oiint S p V_n dS + \frac{\delta Q_T''}{d\tau},$$
$$S = S_{\Pi \Pi} + S_{\Pi}'' + S_{\delta},$$

$$\frac{d(\rho_2 u_2 W_2)}{d\tau} = -\rho_2 \omega_{\Pi\Pi} (u_2 + \frac{\omega_{\Pi\Pi}^2}{2}) S_{\Pi\Pi} + p_2 \omega_{\Pi\Pi} S_{\Pi\Pi} - p_2 \omega_{\Pi\Pi} S_{\Pi\Pi} - p_2 V_{\Pi} S_{\Pi}^{"} + \frac{\delta Q_{\Pi}^{"}}{d\tau},$$

$$\begin{split} \rho_{2}u_{2}\frac{dW_{2}}{d\tau} + \rho_{2}W_{2}\frac{du_{2}}{d\tau} + u_{2}W_{2}\frac{d\rho_{2}}{d\tau} = \\ & \frac{\delta Q_{T}^{"}}{d\tau} - \rho_{2}\omega_{\pi\pi}S_{\pi\pi} \left(u_{2} + \frac{\omega_{\pi\pi}^{2}}{2} + \frac{p_{2}}{\rho_{2}}\right) - p_{2}(-\omega_{\pi\pi}S_{\pi\pi} + V_{\Pi}S_{\Pi}^{"}) \\ \frac{du_{2}}{d\tau} = \frac{1}{\rho_{2}W_{2}} \left[\frac{\delta Q_{T}^{"}}{d\tau} - \rho_{2}\omega_{\pi\pi}S_{\pi\pi} \left(u_{2} + \frac{\omega_{\pi\pi}^{2}}{2} + \frac{p_{2}}{\rho_{2}}\right) - p_{2}(-\omega_{\pi\pi}S_{\pi\pi} + V_{\Pi}S_{\Pi}^{"}) - \right. \\ & \left. - \rho_{2}u_{2}\frac{dW_{2}}{d\tau} + u_{2}\rho_{2}\omega_{\pi\pi}S_{\pi\pi} + \rho_{2}u_{2}\frac{dW_{2}}{d\tau}\right]. \\ & Tak \ \kappaak \qquad C_{v}(T_{2})\frac{dT_{2}}{d\tau} = \frac{du_{2}}{d\tau}; \quad -\omega_{\pi\pi}S_{\pi\pi} + V_{\Pi}S_{\Pi}^{"} = \frac{dW_{2}}{d\tau}, \ \tauo \\ & \left. \frac{dT_{2}}{d\tau} = \frac{1}{C_{v}(T_{2})\cdot\rho_{2}\cdot W_{2}} \left(\frac{dQ_{T}^{"}}{d\tau} - (h_{2} - u_{2})\rho_{2}\omega_{\pi\pi}S_{\pi\pi} - p_{2}\frac{dW_{2}}{d\tau}\right). \end{split}$$

Используя уравнение состояния идеального газа, можно получить уравнения скорости изменения давления для зон 1 и 2:

$$p = \rho RT \quad ; \quad dp = R(\rho dT + T d\rho) \quad ; \quad \frac{dp}{d\tau} = R\left(\rho \frac{dT}{d\tau} + T \frac{d\rho}{d\tau}\right), \qquad \text{откуда}$$
$$\frac{dp_1}{d\tau} = R_1 \left(\rho_1 \frac{dT_1}{d\tau} + T_1 \frac{d\rho_1}{d\tau}\right) \quad , \qquad \frac{dp_2}{d\tau} = R_2 \left(\rho_2 \frac{dT_2}{d\tau} + T_2 \frac{d\rho_2}{d\tau}\right).$$

После подстановки полученных ранее уравнений можно записать

$$\frac{dp_1}{d\tau} = \frac{R_1}{C_v(T_1)W_1} \left(\frac{\delta Q_T'}{d\tau} + \frac{\delta Q_x}{d\tau} + h_2 \rho_2 \omega_{\Pi\Pi} S_{\Pi\Pi} - [p_1 + u_1 \rho_1] \frac{dW_1}{d\tau} \right),$$

$$\frac{dp_2}{d\tau} = \frac{R_2}{C_v(T_2)W_2} \left(\frac{\delta Q_T^{"}}{d\tau} - h_2 \rho_2 \omega_{\Pi \Pi} S_{\Pi \Pi} - [p_2 + u_2 \rho_2] \frac{dW_2}{d\tau} \right).$$

С учетом сделанных допущений была получена двухзонная математическая модель сгорания, реализованная в двигателе с внешним смесеобразованием, включающая следующие уравнения для зон сгоревшей и несгоревшей смеси:

$$\frac{dT_{1}}{d\tau} = \frac{1}{C_{v}(T_{1})\rho_{1} W_{1}} \left(\frac{\delta Q_{T}^{'}}{d\tau} + \frac{\delta Q_{x}}{d\tau} + (h_{2} - u_{1})\mu \rho_{2} \omega_{\Pi\Pi} S_{\Pi\Pi} - p_{1} \frac{dW_{1}}{d\tau} \right), \quad (5.1)$$

$$\frac{d\rho_1}{d\tau} = \frac{1}{W_1} \left(\mu \, \rho_2 \, \omega_{\Pi \Pi} \, S_{\Pi \Pi} - \rho_1 \frac{dW_1}{d\tau} \right) \,, \tag{5.2}$$

$$p_2 = p_1 = \rho_1 R_1 T_1 , \qquad (5.3)$$

$$\rho_2 = [(g_{II} + M_B) - \rho_1 W_1] / W_2 , \qquad (5.4)$$

$$T_2 = p_2 / (R_2 \rho_2) , \qquad (5.5)$$

$$\frac{\mathrm{dx}}{\mathrm{d\tau}} = \frac{1}{\mathrm{g}_{\mathrm{II}} + \mathrm{M}_{\mathrm{B}}} \left(\mathrm{W}_{\mathrm{I}} \frac{\mathrm{d\rho}_{\mathrm{I}}}{\mathrm{d\tau}} + \mathrm{\rho}_{\mathrm{I}} \frac{\mathrm{dW}_{\mathrm{I}}}{\mathrm{d\tau}} \right) , \qquad (5.6)$$

$$\frac{\delta Q_{\rm X}}{d\tau} = \chi g_{\rm II} Q_{\rm H}^{\rm T} \frac{dx}{d\tau} , \qquad (5.7)$$

$$W = W_1 + W_2$$
, $\frac{dW}{d\tau} = \frac{dW_1}{d\tau} + \frac{dW_2}{d\tau}$. (5.8)

В представленных уравнениях μ - коэффициент, учитывающий изменение турбулентной скорости выгорания в первой и третьей фазе сгорания, а также в пристеночной области второй фазы (рис. 5.3); g_{II} - цикловая масса топлива; $dx/d\tau$ - относительная доля сгоревшего топлива; χ - коэффициент, учитывающий потери теплоты при сгорании; M_B - масса воздуха в топливной смеси; S_{III} - площадь поверхности сферы, разделяющей зоны сгоревшей и не сгоревшей частей топливной смеси; $S_{III}^{'}$, $S_{III}^{''}$ - поверхности поршня перекрываемые соответственно зоной 1 и 2; Q_H^T - низшая теплота сгорания топлива; R_1, R_2 - соответственно газовые постоянные в зоне 1 и 2; u_1, u_2 - удельная

внутренняя энергия рабочего тела соответственно в зонах 1 и 2; h_1, h_2 - удельная энтальпия рабочего тела соответственно в зонах 1 и 2; $\delta Q'_T/d\tau$, $\delta Q''_T/d\tau$ - тепловые потоки в зонах 1 и 2.

Относительная доля сгоревшего топлива

Рис. 5.3. Характер изменения коэффициента турбулентной скорости выгорания в течение процесса сгорания

Подставив уравнения (5.2) и (5.6) в уравнение (5.7) получим

$$\frac{\delta Q_{X}}{d\tau} = \frac{g_{II}}{g_{II} + M_{B}} Q_{H}^{T} \left(W_{I} \frac{d\rho_{I}}{d\tau} + \rho_{I} \frac{dW_{I}}{d\tau} \right) = \frac{g_{II}}{g_{II} + M_{B}} Q_{H}^{T} \rho_{2} \omega_{\Pi \Pi} S_{\Pi \Pi} .$$
(5.7a)

В последнем уравнении $\rho_2 \omega_{пл} S_{пл}$ - элементарная масса еще несгоревшей топливовоздушной смеси, в которой топливо составляет $g_{\downarrow}/(g_{\downarrow} + M_B)$ часть. Тогда правая часть уравнения представляет собой количество энергии, выделяемое в единицу времени при сгорании топлива.

Следует отметить, что для различных форм камер сгорания и расположений точек зажигания можно получить зависимости для расчета W_1 , S_{nn} и $dW_1/d\tau$ или найти их численными методами.

На рис. 5.4 – 5.7 представлены результаты расчета процесса сгорания в цилиндре двигателя ВАЗ-2111 при n=3000 об/мин.

Рис. 5.4. Изменение относительной доли сгоревшего топлива

Рис. 5.5. Изменение скорости тепловыделения в цилиндре ДВС

Рис. 5.6. Изменение скорости фронта пламени

Рис. 5.7. Изменение температур в сгоревшей и несгоревшей зонах

Разработанная модель тепловыделения успешно использовалась при моделировании рабочих процессов в различных карбюраторных двигателях.

Глава 6

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ В СУШИЛЬНОЙ КАМЕРЕ КОНВЕКТИВНОГО ТИПА

Для повышения прочности сцепления резины и корда (капроновое полотно) его пропитывают соответствующим адгезионным составом, растворенным в воде.

Пропитка заключается в погружении корда в ванну с последующим отжимом избытка пропиточного состава. После чего полотно подается в сушильную установку (камера с сушильным агрегатом). Пропиточный агрегат состоит из раскаточной стойки, ванны пропитки, отжимных валков, компенсатора, тянущего устройства, закаточного устройства.

В настоящее время наиболее широко применяется конвективный способ сушки, при котором предварительно подогретый воздух в качестве теплоносителя и влагопоглотителя подается в сушильную камеру, где вступает в процессы тепло - и массообмена с высушиваемым материалом. Конструкции таких конвективных сушильных установок сравнительно просты.

С физической точки зрения сушка представляет собой сложный процесс переноса теплоты и массы (влаги) в материале и в то же время не менее сложный технологический процесс, при котором необходимо обеспечить сохранение и даже улучшение качества материала. Технология сушки учитывает свойства материалов и поэтому позволяет произвести выбор рационального способа сушки и установить оптимальный режим ее проведения [103].

Допущения, положенные в основу математической модели:

1. Так как высушиваемый материал представляет собой тонкое капроновое полотно, то периодом его прогрева пренебрегаем.

2. Процесс испарения влаги из высушиваемого материала и увлажнения воздуха считаем изоэнтальпным (адиабатное испарение).

3. Термическое сопротивление конвективной теплоотдачи со стороны движущегося воздуха в трубопроводах вследствие его значительной скорости (15 – 20 м/с) не учитываем.

4. Барометрическое давление влажного воздуха считаем постоянным и равным 100 кПа. 5. Процесс смешения потоков влажного воздуха перед вентилятором считаем адиабатным.

В качестве сушильной установки принимаем конвективную сушильную установку непрерывного действия для тонких материалов, принципиальная схема которой приведена на рис 6.1.

С учетом сделанных допущений, используя методологию термодинамики открытых систем [41, 44], также основные понятия влажного воздуха запишем математическую модель процесса в сушильной камере.

Рис. 6.1. Сушильная установка непрерывного действия:

1 - сушильная камера; 2 - подогреватель теплоносителя (паровоздушный, водовоздушный или электрический калорифер); 3 - вентилятор; 4 - дополнительный источник теплоты в камере; I - поток теплоносителя; II - поток высушиваемого материала; III - поток греющего теплоносителя

1. Уравнение скорости изменения температуры влажного воздуха

$$\frac{\mathrm{dT}}{\mathrm{d\tau}} = \frac{1}{\mathrm{C}_{\mathrm{VB}\Pi}\,\rho_{\mathrm{B}\Pi}\,\mathrm{V}_{\mathrm{K}}} \left([\mathrm{h}_{\mathrm{B}\mathrm{X}} - \mathrm{u}]\mathrm{G}_{\mathrm{B}\mathrm{X}} - \frac{\mathrm{B}}{\rho_{\mathrm{B}\Pi}}\mathrm{G}_{\mathrm{B}\mathrm{b}\mathrm{I}\mathrm{X}} - \mathrm{Q}_{\mathrm{B}} \right). \tag{6.1}$$

2. Уравнение скорости изменения плотности водяного пара во влажном воздухе

$$\frac{d\rho_{\Pi}}{d\tau} = \frac{1}{V_{K}} \left(G_{BX} \frac{\rho_{\Pi BX}}{\rho_{B\Pi BX}} + G_{UC\Pi} - G_{BbIX} \frac{\rho_{\Pi}}{\rho_{B\Pi}} \right).$$
(6.2)

3. Уравнения для плотности и давления насыщенного водяного пара [80, 81]

$$\rho_{\rm H} = f(T), \quad p_{\rm H} = f(T).$$
 (6.3)

4. Относительная влажность воздуха

$$\varphi = \frac{\rho_{\Pi}}{\rho_{H}}.$$
 (6.4)

5. Парциальное давление водяного пара во влажном воздухе

$$\mathbf{p}_{\Pi} = \mathbf{p}_{\mathrm{H}} \boldsymbol{\varphi} \,. \tag{6.5}$$

6. Плотность влажного воздуха

$$\rho = \frac{p_{\rm B}}{RT} + \rho_{\rm II} \,. \tag{6.6}$$

7. Парциальное давление сухого воздуха

$$\mathbf{p}_{\mathbf{B}} = \mathbf{B} - \mathbf{p}_{\Pi} \,. \tag{6.7}$$

В уравнениях (6.1) – (6.7): R – газовая постоянная сухого воздуха, Дж/(кг·К); C_{V вл} =1,048+1,96 · d – R_{вл} - удельная массовая изохорная теплоемкость влажного воздуха, кДж/(кг·К); d = 0,622 $\frac{p_{\Pi}}{B-p_{\Pi}}$ влагосодержание, кг/кг с. в.; B – барометрическое давление влажного воздуха; R_{вл} = $\frac{8,314}{28,96-10,945\frac{p_{\Pi}}{B}}$ - газовая постоянная влажного воздуха,

кДж/(кг·К); $h_{BX} = 1,048(T_{BX} - 273) + [2500 + 1,96(T_{BX} - 273)]d_{BX}$ - удельная энтальпия влажного воздуха на входе в сушильную камеру, кДж/кг; V_к - объем сушильной камеры, м³; T_{BX} – температура на воде в камеру после калорифера, К; d_{BX} – влагосодержание воздуха на входе в камеру, кг/кг с.в.; $u = h - \frac{B}{\rho_{BЛ}}$ - удельная внутренняя энергия влажного воздуха сушильной камере, кДж/кг; B h = 1,048(T - 273) + [2500 + 1,96(T - 273)]d - удельная энтальпия влажного воздуха в камере, кДж/кг; G_{вх}, G_{вых} - массовые расходы на входе и выходе сушильной камеры, определяемые по техническим характеристикам используемого вентилятора, кг/); $Q_B = \alpha_B S(T - T_{w1})$ - тепловой поток между влажным воздухом в камере и внутренней поверхностью ограждения, Вт; ав – коэффициент теплоотдачи внутри сушильной камеры, $BT/(M^2 \cdot K)$ [101]; S – площадь теплообмена, M^2 ; T_{w1} температура внутренней поверхности ограждения, К; рп вх, рвл вх соответственно плотности пара и влажного воздуха на входе в сушильную камеру, кг/м³; $G_{исп} = \sum_{i} \beta \frac{(p_H - p_{\Pi})F_{i \ ис\Pi}}{R_{\Pi}T}$ - масса воды, испаряющейся с поверхности влажного материала (поверхности массоотдачи) $F_{ucn} = \sum_{i} F_{i ucn}$, кг/с; R_{π} – газовая постоянная водяного пара, кДж/(кг·К); β - коэффициент массоотдачи при испарении воды, м/с [101, 105].

Следует отметить, что если температура влажного воздуха превышает 100 °C, то $p_{\rm H} = B$ и $\rho_{\rm H} = \frac{B}{R_{\rm H}T}$. При t < 100 °C $p_{\rm H}$, $\rho_{\rm H}$ определяют по имеющимся данным термодинамических свойств воды и водяного пара [80, 81].

Согласно представленной математической модели была разработана программа расчета термодинамического процесса в сушильной камере. Результаты расчетов сравнивались с температурными измерениями в сушильной камере конвективного типа, предназначенной для сушки тонких материалов, которые представлены на рис. 6.2. Расхождение результатов составило не более 5 %.

Рис. 6.2. Изменение температур в различных зонах сушильной установки:

1, 2 - температура влажного воздуха на входе в сушильную камеру (1 – эксперимент, 2 – расчет); 3, 4 - температура влажного воздуха перед вентилятором (3 – эксперимент, 4 – расчет); 5, 6 температура влажного воздуха в сушильной камере (5 – эксперимент, 6 – расчет).

Часть результатов, полученных в ходе выполнения контракта № РА/РТИ-01-2005, представлена на рис. 6.3 – 6.7.

Рис. 6.3. Зависимость температуры в сушильной камере от мощности электрокалорифера

Излом на рис. 6.3 физического смысла не имеет, т.к. был изменен масштаб вывода на печать.

На рис. 6.4 – 6.6 представлены результаты расчетов переходного процесса нагрева камеры, в течение 2000 с, с последующей подачей в нее влажного материала при номинальном режиме работы сушильной установки.

Предварительный прогрев сушильной камеры в течение 30 мин (не менее) оказывает положительное влияние на качество сушки и энергозатраты. Однако вследствие того, что подсушиваемый материал тонкий и после отжима, это влияние не столь значительно.

Результаты расчетов текущей абсолютной влажности материала при его движении в сушильной камере представлены на рис. 6.7.

Рис. 6.4. Изменение температуры в камере при ее прогреве с последующим движением полотна на 2000 с

Рис. 6.5. Изменение относительной влажности воздуха в сушильной камере

Рис. 6.6. Изменение влагосодержания воздуха в сушильной камере

Рис. 6.7. Измение абсолютной влажности подсушиваемого материала

В сушильных установках такого типа широко применяется рециркуляция. В этом случае воздух из сушильной камеры частично выбрасывается, а частично возвращается к вентилятору, где смешивается с наружным воздухом. Рециркуляция воздуха целесообразна в тех случаях, когда сушку необходимо осуществлять при «мягком» режиме, способствующем равномерной сушке по толщине материала. Нередко в результате такой сушки повышается качество высушиваемого материала [61, 103].

Расход теплоты при сушке без рециркуляции и с рециркуляцией одинаков. Соотношение отработавшего и наружного воздуха в смеси характеризуется кратностью рециркуляции $n = \frac{G_p}{G}$ или коэффициентом рециркуляции K_p . Расход воздуха при сушке с рециркуляцией возрастает в n+1 раз, что приводит к увеличению расхода энергии на привод вентилятора и одновременному повышению скорости воздуха у материала, ускоряющему процесс сушки:

$$K_p = \frac{G_p}{G_{cM}} = \frac{G_p}{G_p + G},$$

где G_p – расход рециркуляционного воздуха, G – расход свежего воздуха из окружающей среды.

Между коэффициентом рециркуляции и кратностью рециркуляции можно записать соотношение в виде

$$K_p = \frac{n}{n+1}.$$

Параметры влажного воздуха (влагосодержание и температура) в случае адиабатного смешения двух потоков влажного воздуха определяются по следующим зависимостям:

$$d_{cM} = K_p d + (1 - K_p) d_{o.c.}$$
,

$$h_{cM} = K_p h + (1 - K_p) h_{o.c.},$$

$$t_{\rm CM} = \frac{h_{\rm CM} - 2500 d_{\rm CM}}{1,048 + 1,96 d_{\rm CM}},$$

где h, d – удельная энтальпия и влагосодержание воздуха после сушильной камеры; h_{o.c.}, d_{o.c.} – удельная энтальпия и влагосодержание воздуха окружающей среды. Использование математической модели расчета процесса сушки тонкого материала в конвективной камере позволило при заданной мощности калорифера (270 кВт) и производительности вентилятора (16000 м³/ч) исследовать влияние коэффициента рециркуляции на процесс сушки и определить его оптимальное значение.

Результаты расчетов представлены на рис. 6.8 – 6.11 и в табл. 6.1 Их анализ позволяет сделать следующие выводы:

1. При малых значениях коэффициента рециркуляции (0 - 0,50), вследствие уменьшения температуры в сушильной камере наблюдается значительная остаточная влажность материала. Этого негативного явления можно избежать, только увеличив мощность калориферов.

2. При больших значениях коэффициента рециркуляции (K_p = 0,9 ... 1,0) происходит насыщение воздуха в сушильной камере парами воды и процесс испарения влаги с полотна практически прекращается.

3. Для эффективного процесса сушки коэффициент рециркуляции К_р должен быть порядка 0,75.

4.

Время, с	Остаточная влажность материала, кг			
	К _р =0	K _p =0,5	K _p =0,75	K _p =1
0	0	0	0	0
60	0	0	0	0
120	0	0	0	0
420	0,213	0,102	0	0
720	0,197	0,065	0	0,135
1020	0,189	0,046	0	0,233
1320	0,185	0,037	0	0,283
1620	0,182	0,031	0	0,305
1920	0,181	0,028	0	0,314
2220	0,180	0,026	0	0,314
2520	0,179	0,024	0	0,314
2820	0,179	0,023	0	0,313
3120	0,178	0,022	0	0,313
3420	0,178	0,022	0	0,313
3720	0,178	0,022	0	0,314
4020	0,178	0,022	0	0,314
4320	0,178	0,022	0	0,313

Рис. 6.8. Зависимость температуры воздуха в сушильной камере от коэффициента рециркуляции К_р

Рис. 6.9. Зависимость относительной влажности от коэффициента рециркуляции

Рис. 6.10. Зависимость влагосодержания воздуха в камере от коэффициента рециркуляции

Рис. 6.11. Влияние рециркуляции на интенсивность массопереноса

Глава 7

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОМЕХАНИЧЕСКИХ ПРОЦЕССОВ РОТОРНО-ПОРШНЕВЫХ КОМПРЕССОРОВ

Рассматриваемые компрессоры являются объемными ротационными машинами, в основу профилирования рабочих органов которых положены трохоидные кривые. Компрессоры этого типа (РПК) получили широкое распространение в нашей стране и за рубежом. Они используются для тормозных систем транспортных установок, для передвижных станций сжатого воздуха, в некоторых отраслях холодильной и вакуумной техники.

В качестве примера конструктивного выполнения планетарной машины на рис. 7.1. приведена схема роторно-поршневого компрессора РПК-160.

Рис. 7.1. Компрессор РПК-160 Харьковского авиационного института:

1 - нагнетательный клапан; 2 - неподвижный корпус; 3 - ротор; 4, 5 - боковые крышки; 6 - эксцентриковый вал; 7 - зубчатое колесо внутреннего зацепления; 8 - впускное окно; 9 - неподвижная шестерня; 10, 11противовесы; 12, 13 - коренные подшипники; 14, 16 - роторные подшипники Рабочие поверхности компрессора выполнены по однодуговой эпитрохоиде (корпус 2) и двухвершинной внутренней огибающей (ротор 3). Ротор 3 совершает планетарное движение: вращается вокруг собственной оси, совпадающей с осью эксцентрика приводного вала 6, который в свою очередь вращается вокруг оси приводного вала. Корпус 2 с эпитрохоидной расточкой вместе с боковыми крышками 4, 5 и вращающийся ротор 3 образуют две камеры переменного объема. Поступающий через впускное окно 8 воздух сжимается в камерах и выталкивается через нагнетательный клапан 1.

Синхронизация вращения ротора 3 и эксцентрикового вала 6 осуществляется зубчатой передачей внутреннего зацепления. Большая шестерня 7 является деталью ротора 3, а малая 9 жестко соединена с неподвижной крышкой 4. Ротор 3 вращается в два раза медленнее эксцентрикового вала 6 и в том же направлении.

Полезная работа передается воздуху через ротор 3 от эксцентрикового вала 6, поэтому синхронизирующая передача нагружена небольшим моментом, зависящим главным образом от инерционных нагрузок и сил трения, возникающих между рабочими деталями.

Доводка рабочего процесса, требующая сложных экспериментов на натурных образцах, может быть в значительной мере упрощена при наличии математической модели компрессора достаточно точно отражающей физические процессы реального цикла. В данном случае расчетным путем можно проверить влияние на рабочий процесс изменения отдельных конструкционных параметров и их совокупности, установить желательные границы значений этих параметров и свести тем самым к минимуму дорогостоящие натурные испытания. При создании такой модели можно было бы использовать имеющийся опыт расчета рабочих процессов поршневых машин. Однако традиционные методы расчета поршневых компрессоров, базирующиеся на принципах термодинамики тела постоянной массы и использующие уравнения политропных процессов с эмпирически найденными показателями политроп объективно не учитывают конструкционных особенностей компрессора и поэтому, в частности, при исследовании новых типов компрессоров оказываются бессильными.

В принципе, можно составить систему взаимосвязанных уравнений, описывающих рабочие процессы, происходящие в каждой камере, и затем, решая совместно уравнения, найти нужные функции (изменение давления, температуры и весового количества газа в рабочей камере по углу поворота ротора). Однако решение это чрезвычайно громоздко. Поэтому профессором Н.М. Глаголевым был разработан метод последовательных приближений. Весь расчет в этом случае состоял из трех последовательных этапов или итераций.

В настоящее время наблюдается тенденция к быстрому расширению области применения роторных компрессоров. Объемные роторные компрессоры используются не только в традиционных областях (системы наддува двигателей внутреннего сгорания, промышленное дутье в металлургическом производстве, пневматический транспорт, наддув кабин высотных самолетов, вакуумные установки), но и в новых — установки кондиционирования воздуха, холодильная техника, установки глубокого холода и глубокого вакуума, упаковочные машины и т.д. Ведутся работы по использованию роторных компрессоров в тормозных системах железнодорожного транспорта.

Известные математические модели рабочих процессов РПК строятся на основе цикловых методов, которые являются приближенными и не отражают всего многообразия режимов работы таких компрессоров. Поэтому в настоящее время роль теоретических исследований возрастает, ибо они обладают большой степенью обобщения полученных результатов, однако требуют достаточно адекватных математических моделей.

В связи с вышесказанным предлагается, для моделирования рабочих процессов РПК, использовать методологию термодинамики тела переменной массы (термодинамики открытых систем), хорошо зарекомендовавшую себя при моделировании рабочих процессов в ротационных компрессорах (пластинчатых, с катящимся ротором, спиральных и т.п.).

Ниже предлагается математическая модель РПК, включающая три подсистемы уравнений:

- термодинамическую подсистему для расчета изменения состояния рабочего тела в камерах РПК;
- подсистему для расчета теплообмена между рабочим телом и элементами конструкции;
- механическую подсистему для расчета перемещения ротора компрессора.

Термодинамическая подсистема включает:

- уравнения скоростей изменения температур рабочего тела в

камерах РПК

$$\frac{dT_i}{d\tau} = \frac{1}{c_{vi}(T)\rho_i W_i} \left\{ \sum_{j=0}^k \left(h_j - u_i\right) G_j - p_i \frac{dW_i}{d\tau} + \frac{\delta Q_{Bi}}{d\tau} \right\}, \quad (7.1)$$

- уравнения скоростей изменения плотностей рабочего тела

$$\frac{d\rho_i}{d\tau} = \frac{1}{W_i} \left(\sum_{j=0}^k G_j - \rho_i \frac{dW_i}{d\tau} \right), \qquad (7.2)$$

- уравнение состояния

$$p_i = \rho_i R T_i . 7.3)$$

В уравнениях (7.1 – 7.3): G_j – расходы рабочего тела при газообмене, $c_{vi}(T)$ – удельная изохорная теплоемкость; R – газовая постоянная; h, u – соответственно удельные энтальпия и внутренняя энергия; τ - время.

Подсистема уравнений теплообмена включает:

- уравнения тепловых потоков

$$\frac{\delta Q_{Bi}}{d\tau} = \alpha_{B} (T - T_{c}) \cdot S_{B} , \qquad (7.4)$$

$$\frac{\delta Q_{\rm H}}{d\tau} = \alpha_{\rm H} \left(T_{\rm c} - T_0 \right) \cdot S_{\rm H} , \qquad (7.5)$$

 уравнение скорости изменения температуры стенки компрессора

$$\frac{dT_{c}}{d\tau} = \frac{1}{c \cdot m} \left(\frac{\delta Q_{Bi}}{d\tau} - \frac{\delta Q_{H}}{d\tau} \right), \qquad (7.6)$$

где с, m – удельная теплоемкость и масса стенки двигателя; S_в, S_н – площади теплоотдающих поверхностей.

Для расчета коэффициентов теплоотдачи α_в и α_н используются методики, изложенные в [102, 103].

Механическая подсистема включает:

- упрощенное динамическое уравнение Лагранжа

$$\frac{d\omega}{d\tau} = \frac{1}{J} (M_{\mu} - M_{c}) , \qquad (7.7)$$

- кинематическое соотношение

$$\frac{\mathrm{d}\phi}{\mathrm{d}\tau} = \omega \ . \tag{7.8}$$

Уравнения механической подсистемы дополним уравнениями, учитывающими сложный профиль рабочих поверхностей ротора и цилиндра РПК, которые позволяют определить:

-текущий объем камеры РПК

$$W_{i} = W_{hT} \cdot \{0, 5 \cdot [1 - \cos([z - 1] \cdot \psi - \frac{\pi}{z})]\} + W_{M}, \qquad (7.9)$$

-скорость изменения объема

$$\frac{\mathrm{dW}_{\mathrm{i}}}{\mathrm{d\tau}} = \mathrm{W}_{\mathrm{hT}} \cdot 0.5 \cdot [z-1] \cdot \omega_{\mathrm{p}} \cdot \sin([z-1] \cdot \psi - \frac{\pi}{z}) , \qquad (7.10)$$

-площадь теплообмена между рабочим телом и поверхностью камеры

$$S_{B} = 2W_{i}/H + (L_{s} + L_{cp}) \cdot H$$
, (7.11)

где в уравнениях (7.9 - 7.11): W_{hT} – объем рабочей камеры, W_{hT} =4·sin(π/z)·R·H·(A+k)/(z-1); ψ - угол поворота ротора, ψ = ϕ/z ; ϕ - угол поворота вала; H – высота ротора; $L_s = L_1 - L_2$ – длина дуги эпитрохоиды между вершинами ротора, L_1 , L_2 – неполные эллиптические интегралы,

$$L_1 = \int_0^{\Psi} R \sqrt{1 + c^2 + 2c \cdot \cos([z - 1] \cdot \psi)} \, d\psi,$$

$$L_2 = \int_0^{\psi+2\pi/z} R\sqrt{1+c^2+2c\cdot\cos([z-1]\cdot\psi)} \,d\psi,$$

где L_{cp} – длина стороны ротора, которая определяется как $L_{cp} = 2 \cdot \arcsin(b/z_2) \cdot z_2$, $z_2 = (A \cdot z_1 - 2 \cdot E \cdot z_1 + 2E^2)/(z_1 - 2 \cdot E)$, $z_1 = A \cdot (1 - \cos(\pi/z))$; k – расстояние между действительным и теоретическим контуром (k≈1-2мм при объеме рабочей камеры до 1 дм³); W_{M} – мертвый объем, $W_{M} = W_{hT}/(\epsilon-1)$; ϵ - степень сжатия, $\omega_{p} - y_{T}$ ловая скорость вращения ротора, $\omega_{p} = \omega/z$; ω - угловая скорость вращения ротора, $\omega_{p} = \omega/z$; ω - угловая скорость вращения ротора, $\alpha_{p} = \omega/z$; ω - угловая скорость вращения ротора, $\alpha_{p} = \omega/z$; ω - угловая скорость вращения ротора, $\omega_{p} = \omega/z$; ω - угловая скорость вращения эксцентрикового вала; c=A/R – параметр формы; A – производящий радиус [93], $R=z \cdot E$ – радиус обкатывающейся окружности; E – величина эксцентриситета, z – число углов ротора компрессора (число полостей компрессора).

-проекцию сил давления газов на ось х

$$p_{\Gamma X} = \sum_{i=1}^{z} 2A \cdot \sin(\pi/z) \cdot H \cdot p(i) \cdot \cos(\psi + \pi(2i-1)/z), \quad (7.12)$$

-проекцию сил давления газов на ось у

$$p_{ry} = \sum_{i=1}^{z} 2A \cdot \sin(\pi/z) \cdot H \cdot p(i) \cdot \sin(\psi + \pi(2i-1)/z), \quad (7.13)$$

-геометрическую сумму сил давления

$$p_{\Gamma} = \sqrt{p_{\Gamma y}^2 + p_{\Gamma x}^2},$$
 (7.14)

-угол образуемый вектором сил от давления газов с осью абсцисс

$$\beta = \arcsin(p_{\Gamma y}/p_{\Gamma}) , \qquad (7.15)$$

-тангенциальную силу

$$T = p_{\Gamma} \cdot \sin(\beta - z \cdot \psi) , \qquad (7.16)$$

-радиальную силу

$$Z = p_{\Gamma} \cdot \cos(\beta - z \cdot \psi) , \qquad (7.17)$$

-суммарную силу, действующую на эксцентрик

$$Q = \sqrt{T^2 + (Z - C_p)^2} , \qquad (7.18)$$

где C_p – центробежная сила инерции ротора, $C_p=m_p\cdot E\cdot \omega_p^2$, m_p – масса ротора,

-момент сопротивления

$$M_c = T \cdot E , \qquad (7.19)$$

-движущий момент (M_д), который задается или определяется в зависимости от вида расчета.

-момент инерции ротора

$$J = m_p (b^2 + h_s^2) / (6 \cdot z_k) - m_o R^2 / 2 + (m_p - m_o) E^2 + m_M D_M^2 / 8 , (7.20)$$

где m_м, D_м – масса и диаметр маховика; m_o – масса металла в выемке ротора, где расположено внутреннее зацепление, $b = A \cdot \sin(\pi/z)$, $h_s = z_2 - \sqrt{z_2^2 + b^2}$, (если z = 2) и $h_s = b\sqrt{3}$, (если z = 3), $z_k = 1 + 2 \cdot \cos(\pi/z)$.

Результаты численных экспериментов для роторно-поршневого компрессора РК-8 Первомайского тормозного завода, позволяющие судить о возможностях математической модели, представлены на рис. 7.2 - 7.7. Кроме этого представлен ряд результатов по проверке адекватности разработанной математической модели путем их сравнения с имеющимися данными по компрессору РК-8 [93].

Расчеты проводились для установившегося режима при частоте вращения эксцентрикового вала равной 1450 об/мин, температуре стенки компрессора 100°С, температуре на входе равной 20°С. Рабочим телом, сжимаемым компрессором, являлся воздух.

Анализ полученных результатов (табл. 7.1) позволяет сделать вывод о достаточной адекватности математической модели и рекомендовать ее для расчетов рабочих процессов аналогичных компрессоров в целях оптимизации их основных конструкционных и эксплуатационных характеристик.

Таблица 7.1

Параметры	По данным работы [93]	По результатам расчета
Производитель- ность, м ³ /мин	0,800	0,720
Рабочий объем одной камеры, см ³	1210	1220
Избыточное давле- ние нагнетания, ат	8	8

Сравнение результатов расчёта и эксперимента

Рис. 7.2. Изменение давления в полостях компрессора

Рис. 7.3. Изменение объемов полостей компрессора

Рис. 7.4. Момент сопротивления компрессора

Рис. 7.5. Действующие силы

Рис. 7.6. Тангенциальная и радиальная силы

Рис. 7.7. Тепловой поток в первой полости

Глава 8

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОМЕХАНИ-ЧЕСКИХ ПРОЦЕССОВ РОТОРНО-ПОРШНЕВЫХ ДВИГАТЕЛЕЙ

В роторно-поршневых двигателях (РПД) возвратнопоступательное движение поршня, характерное для поршневого двигателя, заменено вращательным движением ротора, во время которого объемы полостей, образованные стенками корпуса и поверхностью треугольного ротора, дважды изменяются за полный оборот от минимальной до максимальной величины. При первом уменьшении объема происходит сжатие смеси, а при втором - выталкивание выпускных газов. Первое увеличение объема используется для наполнения полости свежим зарядом, второе - для расширения продуктов сгорания. За полный оборот ротора осуществляется четырехтактный процесс. Смена рабочего тела происходит через окна, открываемые и закрываемые углами или краями ротора.

В РПД корпус имеет двухэпитрохоидальный профиль, по которому движутся вершины треугольного ротора, совершающего полный оборот за три оборота эксцентрикового вала. Центр ротора вращается вокруг центра вала, а вращательное движение ротора создается обкатыванием закрепленной в роторе шестерни внутреннего зацепления вокруг неподвижно установленной в корпусе двигателя шестерни внешнего зацепления.

Отдельные фазы рабочего процесса в трех полостях сдвинуты одна относительно другой на 120° угла поворота ротора или на 360° поворота эксцентрикового вала. В отличие от поршневого двигателя окна в корпусе РПД все время открыты и вершина ротора соединяет впускной канал с двумя камерами. Вследствие этого отдельные фазы впуска и выпуска в смежных полостях двигателя частично перекрываются (рис.8.1).

Отсутствие поступательно движущихся масс позволяет увеличивать частоту вращения вала отбора мощности двигателя, что, в свою очередь, дает возможность при одинаковом массовом заряде рабочего объема получать большую мощность двигателя. При одинаковой мощности РПД компактнее обычных поршневых двигателей и легче их. Удельный расход топлива РПД в настоящее время практически не отличается от расхода топлива в обычных карбюраторных двигателях и составляет 300-350 г/(кВт·ч) [22].

Принцип использования вращающегося поршня был известен еще в XVI в., однако конструктивное воплощение этого принципа было осуществлено только в 1957г. Феликсом Ванкелем, создавшим работоспособный образец РПД [3].

С начала 70-х годов двигатели этого типа приобрели большее распространение. Так, например, в 1973 г. в ФРГ их было выпущено около 40 тыс. шт., в Японии - около 200 тыс. Преимуществами РПД являются их компактность, малая удельная масса, плавность и малая шумность работы, пониженная склонность к детонации. Основной недостаток РПД - повышенный удельный расход топлива, что вызывается целым рядом причин, связанных с особенностями протекания процесса сгорания и условиями теплоотдачи [16].

Рис. 8.1. Протекание четырехтактного цикла в РПД с планетарным движением ротора

1. Конфигурация камеры сгорания в РПД, выполняемой как показано на рис. 8.2 в виде небольшого углубления в теле ротора, весьма неблагоприятна с точки зрения получения высокой скорости и полноты сгорания и малой теплоотдачи в стенки. Значительная часть рабочего заряда заключена в узких зазорах между поверхностями ротора и статора. Хотя вытеснение смеси в конце такта сжатия из этих зазоров в основной объем камеры сгорания и создает в нем дополнительную турбулизацию заряда аналогично тому, как это имеет место при наличии вытеснителей в камерах сгорания поршневых двигателей, однако относительная поверхность таких вытеснителей в РПД крайне велика.

2. В РПД имеют место значительные утечки газов из очередной рабочей полости, в которой происходит сгорание, в обе смежные через зазоры между уплотнительными пластинами ротора и поверхностями цилиндра, что особенно сильно сказывается при низких частотах вращения эксцентрикового вала. Если утечка в предыдущую по порядку работы полость, в которой происходит сжатие, особого вреда не причиняет, так как просочившиеся в нее газы снова принимают участие в сгорании, то несгоревшая смесь, просочившаяся в полость, в которой уже происходит расширение продуктов сгорания от предыдущего цикла, хотя и успевает частично догореть, но уже практически без совершения полезной работы.

3. Относительно большие, по сравнению с поршневыми двигателями, длительности не только самого сгорания, но и вообще пребывания в рабочей полости газов, имеющих высокую температуру. Это связано с тем, что объем полости сжатия изменяется в РПД по косинусоидальному закону, в то время как наличие сравнительно коротких шатунов в поршневых двигателях вызывает сокращение времени нахождения поршня вблизи в.м.т. [16].

Процесс сгорания в РПД сильно растягивается во времени, в связи с чем максимальные давления и температуры рабочего цикла оказываются значительно более низкими, чем в поршневых двигателях. На рис. 8.3 сопоставлены развернутые индикаторные диаграммы и характеристики активного тепловыделения, полученные в РПД при степени сжатия ε =8,5, n= 3500 об/мин эксцентрикового вала и в двигателе ГАЗ-21 при ε =6,75, n=2000 об/мин; в обоих случаях α =1, углы опережения зажигания оптимальные. Учитывая, что полная длительность четырехтактного рабочего цикла в каждой из полостей РПД отвечает трем оборотам эксцентрикового вала против двух оборотов ко-

ленчатого вала у поршневого двигателя, угловой масштаб во втором случае увеличен в 1,5 раза.

Видно, что кривая тепловыделения в РПД идет значительно более полого и процесс догорания продолжается в течение всего такта расширения. Сильно пониженные значения p_z и T_z приводят к меньшей склонности РПД к детонации, чему дополнительно способствует наличие в камере сгорания значительных по своей площади хорошо охлаждаемых «защемленных объемов». При степенях сжатия 8,5-9 в РПД возможно использование бензина А-76 [16].

Рис 8.2. Конфигурация камеры сгорания РПД при положении очередной рабочей полости в ВМТ.

Рис. 8.3. Сопоставление индикаторных диаграмм и характеристик активного тепловыделения двигателей:

1- роторно-поршневого; 2 - поршневого

Несколько улучшить протекание процесса сгорания в РПД удается установкой в камере сгорания двух свечей зажигания с небольшим сдвигом по фазе цикла моментов подачи на них искровых импульсов, что обеспечивает более быстрый и равномерный охват пламенем всего объема рабочего заряда и улучшает условия пуска холодного двигателя.

Следует, однако, признать что, несмотря на неблагоприятную для развития сгорания форму камеры и растянутость процесса тепловыделения, удельные расходы топлива в лучших современных моделях РПД превышают расходы топлива в также хороших поршневых двигателях всего лишь на 12-15%, что можно объяснить меньшими потерями энергии на трение и газообмен, а также в систему охлаждения. Последнее связано с меньшими температурами сгорания и пониженными значениями коэффициента теплоотдачи вследствие относительно невысокой интенсивности турбулентности.

Известны попытки создания также дизельных вариантов РПД как с непосредственным впрыском топлива в камеру сгорания в конце такта сжатия, так и вихрекамерных. Однако осуществление чисто дизельного процесса в РПД встречает значительные трудности [16].

Исходя из имеющихся данных более рациональным является использование в РПД впрыска тяжелого топлива в камеру сгорания в сочетании с искровым зажиганием. Относительно простые по своему устройству РПД такого типа с воздушным охлаждением успешно используются в качестве пусковых агрегатов тракторных дизелей вместо обычно применяемых для этой цели двухтактных бензиновых двигателей, что избавляет от необходимости в двух различных видах топлива.

Таким образом к достоинствам роторно-поршневых двигателей (РПД), по сравнению с двигателями традиционного исполнения следует отнести:

-меньшие габариты и массу;

-меньшее количество деталей;

-отсутствие возвратно-поступательно движущихся частей и как следствие плавную работу двигателя;

-возможность использования низкооктановых сортов бензина [111].

К недостаткам таких двигателей относят:

-малоэффективный процесс сгорания и как следствие повышенный расход топлива, а также токсичность отработанных газов в частности СО;

-высокий расход смазочного масла;

-невозможность производства на площадях предназначенных для выпуска традиционных ДВС, т. к. переход на выпуск РПД требует замены подавляющего большинства оборудования [111].

Однако РПД вследствие особенностей кинематики имеет возможность применения принципиально новых конструкторскотехнологических решений повышающих его экономичность, ресурс и снижающих токсичность отработавших газов. В частности к таким решениям относится послойное распределение топлива в камере сгорания, позволяющее работать на смесях более бедных, чем в поршневом двигателе.

Для решения проблемы токсичности необходимо совершенствовать процессы смесеобразования и сгорания. Новое направление, подтвержденное экспериментально в поршневых двигателях, а именно добавление водорода в бензиновоздушную смесь для РПД может также дать существенный эффект.

Учитывая вышесказанное можно констатировать, что РПД имеют полное право на существование, однако при этом необходимо расширить экспериментальные и теоретические, с помощью математических моделей, исследования таких двигателей.

Известные математические модели рабочих процессов РПД строятся на основе цикловых методов, которые являются приближенными и не отражают всего многообразия режимов работы таких двигателей. Следует также отметить сложность экспериментальных исследований РПД (исключая обычные стендовые), что связано с одной стороны с их дороговизной, а с другой стороны со сложностью самих экспериментальных методик, особенно если речь идет об определении текущих характеристик и исследовании переходных режимов. Поэтому роль теоретических исследований возрастает, ибо они обладают большой степенью обобщения полученных результатов, однако требуют достаточно адекватных математических моделей.

В связи с вышесказанным предлагается, для моделирования рабочих процессов РПД, использовать методологию термодинамики тела переменной массы (термодинамики открытых систем), хорошо зарекомендовавшую себя при моделировании рабочих процессов в ротационных компрессорах (пластинчатых, с катящимся ротором, спиральных и т.п.).

Ниже предлагается достаточно подробная математическая модель РПД, которая включает три подсистемы уравнений:

- термодинамическую подсистему для расчета изменения состояния рабочего тела в камерах РПД;
- подсистему для расчета теплообмена между рабочим телом и элементами конструкции;
- механическую подсистему для расчета перемещения ротора двигателя.

- уравнения скоростей изменения температур рабочего тела в камерах РПД

$$\frac{dT_i}{d\tau} = \frac{1}{c_{vi}(T)\rho_i W_i} \left\{ \sum_{j=0}^k \left(h_j - u_i\right) G_j - p_i \frac{dW_i}{d\tau} + \frac{\delta Q_{xi}}{d\tau} + \frac{\delta Q_{Bi}}{d\tau} \right\}, \quad (8.1)$$

- уравнения скоростей изменения плотностей рабочего тела

$$\frac{d\rho_i}{d\tau} = \frac{1}{W_i} \left(\sum_{j=0}^k G_j - \rho_i \frac{dW_i}{d\tau} \right), \qquad (8.2)$$

- уравнение состояния

$$\mathbf{p}_{i} = \boldsymbol{\rho}_{i} \mathbf{R} \mathbf{T}_{i} \quad . \tag{8.3}$$

,

В уравнениях (8.1-8.3): G_j – расходы рабочего тела при газообмене, включая перетечки между полостями двигателя, $c_{vi}(T)$ – удельная изохорная теплоемкость; R – газовая постоянная; h, u – соответственно удельные энтальпия и внутренняя энергия; τ - время.

Тепловой поток выделяющийся при сгорании топлива в камере δQ_{xi}/dτ определяется по эмпирической модели И.И. Вибе.

$$\frac{\delta Q_{xi}}{d\tau} = g_{II} \cdot \xi \cdot \psi \cdot Q_{H}^{p} \frac{dx}{d\tau} ,$$

$$\frac{dx}{d\tau} = \omega_{p} \frac{6,908(m+1)\varphi^{m}}{\varphi_{z}^{m+1}} \cdot e^{-6,908 \left(\frac{\varphi}{\varphi_{z}}\right)^{m+1}}$$

где g_{u} – цикловая масса топлива для одной камеры; Q_{H}^{p} - низшая теплота сгорания топлива; m – показатель сгорания; ϕ_{z} – условная длительность сгорания; ξ - коэффициент использования теплоты в двигателе (учитывает потери теплоты на диссоциацию и принимается равным 0,8-0,9); ψ - коэффициент полноты сгорания топлива, $\psi = 1 - \frac{57780000}{Q_{H}^{p}}(1-\alpha); \alpha$ - коэффициент избытка воздуха.

Подсистема уравнений теплообмена включает:

- уравнения тепловых потоков

$$\frac{\delta Q_{Bi}}{d\tau} = \alpha_B (T - T_c) S_B , \qquad (8.4)$$

$$\frac{\delta Q_{\rm H}}{d\tau} = \alpha_{\rm H} (T_{\rm c} - T_0) S_{\rm H} , \qquad (8.5)$$

- уравнение скорости изменения температуры стенки двигателя

$$\frac{\mathrm{dT}_{\mathrm{c}}}{\mathrm{d\tau}} = \frac{1}{\mathrm{c} \cdot \mathrm{m}} \left(\frac{\delta \mathrm{Q}_{\mathrm{Bi}}}{\mathrm{d\tau}} - \frac{\delta \mathrm{Q}_{\mathrm{H}}}{\mathrm{d\tau}} \right), \qquad (8.6)$$

где с, m – удельная теплоемкость и масса стенки двигателя; S_в, S_н – площади теплоотдающих поверхностей.

Для расчета коэффициента теплоотдачи α_в между рабочим телом и стенками камеры РПД используется формула Эйхельберга [21].

$$\alpha_{\rm B} = 2,1\sqrt{p\cdot T}\cdot c_{\rm m}^{0,333},$$

где p,T – текущие давление (ат) и температура (К) в камере РПД; с_m – средняя скорость поршня (ротора), с_m = $\omega_p E \sqrt{c^2 + 1}$; ω_p – угловая скорость вращения ротора, $\omega_p = \omega/3$; ω - угловая скорость вращения вала двигателя; c=A/R – параметр формы; А – производящий радиус [22], R=3E – радиус обкатывающейся окружности; E – величина эксцентриситета.

Механическая подсистема включает:

В составе энергетической установки двигатель и непосредственно связанный с ним потребитель мощности – трансмиссия (на-

грузка), образуют механическую вращательную жесткую систему с одной степенью свободы, а следовательно, с одной обобщенной координатой – углом поворота вала φ [22].

При раздельном управлении двигателем и нагрузкой нарушается баланс мощностей, в результате чего появляется дисбаланс моментов M_д и M_н, т.е. обобщенная сила

$$Q_{\phi} = M_{\pi} - M_{H}$$
.

Дифференциальное уравнение движения системы в обобщенных координатах (уравнение Лагранжа) имеет вид

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left(\frac{\partial \mathrm{T_c}}{\partial \dot{\varphi}} \right) - \frac{\partial \mathrm{T_c}}{\partial \varphi} = \mathrm{Q}_{\varphi}, \qquad (*)$$

где $\dot{\phi}$ - обобщенная угловая скорость вала компрессора, $\dot{\phi} = d\phi/d\tau = \omega$; $T_c - \kappa$ инетическая энергия системы, $T_c = J_c \frac{\omega^2}{2}$ ($J_c - момент$ инерции вращающихся масс системы, равный сумме приведенных моментов инерции вращающихся и поступательно движущихся масс двигателя J_{d} и нагрузки J_{H} , т.е. $J_c = J_d + J_H$).

С учетом изложенного выше выражение (*) можно записать так:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left[\frac{\partial}{\partial \omega} \left(J_{\mathrm{c}} \frac{\omega^{2}}{2} \right) \right] - \frac{\partial}{\partial \varphi} \left(J_{\mathrm{c}} \frac{\omega^{2}}{2} \right) = M_{\mathrm{H}} - M_{\mathrm{H}}. \qquad (**)$$

Так как момент инерции J_c не зависит от скорости, то

$$\frac{\partial}{\partial \omega} \left(J_c \frac{\omega^2}{2} \right) = J_c \omega; \quad \frac{d}{d\tau} \left(J_c \omega \right) = \frac{dJ_c}{d\phi} \omega^2 + J_c \frac{d\omega}{d\tau}; \quad \omega d\tau = d\phi$$

Частная производная кинетической энергии системы по углу поворота вала

$$\frac{\partial}{\partial \varphi} \left(J_{c} \frac{\omega^{2}}{2} \right) = \frac{\partial J_{c}}{\partial \varphi} \frac{\omega^{2}}{2} + J_{c} \omega \frac{\partial \omega}{\partial \varphi}.$$

Так как $J_c = f(\phi)$ и $\partial \omega / \partial \phi = 0$ (изменение положения ротора не может вызвать само по себе изменение его скорости), то $\partial J_c / \partial \phi = dJ_c / d\phi$ и

$$\frac{\partial}{\partial \varphi} \left(J_c \frac{\omega^2}{2} \right) = \frac{dJ_c}{d\varphi} \frac{\omega^2}{2}.$$

Подставляя значения производных в уравнение (**), имеем

$$J_{c} \frac{d\omega}{d\tau} + \frac{dJ_{c}}{d\varphi} \frac{\omega^{2}}{2} = M_{\pi} - M_{\kappa}. \qquad (***)$$

Ввиду того, что значение $dJ_c/d\phi$ мало, вторым членом левой части уравнения (***) можно пренебречь.

Тогда получим уравнение динамического равновесии вращающихся масс системы двигатель - нагрузка:

$$J_{c}\frac{d\omega}{d\tau} = M_{\pi} - M_{H}. \qquad (8.7)$$

- кинематическое соотношение

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = \omega \ . \tag{8.8}$$

Уравнения механической подсистемы дополним уравнениями, учитывающими сложный профиль рабочих поверхностей ротора и цилиндра РПД, которые позволяют определить:

-текущий объем камеры РПД

$$W_{i} = W_{hT} \cdot \{0.5 \cdot [1 - \cos(2\psi - \frac{\pi}{3})]\} + W_{\kappa c} , \qquad (8.9)$$

-скорость изменения объема

$$\frac{\mathrm{dW}_{\mathrm{i}}}{\mathrm{d\tau}} = \mathrm{W}_{\mathrm{hT}} \cdot \omega_{\mathrm{p}} \cdot \sin(2\psi - \frac{\pi}{3}) , \qquad (8.10)$$

-площадь теплообмена между рабочим телом и поверхностью камеры

$$S_{B} = 2W_{i}/H + (L_{s} + L_{cp}) \cdot H$$
, (8.11)

где в уравнениях (8.9 - 8.11): W_{hT} – объем рабочей камеры, $W_{hT} = \sqrt{3} \cdot R \cdot H(A + K)$; ψ - угол поворота ротора, $\psi = \phi/3$; ϕ - угол поворота вала; H – высота ротора; $L_s = L_1 - L_2$ - длина дуги эпитрохоиды между вершинами ротора, L_1 , L_2 – неполные эллиптические интегралы [4],

-силы, действующие на каждую грань ротора [23]

$$p_{i\Gamma} = A\sqrt{3} \cdot H \cdot p(i)$$
,

-геометрическую сумму сил давления

$$p_{\Gamma} = A\sqrt{3}H\sqrt{p(1)^{2} + p(2)^{2} + p(3)^{2} - p(1)p(2) - p(1)p(3) - p(2)p(3)}$$
(8.12)

-проекцию сил давления газов на ось у

$$p_{\Gamma y} = [0,5(p_{1\Gamma} + p_{3\Gamma}) - p_{2\Gamma}] \cdot \sin \psi - 0,5\sqrt{3}(p_{3\Gamma} - p_{1\Gamma}) \cdot \cos \psi , \qquad (8.13)$$

-угол образуемый вектором сил от давления газов с осью абсцисс

$$\beta = \arcsin(p_{\Gamma_V}/p_{\Gamma}) , \qquad (8.14)$$

-тангенциальную силу

$$T = p_{\Gamma} \cdot \sin(\beta - 3\psi) , \qquad 8.15)$$

-радиальную силу

$$Z = p_{\Gamma} \cdot \cos(\beta - 3\psi) , \qquad (8.16)$$

-суммарную силу, действующую на эксцентрик

$$Q = \sqrt{T^2 + (Z - C_p)^2} , \qquad (8.17)$$

где C_p – центробежная сила инерции ротора, $C_{_p}$ = $m_{_p}\cdot E\cdot \omega_{_p}^2$, m_p – масса ротора,

-движущий момент

$$M_{\mu} = T \cdot E \quad , \tag{8.18}$$

-момент сопротивления, который задается или определяется в зависимости от вида расчета.

-момент инерции ротора

$$J = m_p A^2 - m_o R^2 / 2 + (m_p - m_o) E^2 + m_M D_M^2 / 8 , \qquad (8.19)$$

где m_м, D_м – масса и диаметр маховика; m_о – масса металла в выемке ротора, где расположено внутреннее зацепление.

На основе предложенной математической модели были построены алгоритм и программа расчета рабочих процессов, протекающих в камерах роторно-поршневого двигателя, реализованная на алгоритмическом языке FORTRAN-77. Результаты численных экспериментов представлены на рис. 8.4 - 8.11. Также представлен ряд результатов по проверке адекватности (см. таблицу 8.1) созданного математического описания, сравнением их с некоторыми данными по испытаниям роторно-поршневого двигателя ККМ-502 (Германия) [4].

Расчеты проводились для установившегося режима при частотах вращения вала 5500 и 3500 об/мин, температуре стенки двигателя

 100° С, температуре на входе равной 20° С, давлениях на входе и выходе двигателя равных 98100 Па, степени сжатия $\varepsilon = 8,6$.

Показатели сгорания в эмпирической методике И.И. Вибе брались как для обыкновенных карбюраторных двигателей.

Таблица 8.1

Характеристика	Расчет	По данным [4]
Эффективная мощность,	42/5500	40/5500
кВт/(об/мин)		
Максимальный крутящий	83/3500	79/3500
момент, (Н·м)/(об/мин)		
Среднее эффективное	1,05	1,00
давление, МПа		
Удельный расход топлива,	300	320-480
г/(кВт·ч)		
Объем камеры, см ³	497	500

Рис. 8.4. Характер изменения давлений в камерах РПД

Рис. 8.5. Характер изменения температур в камерах РПД

Рис. 8.6. Характер изменения объемов камер РПД

тангенциальной силы Т,
 радиальной силы Z

Рис. 8.9. Суммарная сила действующая на эксцентрик

Рис. 8.10. Характер изменения коэффициента теплоотдачи

Рис. 8.11. Характер изменения теплового потока в камере РПД

Результаты расчетов двухсекционного двигателя ВАЗ-415, а также их сравнение с экспериментальными исследованиями приводятся в таблице 8.2 и на рис. 8.12, 8.13.

Таблица 8.2

Характеристики	Двигатель ВАЗ-415	Двигатель ВАЗ-	
	(двухсекционный)	415 (расчет)	
Степень сжатия	9,4	9,4	
Эффективная мощность,	102/6000	104/6000	
кВт/(об/мин)	103/0000		
Максимальный крутя-		188/4500	
щий момент,	186/4500		
Н·м/(об/мин)			
Удельный эффективный	212	303	
расход топлива, г/(кВт·ч)	512		

Рис. 8.12. Зависимость коэффициента наполнения η_v от частоты вращения эксцентрикового вала РПД ВАЗ-415

Рис. 8.13. Определение оптимального угла опережения зажигания РПД ВАЗ-415:

W — текущий объем полости РПД, N_e — эффективная мощность, η_e — эффективный КПД, ϕ_p — угол поворота ротора

Анализ приведенных результатов позволяет сделать вывод о достаточной адекватности разработанной математической модели рабочих процессов, протекающих в различных РПД и о возможности использования ее в различных расчетах, как при исследовании установившихся, так и неустановившихся режимов, а также проектировочных.
Глава 9

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОМЕХАНИ-ЧЕСКИХ ПРОЦЕССОВ ПАРОЖИДКОСТНОГО ДВИГАТЕЛЯ ВНЕШНЕГО СГОРАНИЯ

Основным преимуществом двигателя внешнего сгорания перед двигателем внутреннего сгорания является его большая экологичность. В двигателях внутреннего сгорания используется в основном жидкое топливо - бензин, спирт, керосин, дизельное топливо, нефть. Использование в двигателях внутреннего сгорания твердого топлива, вводимого в рабочее пространство в виде пыли, не дает пока удовлетворительных результатов. Основными компонентами, выбрасываемыми в атмосферу при сжигании различных видов топлива являются диоксид углерода (СО₂) и водяной пар. Но в атмосферу выбрасываются и другие вредные вещества - продукты неполного сгорания топлива - окись углерода, сажа, углеводороды (том числе канцерогенный бензоперен), несгоревшие частицы твердого топлива, зола, оксиды серы, азота, свинца и т.д.

Ниже представлена математическая модель парожидкостного двигателя, который является двигателем внешнего сгорания. Последний позволяет использовать в качестве топлива практически любой вид топлива (жидкое, газообразное, твердое в том числе и древесину). Так как парожидкостной двигатель является двигателем внешнего сгорания, то такие технические затруднения, как удаление золы из двигателя исключаются.

Возможность применения в качестве твердого топлива древесины позволяет исключить также вредные выбросы в атмосферу, так как при ее сжигании выделяются в основном водяные пары и окись углерода, которые приносят меньше вреда окружающей среде и человеку, по сравнению с отработавшими газами из двигателя внутреннего сгорания.

При построении математической модели объект и процессы в нем упрощаются, схематизируются, создается расчетная схема, которая в зависимости от сложности описывается с помощью соответствующего математического аппарата. Естественно, что в математической модели должны быть учтены все наиболее существенные факторы, влияющие на процессы в объекте. В связи с этим предлагается использовать методологию и аппарат термодинамики открытых систем (термодинамику тела переменной массы) [41, 67, 88] для описания функционирования двигателя внешнего сгорания в динамическом режиме, с последующим построением алгоритма и программы расчета, а также проведением численных экспериментов. Последнее позволит сравнительно быстро получить сведения об оптимальных соотношениях конструктивных параметров двигателя и выработать рекомендации по эксплутационным режимам, так как математическое моделирование гораздо дешевле физического моделирования в стоимостном и временном выражении, хотя требует значительных интеллектуальных затрат.

Математическая модель, описывающая процессы в парожидкостном двигателе внешнего сгорания (рис.9.1), будет состоять из трех подсистем уравнений.

1 - рабочая полость; 2 - поршень; 3 - выпускной клапан;

4 - впускной клапан; 5 - кривошипно-шатунный механизм.

1. Подсистема уравнений, описывающая изменение состояния рабочего тела в цилиндре двигателя будет включать:

- уравнение скорости изменения температуры парожидкости

$$\frac{dT}{d\tau} = \frac{G_{1}h_{1} - G_{2}h_{2} + \alpha F_{BH}(T_{c} - T)}{V'\left[\left(\frac{\rho'u' - \rho''u''}{\rho'' - \rho'}\right)\frac{d\rho'}{dT} + u'\frac{d\rho'}{dT} + \rho'\frac{du'}{dT}\right]} + \frac{\frac{\rho'u' - \rho''u''}{\rho'' - \rho'}(G_{1} - G_{2}) - \frac{dW}{d\tau}\left[p + \frac{\rho'\rho''(u' - u'')}{\rho'' - \rho'}\right]}{V'\left[\left(\frac{\rho'u' - \rho''u''}{\rho'' - \rho'}\right)\frac{d\rho'}{dT} + u''\frac{d\rho''}{dT} + \rho''\frac{du''}{dT}\right]}, (9.1)$$

- уравнение скорости изменения плотности парожидкости

$$\frac{d\rho}{d\tau} = \frac{1}{W} \cdot \left[G_1 - G_2 - \rho \cdot \frac{dW}{d\tau} \right], \qquad (9.2)$$

- уравнение кривой насыщения [100]

$$\mathbf{p}_{\mathrm{H}} = \mathbf{f}(\mathrm{T}) \ . \tag{9.3}$$

2. Подсистема уравнений, описывающих теплообмен будет включать:

- уравнение изменения температуры стенки двигателя

$$\frac{\mathrm{dT}_{\mathrm{cT}}}{\mathrm{d\tau}} = \frac{1}{\mathrm{c} \cdot \mathrm{M}} \left(\mathrm{Q}_{\mathrm{BH}} - \mathrm{Q}_{\mathrm{Hap}} \right) \,, \tag{9.4}$$

где с - удельная теплоемкость материала стенок двигателя; Q_{вн}, Q_{нар}тепловые потоки определяемые по уравнению Ньютона-Рихмана.

3. Подсистема уравнений, описывающая кинематику подвижных звеньев двигателя будет включать:

- уравнение углового ускорения

$$\frac{d\omega}{d\tau} = \frac{1}{J} \left[M_{\pi} - M_{c} \right] , \qquad (9.5)$$

где M_c - нагрузка на валу (момент сопротивления); M_д - движущий момент; J - переменный момент инерции движущихся масс.

- кинематическое соотношение

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = \omega \quad , \tag{9.6}$$

где ф - угол поворота вала.

В подсистему уравнений, описывающих кинематику подвижных звеньев двигателя, необходимо добавить следующие уравнения:

- уравнение перемещения поршня

$$X = r \cdot [1 - \cos \varphi + (\lambda/2) \cdot \sin \varphi], \qquad (9.7)$$

где r - длина кривошипа; ю - угловая скорость.

- уравнение скорости движения поршня

$$V = \frac{dX}{d\tau} = r \cdot \omega \cdot \left[\sin \varphi + \frac{\lambda}{2} \sin(2\varphi) \right].$$
(9.8)

- уравнение для расчета текущего объема цилиндра двигателя

$$W = W_0 + (W_h/2) \cdot \left(1 - \cos\varphi + (\lambda/2) \cdot \sin^2\varphi\right), \qquad (9.9)$$

где $W_h = S_{\pi} \cdot 2r$; $\lambda = r/L$; W_0 - объем цилиндра при положении поршня в ВМТ; L – длина шатуна.

- уравнение изменения объема цилиндра двигателя

$$\frac{\mathrm{dW}}{\mathrm{d\tau}} = \frac{\mathrm{W}_{\mathrm{h}}}{2} \cdot \omega \left[\sin \varphi + \frac{\lambda}{2} \sin(2\varphi) \right], \qquad (9.10)$$

- уравнение для расчета теплоотдающей площади внутренней поверхности цилиндра

$$F_{\rm BH} = \left[\frac{4W_0}{S_{\rm m}} + X\right] \pi \cdot D + \frac{\pi D^2}{2} , \qquad (9.11)$$

- уравнение момента инерции движущихся масс

$$J = \frac{M_{M} \cdot D_{M}}{8} + \frac{M_{III} \cdot V_{III}^{2} + \frac{M_{III} \cdot L^{2}}{12} \cdot \omega_{III} + M_{III} \cdot V^{2}}{\omega^{2}} , \qquad (9.12)$$

где $\omega_{\rm m}$ - угловая скорость шатуна; $M_{\rm m}$ - масса шатуна; $M_{\rm m}$ - масса маховика; $M_{\rm n}$ - масса поршня; $D_{\rm m}$ - диаметр маховика; $V_{\rm m}$ - линейная скорость шатуна.

- уравнение движущего момента

$$M_{\pi} = \frac{S_{\pi} \cdot (p - p_{oc}) \cdot r \cdot \sin(\varphi + \arcsin(\lambda \cdot \sin \varphi))}{\cos \cdot [\arcsin(\lambda \cdot \sin \varphi)]} , \qquad (9.13)$$

где р_{ос} - давление окружающей среды.

- уравнение момента сопротивления

$$M_{c} = f(R_{B}, R_{TP}), \qquad (9.14)$$

где R_в, R_{тр} - соответственно внешняя нагрузка на двигатель и сопротивление трения.

В предлагаемой математической модели для расчета индикаторной мощности (N_i) парожидкостного двигателя была использована следующая зависимость

$$N_i = M_{\pi} \cdot \omega \quad . \tag{9.15}$$

Система уравнений (9.1-9.15) с уравнениями расхода парожидкости [12] является замкнутой, позволяющей в различные моменты времени определить текущие и интегральные характеристики парожидкостного двигателя. На основе представленной математической модели был разработан алгоритм расчета процессов двигателя и проведены численные эксперименты (прил. 6). В результате было выявлено влияние ряда конструктивных и эксплуатационных параметров на выходные характеристики парожидкостного двигателя. Результаты, характеризующие возможности построенной математической модели, представлены на рис. 9.2 – 9.5.

Рис. 9.2. Характер изменения давления в цилиндре двигателя p = f(S)

1-2 - впуск рабочего тела из парогенератора; 2-3 - расширение пара (рабочий ход); 3-1 - выхлоп и выпуск отработавшего пара.

Рис. 9.3. Характер изменения температуры и давления в цилиндре двигателя T, $p = f(\tau)$

Рис. 9.4. Характер изменения степени сухости пара в цилиндре двигателя $x = f(\tau)$

Рис. 9.5. Характер изменения движущего момента $M_{\mu} = f(\tau)$

В качестве рабочего тела использовалась вода и водяной пар, хотя более перспективными являются легкокипящие жидкости, широко используемые в настоящее время в холодильной технике.

Глава 10

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАБОЧИХ ПРО-ЦЕССОВ В ПОРШНЕВЫХ ДЕТАНДЕРАХ

Воздушная детандерная холодильная машина представляет собой комбинацию компрессора, расширительной машины, теплообменников, холодильной камеры и системы управления. В качестве компрессоров и расширительных машин можно применять осевые, центробежные, винтовые, поршневые и другие компрессорные и детандерные агрегаты.

Основные области применения воздушных холодильных машин: климатические испытания двигателей, машин, приборов; низкотемпературное замораживание пищевых продуктов; в медицинской практике (замораживание биотканей); замораживание горных пород при проходке шахтных стволов; кондиционирование салонов самолетов при стоянке в аэропорту; кондиционирование горячих цехов, забоев шахт, машинных залов, специальных производственных зданий; в ряде технологических процессов и т. д. [109].

Поршневые детандеры применяются в холодильных и криогенных установках для предварительного и окончательного охлаждения рабочего тела.

Принцип работы поршневого детандера, заключающийся в преобразовании внутренней энергии потока рабочего тела в работу, сопровождающимся понижением температуры, был предложен для получения холода еще в XIX в. Сименсом и Сольвеем. Дальнейшее развитие поршневые детандеры получили в работах Клода, Гейланда, Коллинза, Капицы.

Преимущества поршневых детандеров проявляются в широком диапазоне начальных температур при малых объемных расходах рабочего тела и относительно высоких начальных давлениях. Поршневой детандер прост в эксплуатации, хорошо регулируется. В области малых расходов при прочих равных условиях он имеет КПД более высокий, чем турбодетандер [90].

Недостатками поршневых детандеров являются: меньшая надежность и ресурс, худшие массогабаритные показатели на единицу про-изводительности.

Несмотря на связанную с этим тенденцию перехода от поршневых детандеров к турбодетандерам, даже в установках с высокими и средними давлениями рабочего тела имеется много случаев, когда поршневые машины останутся вне конкуренции из-за более высоких КПД.

Преимущество в КПД проявляется у машин малых размеров, при этом КПД поршневых детандеров слабо зависит от их размера, в то время как КПД турбодетандеров существенно падает при уменьшении размеров проточной части [52].

Клапаны детандеров – принудительного действия от специального газораспределительного механизма.

Диаграмма p-V, изображенная на рис. 10.1, соответствует детандеру, работающему в идеальных условиях, при которых гидравлическое сопротивление клапанов, утечки в клапанах и уплотнениях отсутствуют, а процессы расширения и сжатия изоэнтропные.

Рис. 10.1. Идеальная индикаторная диаграмма поршневого детандера

1-2 – наполнение; процесс протекает при открытом впускном клапане и постоянном давлении в цилиндре; в точке 2 клапан закрывается; 2-3 - расширение; при постоянном количестве рабочего тела объем его увеличивается, а температура падает; в конце расширения давление выше, чем конечное давление \mathbf{p}_{κ} - \mathbf{p}_4 ; это позволяет за счет некоторых потерь в работе сократить ход поршня, а значит габариты

машины; **3-4** – выхлоп; при открытом выпускном клапане газ выходит в выпускной патрубок, количество его в цилиндре уменьшается, а давление падает до \mathbf{p}_{κ} ; **4-5** – выталкивание; при обратном ходе поршня оставшийся в цилиндре газ выталкивается в трубопровод, где смешивается с газом, вышедшим в процессе выхлопа; в точке **5** выталкивание заканчивается, и выпускной клапан закрывается; **5-6** – обратное поджатие; оставшийся газ поджимается при дальнейшем движении поршня; процесс обратного поджатия необходим для уменьшения перепада давлений на впускном клапане в момент его открытия; конечное давление **p**₆ подлежит оптимизации, так как при поджатии растет температура газа; **6-1** – впуск; открывается впускной клапан; оставшийся во вредном пространстве при давлении **p**₆ газ поджимается до давления **p**_н; общая температура газа увеличивается.

В действительности протекание процессов в детандере существенно меняется из-за ряда потерь: на трение между поршнем и цилиндром и от теплопритоков извне; от дроссельных потерь на впускном и выпускном клапанах; от регенеративного теплообмена (на некотором участке пути поршня газ отдает теплоту стенкам цилиндра, а на другом - получает ее от стенок); от смешения потоков с разными температурами при выпуске и впуске; от утечек через различные неплотности.

В зависимости от типа детандера, рабочего тела и температурного уровня процесса расширения существенное влияние оказывает тот или иной вид потерь.

В некоторых конструкциях поршневых детандеров удается избавиться от потерь из-за утечек через неплотности. В детандерах на гелиевом и водородном уровнях, а также в микродетандерах наиболее существенны потери на трение между поршнем и цилиндром, а также от теплопритоков извне. В ряде конструкций (бесклапанные детандеры) отсутствуют потери от смешения при выпуске.

Получение максимальных КПД детандеров связано также с выбором оптимальных относительных величин, отражающих основные геометрические характеристики машины [2, 79].

Отношение $V_c/V_h = \alpha$ называется относительной величиной вредного пространства; отношение $V_2/(V_h + V_c) = \delta_2$ - степенью наполнения; отношение $(V_2 - V_c)/(V_h + V_c) = \varepsilon_2$ - степенью отсечки впуска.

191

$$\delta_2 = \varepsilon_2 + \alpha / (1 + \alpha) \, .$$

Потери во впускном клапане приводят к появлению разницы в давлениях p_1 и $p_{\rm H}$, учитываемой коэффициентом сопротивления в клапане ψ_1 ,

$$p_1 = (1 - \psi_1)p_H$$
.

Аналогично давление p_4 отличается от конечного p_{κ} , что учитывается коэффициентом ψ_2 ,

$$p_4 = p_{\kappa} / (1 - \psi_2).$$

Характерной расчетной величиной для детандеров служит отношение давлений р₄/p₃.

Значения приведенных выше показателей, отвечающих максимальному КПД машины для детандеров воздухоразделительных установок высокого ($p_{\rm H}$ =16÷20 МПа) и среднего ($p_{\rm H}$ =1,5÷7 МПа) давлений, приведены в табл. 10.1 [90].

Таблица 10.1

Тип де-	Относительные характеристики						
тандера	α	δ2	ε2	ψ_1	Ψ_2	p_4 / p_3	
Высокого	0,04-	0,25-	0,212-	0,10-	0,04-	0,4-	
давления	0,06	0,35	0,293	0,15	0,08	0,5	
Среднего	0,05-	0,34-	0,292-	0,10-	0,04-	0,5-	
давления	0,08	0,53	0,456	0,15	0,08	0,6	

Адиабатный КПД определяется как отношение работы полученной в детандере к максимально возможной. Различают адиабатный η_{ad} и изотермический η_{u3} КПД. Формулы для их определения соответственно имеют вид [79]:

$$\eta_{a,\Pi} = \frac{h_1 - h_2}{\frac{k}{k - 1} RT_1 \left[1 - \left(\frac{p_2}{p_1}\right)^{\frac{k - 1}{k}} \right]}, \qquad \eta_{H3} = \frac{h_1 - h_2}{RT \ln \frac{p_1}{p_2}},$$

где T₁, p₁ – температура и давление на входе в детандер; p₂ – давление на выходе детандера; (h₁-h₂) – разность начальной и действительной в конце расширения удельных энтальпий.

Если при работе детандера свойства рабочего тела близки к идеальному газу, то выражения КПД упрощаются и принимают вид:

$$\eta_{a\underline{A}} = \frac{1 - \frac{T_2}{T_1}}{1 - \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}}}, \qquad \eta_{\underline{H3}} = \frac{1 - \frac{T_2}{T_1}}{\frac{k-1}{k} \ln \frac{p_1}{p_2}},$$

где T₂ – действительная температура на выходе из детандера, которую можно определить как среднюю при выпуске имея экспериментальную или расчетную индикаторную диаграмму.

Адиабатные КПД современных поршневых детандеров гелиевых рефрижераторов и ожижителей находятся в пределах 0,75 - 0,85, воздушных и азотных в пределах 0,70 - 0,85.

В данной работе на основе методологии термодинамики открытых систем разработан алгоритм и программа расчета рабочего процесса в поршневом детандере (прил. 7). Рассчитывался детандер среднего давления. На рис. 10.2 представлена индикаторная диаграмма поршневого детандера полученная расчетным путем.

$$F = \left| p_{BX} - p(1) \right| / p_{BX} + \frac{T_{BX}}{T_{BX} - T(3)} + \frac{1}{\lambda}, \qquad (10.1)$$

где p_{BX} , T_{BX} – давление и температура рабочего тела на входе в детандер; p(1) – давление рабочего тела в начале впуска; T(3) - температура рабочего тела в конце расширения; λ - коэффициент наполнения.

Первое слагаемое уравнения (10.1) характеризует относительный перепад давления на впускном клапане в момент его открытия, второе слагаемое – температуру рабочего тела в конце расширения, третье – наполнение цилиндра.

Рис. 10.2. Индикаторная диаграмма поршневого детандера

В ходе численных экспериментов, для определения ряда параметров, минимизировалась функция качества (10.1).

Анализ результатов расчетов, которые представлены в таблицах 21, 22, позволяет сделать следующие выводы:

- Оптимальный угол закрытия впускного клапана для рассчитываемого детандера (p_{вх} = 2МПа, T_{вх} = 293К, p_{вых} = 0,1МПа) составляет 5,283 рад, который отсчитывается от ВМТ. Причем этот результат не меняется при изменении степени наполнения δ₂ (табл. 10.2). Величина адиабатного КПД в данном случае равна 0,744.
- Варьирование δ₂ при φ^{опт} = 5,283 рад позволяет получить оптимальное значение степени наполнения δ₂ = 0,39 0,44, которое отвечает максимальному КПД детандера. Результаты расчетов δ₂ (табл. 10.3) хорошо согласуются с данными по степени наполнения, приведенными в таблице 10.1.

Таким образом, в результате работы расчетным путем оптимизировано конечное давление в конце поджатия и степень наполнения цилиндра детандера среднего давления. Следует также отметить, что на других режимах эксплуатации с ростом разницы давлений $p_{\text{вх}} - p_{\text{вых}}$ угол $\phi^{\text{опт}}$, соответствующий окончанию выпуска уменьшается. При этом $\delta_2^{\text{опт}}$ растет.

Таблица 10.2

$\delta_2 =$	0,34	$\delta_2 = 0,53$		
φ	F	φ	F	
5,083	6,80	5,083	7,49	
5,183	6,47	5,183	7,06	
<u>5,283</u>	<u>6,39</u>	<u>5,283</u>	<u>6,68</u>	
5,483	6,62	5,483	6,92	
5,683	6,80	5,683	7,24	

Таблица 10.3

$\phi^{\text{опт}} = 5,283$ рад

δ_2	0,24	0,34	<u>0,39</u>	<u>0,44</u>	0,53	0,63
F	7,52	6,39	<u>6,21</u>	<u>6,18</u>	6,68	7,91

Глава 11

ТЕРМОПРИРОДНЫЕ ДВИГАТЕЛИ

11.1. История создания

Вопреки имеющимся категорическим утверждениям о неудаче всех попыток сконструировать термоприродный двигатель, удалось обнаружить существование нескольких удачных конструкций термоприродного двигателя [68]. Хотя при создании этих конструкций не имелось в виду решение проблемы освоения термоприродной энергии, но, тем не менее в каждой из них практически осуществлена трансформация термоприродной энергии в механическую работу.

Исторически первой удачной конструкцией термоприродного двигателя является, по видимому, пароэфирный двигатель воплощенный в очень давней детской игрушке - «Утке Хоттабыча» (рис.11.1) [9, 106, 123, 124, 128, 130, 131, 133].

Рис. 11.1. «Утка Хоттабыча»

Помимо стойки и стакана воды, конструкция двигателя включает в себя только запаянный, качающийся стеклянный корпус, состоящий из нижней и верхней колбочек и гидроподъёмной трубки. Внутренняя полость заполнена легкокипящей жидкостью диэтиловым эфиром (H_5C_2 -O- C_2H_5) или дихлорметаном (CH_2 - Cl_2 , R-30) так, чтобы при горизонтальном положении её уровень был примерно на середине трубки.

Чтобы пустить утку в ход, нужно окунуть её клюв в воду. Тогда вата, закрепленная на головке, увлажняется и вследствие испарения воды головка несколько охлаждается. Это приводит к некоторому понижению давления пара внутри утки и понижению температуры эфира [9].

«Утка Хоттабыча» является периодически действующим тепловым двигателем основное действие которого заключается в двух энергетических операциях - поднятии груза (столбика жидкости в гидроподъемной трубке) и охлаждении теплоисточника - воздуха.

Поднятие столбика жидкости на некоторую высоту, т.е. генерация потенциальной механической энергии, вызывается разностью давлений на границах столбика. В отличие от обычных поршневых двигателей, здесь разница давлений создается разностью давлений пара в нижней и верхней колбочках. Указанная разница давлений достигается понижением давления насыщенного пара в верхней колбочке в результате конденсации пара при его охлаждении посредством испарения слоя воды на наружной поверхности верхней колбочки.

Наклонение корпуса «Утки» в почти горизонтальное положение происходит в результате перемещения центра тяжести корпуса влево от вертикали вследствие перемещения значительной части жидкости из нижней колбочки в верхнюю часть слегка наклоненной в начале гидроподьемной трубки.

В крайнем наклоненном положении корпуса «Утки» паровые пространства головки и туловища сообщаются через трубку и давление в них становится одинаковым.

При этом благодаря не вполне горизонтальному положению гидроподъемной трубки жидкость из верхней части трубки перетекает в нижнюю колбочку, что вызывает перемещение центра массы корпуса вправо и возвращение его в исходное положение, показанное

на рисунке штриховыми линиями и перекрывает сообщение между паровыми пространствами головки и туловища.

Жидкость в туловище подогревается до температуры окружающей среды, частично испаряется и образовавшийся пар выталкивает большую часть жидкости через трубку в головку, которая перевешивает, и утка снова опускает клюв в воду. Обе полости снова сообщаются, давление выравнивается, и жидкость опять стекает в туловище. Процесс повторяется и может продолжаться до тех пор, пока в стаканчике, откуда утка пьет, будет вода [9].

Температура, и давление в окружающей среде - воздухе не имеют никаких перепадов, которыми можно было бы воспользоваться. Вода, которую «пьет» утка, тоже имеет ту же температуру, что и воздух. Однако существует перепад, за счет которого утка и работает.

Этот перепад связан с разницей давлений водяного пара над поверхностью воды и в воздухе. Так как воздух обычно не насыщен водяным паром (относительная влажность $\varphi < 100$ %), то на поверхности воды все время происходит ее испарение с соответствующим понижением температуры. В сосуде это не чувствуется - воды много, а поверхность испарения мала, Но вата на головке утки - другое дело: ее поверхность велика, а воды в ней немного. Поэтому она охлаждена всегда; ее температура ниже температуры окружающей среды. Эта разность температур и обеспечивает работу «утки Хоттабыча». Но она вторична и возникает как следствие разной упругости пара в окружающей среде (воздухе) и над поверхностью воды. Если накрыть утку колпаком, то воздух под ним быстро насытится влагой, испарение ее с головки прекратится и «извлечение тепла из окружающей среды» на этом закончится [9].

Работа поднятия столбика жидкости в гидроподъемной трубке является результатом работы силы давления пара на свободную поверхность жидкости в нижней колбочке. Это действие вызывает понижение давления и кипение жидкости, что сопровождается понижением температуры жидкости в нижней колбочке. Вследствие нарушения первоначально имевшегося термического равновесия, создается перепад температуры между атмосферой и жидкостью в нижней колбочке и возникает поток теплоты из атмосферы в жидкость, обеспечивающий испарение пара и изменение давления.

Регулярная повторяемость рабочих актов двигателя «Хоттабыча» означает, что количество жидкости, превращаемой в пар при испарении, в результате теплоотдачи между воздухом и стенкой нижней колбочки, равно количеству пара, переходящего в жидкость при конденсации в верхней колбочке вследствие охлаждения пара посредством испарения воды с поверхности головки «Утки».

Удачная конструкция термоприродного двигателя была выполнена в 1974 году советским изобретателем П.А. Радченко, при создании им водоподъемной установки для индивидуальных садов и огородов, названной им «Насос, работающий сам по себе».

Парофреоновый двигатель Радченко, являющийся главной частью его установки, представляет собою видоизмененную паровую машину Папена, в которой вода заменена легкокипящей жидкостью. Названием «Работающий сам по себе» автор подчеркнул отсутствие в установке какого-либо стороннего подвода энергии, кроме теплоты окружающей среды.

Насос Радченко действует непрерывно как днем, когда температура воздуха может превышать температуру воды, вытекающей из оросителя, так и ночью, когда указанная разность температур может отсутствовать или иметь обратный знак.

В двигателе Радченко использованы те же явления, что и в двигателе «Хоттабыча» – кипение и испарение.

Схема конструкции установки, представленная на рис. 11.2, несколько отличается от реальной конструкции Радченко: моторная полость цилиндра отделена от компрессорной полости не стенкой упруго-пластичного баллона, как у Радченко, а поршнем. Такое изменение конструкции не отражается на принципе действия двигателя, но придает двигателю обычную конструктивную форму.

Гофрированная ёмкость двигателя, так же как цилиндр в машине Папена, поочередно выполняет функции парогенератора (котла) и конденсатора.

Под действием теплоотдачи между стенкой котла и окружающим воздухом происходит превращение кипящей жидкости 2 в пар с созданием давления, соответствующего температуре воздуха. При открытии пускового крана 7 пар поступает в моторную полость 5 цилиндра 4 и перемещает поршень. В результате вытеснения воздуха из компрессорной полости 6 цилиндра срабатывает эрлифт и подается очередная порция воды в ороситель 3. Орошение водой поверхности гофрированной ёмкости 1 превращает последнюю в конденсатор и сопровождается понижением давления пара, как в ёмкости, так и в моторной полости цилиндра. При достаточно медленном движении поршня, во второй половине его обратного хода, эффект испарения с поверхности конденсатора заканчивается, и вступает в действие теплообмен между стенкой гофрированной ёмкости с воздухом.

В конце обратного хода поршня нарастающее давление в моторной полости цилиндра достигает первоначального значения. Этим завершается рабочий акт двигателя.

Разность между работой на этапе прямого хода поршня и работой на этапе обратного хода определяет положительную работу двигателя за один акт энерготрансформации. Усилие и мощность, развиваемые двигателем, зависят от эффективности испарения и от свойств рабочего тела. Кривая давления сжатия будет тем ниже кривой давления расширения, чем меньше теплота парообразования рабочего тела и чем сильнее происходит понижение давления насыщения с понижением температуры насыщения.

Рис. 11.2. «Насос, работающий сам по себе»

На рис. 11.3 изображена принципиальная схема работы насоса Петра Антоновича Радченко.

Рис. 11.3. Принципиальная схема работы насоса П.А. Радченко

Следующей удачной конструкцией термоприродного двигателя является парофреоновый двигатель (рис. 11.4), созданный в 1975 году американским изобретателем Уоллесом Минто.

В этом двигателе полностью использован принцип действия, заложенный в двигателе «Хоттабыча», но при этом внесены радикальные изменения в конструкцию последнего.

Рис. 11.4. Чудо-колесо Уоллеса Минто

Помимо увеличения длины гидроподъёмных каналов 3 до 12 метров, Минто преобразовал качательное движение корпуса двигателя в непрерывное вращательное движение (рис. 11.5), для чего потребовалось:

- верхнюю ёмкость 2 сделать отображением нижней емкости 1;

- корпус двигателя превратить в колесо («Колесо Минто»);

- число ёмкостей довести до двенадцати, разместив их на ободе колеса (для упрощения чертежа на рисунке изображено только четыре ёмкости);

- смачивание наружных испарительных поверхностей производить особым, пульсирующим оросителем 4 из резервуара 5.

Основное действие двигателя заключается в двух энергетических, операциях - поднятии столба кипящей жидкости в гидроподъёмных каналах и привлечении теплоты из атмосферы в ёмкости для осуществления парогенерации.

Рис. 11.5. «Колесо Минто»

Работа двигателя обеспечивается понижением давления пара в верхней ёмкости при его конденсации, что начинается сразу же после орошения водой поверхности верхней ёмкости и следующего за этим испарения. Потенциальная энергия поднятой кипящей жидкости в дальнейшем трансформируется в энергию вращающегося колеса.

Мощность, развиваемая двигателем Минто, может достигать нескольких лошадиных сил [68].

11.2. Математическое моделирование работы термоприродного двигателя - «Утки Хоттабыча»

Покажем возможности методологии термодинамики открытых систем [41, 67] при математическом моделировании работы устройства, расчётная схема которого изображена на рис. 11.6.

Допущения:

- коэффициенты теплоотдачи принимаем средними по соответствующим поверхностям;

- площадь поверхности испарения постоянна;

- температура жидкости и поверхности испарения одинаковы (слой ткани, смоченный жидкостью (водой) имеет малую толщину);

- температура жидкости равна температуре стеклянной поверхности головки в зоне испарения;

- термическим сопротивлением стеклянной стенки, ввиду её малой толщины, пренебрегаем;

- в момент смачивания носовой части устройства водой, происходит выравнивание давлений в полостях и вся жидкость перемещается в нижнюю сферу;

- полости 1 и 2 разделены уровнем жидкости в нижней сфере;

- жидкость (диэтиловый эфир) внутри устройства находится в насыщенном состоянии.

Для полости 1:

- уравнение изменения плотности паровой фазы

$$\frac{d\rho_{1}}{d\tau} = \frac{1}{V_{\pi 1}} \left(G_{\pi - \pi 1} - \rho_{1} \frac{dV_{\pi 1}}{d\tau} \right),$$
(11.1)

- уравнение изменения температуры паровой фазы

$$\frac{dT_{1}}{d\tau} = \frac{1}{C_{v}\rho_{1}V_{\pi 1}} \left[\Pi G_{\pi-\pi 1} + \frac{\delta Q_{\pi 1}}{d\tau} - \left(p_{1} - \frac{\rho_{1}^{2}RT_{1}^{2}}{1 + b\rho_{1}} \frac{da(T_{1})}{dT} \right) \frac{dV_{\pi 1}}{d\tau} \right], \quad (11.2)$$

- уравнение состояния Редлиха – Квонга

$$p_1 = \rho_1 R T_1 \left[\frac{1}{1 - b\rho_1} - \frac{\rho_1 a(T_1)}{1 + b\rho_1} \right], \qquad (11.3)$$

- уравнение изменения массы жидкой фазы

$$\frac{dm'_{1}}{d\tau} = -G_{\pi-\pi 1} + \frac{\pi d_{Tp}^{2}}{4} \frac{d(l_{\pi}\rho')}{d\tau} , \qquad (11.4)$$

- уравнение скорости изменения объёма паровой фазы

$$\frac{dV_{\pi 1}}{d\tau} = -\frac{dV_1'}{d\tau} = \left[\frac{\cos\alpha}{\sin^2\alpha} \left(h - \frac{d_H}{2}\right)\frac{d\alpha}{d\tau} - \frac{1}{\sin\alpha}\frac{dh}{d\tau} - \frac{dl_{\pi}}{d\tau}\right]\frac{\pi d_{\tau p}^2}{4}.$$
 (11.5)

Для полости 2:

- уравнение изменения плотности паровой фазы

$$\frac{d\rho_2}{d\tau} = \frac{1}{V_{\pi 2}} \left(G_{\pi - \pi 2} - \rho_2 \frac{dV_{\pi 2}}{d\tau} \right),$$
(11.6)

- уравнение изменения температуры паровой фазы

$$\frac{dT_2}{d\tau} = \frac{1}{C_v \rho_2 V_{\Pi 2}} \left[\Pi G_{\pi - \Pi 2} + \frac{\delta Q_{\Pi 2}}{d\tau} - \left(p_2 - \frac{\rho_2^2 R T_2^2}{1 + b\rho_2} \frac{da(T_2)}{dT} \right) \frac{dV_{\Pi 2}}{d\tau} \right], \quad (11.7)$$

- уравнение состояния

$$p_2 = \rho_2 R T_2 \left[\frac{1}{1 - b\rho_2} - \frac{\rho_2 a(T_2)}{1 + b\rho_2} \right], \qquad (11.8)$$

- уравнение изменения массы жидкой фазы

$$\frac{dm'_2}{d\tau} = -G_{\kappa-\pi 2} - \frac{\pi d_{Tp}^2}{4} \frac{d(l_{\kappa}\rho')}{d\tau}, \qquad (11.9)$$

Рис. 11.6. Расчётная схема устройства

- уравнение скорости изменения объёма паровой фазы

$$\frac{dV_{\Pi 2}}{d\tau} = -\frac{dV_{2}'}{d\tau} = -\frac{dV_{\pi}}{d\tau} - \left[\frac{\cos\alpha}{\sin^{2}\alpha}\left(h - \frac{d_{H}}{2}\right)\frac{d\alpha}{d\tau} - \frac{1}{\sin\alpha}\frac{dh}{d\tau}\right]\frac{\pi d_{Tp}^{2}}{4}, \quad (11.10)$$
$$\frac{dV_{\pi}}{d\tau} = \pi h\frac{dh}{d\tau}(d_{H} - h),$$

- уравнение изменения массы жидкости всей системы

$$\frac{dm'}{d\tau} = \frac{dm'_1}{d\tau} + \frac{dm'_2}{d\tau} = -G_{\pi-\pi 1} - G_{\pi-\pi 2}, \qquad (11.11)$$

- уравнение скорости изменения температуры жидкости

$$\frac{dT'}{d\tau} = \frac{1}{C'_{v}m'} \left[-\Pi_{\kappa 1}G_{\kappa-\pi 1} - \Pi_{\kappa 2}G_{\kappa-\pi 2} + \frac{\delta Q_{\kappa}}{d\tau} - p'\frac{dV'}{d\tau} \right], \quad (11.12)$$

- уравнение изменения объёма жидкости

$$\frac{dV'}{d\tau} = \frac{1}{\rho'} \frac{dm'}{d\tau} - \frac{V'}{\rho'} \frac{d\rho'}{d\tau} = \frac{1}{\rho'} (-G_{\kappa-\pi 1} - G_{\kappa-\pi 2}) - \frac{V'}{\rho'} \frac{d\rho'}{d\tau'} \frac{dT'}{d\tau}, \quad (11.13)$$

при допущении, что $\frac{d\rho'}{dT'}$ меняется весьма незначительно получаем уравнение

$$\frac{dV'}{d\tau} = \frac{1}{\rho'} \left(-G_{\kappa-\pi 1} - G_{\kappa-\pi 2} \right), \qquad (11.13a)$$

после подстановки которого в уравнение (11.12) получаем уравнение скорости изменения температуры жидкости в виде

$$\frac{dT'}{d\tau} = \frac{1}{C'_{v}m'} \left[-G_{w-\pi l} \left(\Pi_{w l} - \frac{p'}{\rho'} \right) - G_{w-\pi 2} \left(\Pi_{w 2} - \frac{p'}{\rho'} \right) + \frac{\delta Q_{w}}{d\tau} \right], \quad (11.12a)$$

- уравнение кривой насыщения Гарлахера

$$\ln p' = A + \frac{B}{T'} + C \ln T' + \frac{D p'}{{T'}^2}, \qquad (11.14)$$

- уравнение изменения температуры стенки полости 1

$$\frac{\mathrm{dT}_{\mathrm{c1}}}{\mathrm{d\tau}} = \frac{1}{\mathrm{C}_{\mathrm{M}}\mathrm{m}_{\mathrm{M}\mathrm{l}}} \left(\frac{\delta \mathrm{Q}_{\mathrm{H}\mathrm{l}}}{\mathrm{d\tau}} - \frac{\delta \mathrm{Q}_{\mathrm{\Pi}\mathrm{l}}}{\mathrm{d\tau}} \right), \qquad (11.15)$$

- уравнение изменения температуры стенки полости 2

$$\frac{\mathrm{dT}_{\mathrm{c2}}}{\mathrm{d\tau}} = \frac{1}{\mathrm{C}_{\mathrm{M}}\mathrm{m}_{\mathrm{M2}}} \left(\frac{\delta \mathrm{Q}_{\mathrm{H2}}}{\mathrm{d\tau}} - \frac{\delta \mathrm{Q}_{\mathrm{\pi}}}{\mathrm{d\tau}} - \frac{\delta \mathrm{Q}_{\mathrm{\Pi2}}}{\mathrm{d\tau}} \right), \qquad (11.16)$$

где V_{п1}, V_{п2} – соответственно объёмы паровой фазы в верхней и нижней сфере; V_ж – объем, занимаемый жидкостью в нижней сфе-

$$pe; \quad V_{\Pi 1} = \frac{\pi d_{B}^{2}}{6} + \left[l_{B} + l_{H} + \left(\frac{d_{H}}{2} + \left(\frac{d_{H}}{2} - h \right) / \sin \alpha \right) - l_{\mathcal{W}} \right] \frac{\pi d_{Tp}^{2}}{4},$$
$$V_{\Pi 2} = \frac{\pi d_{H}^{2}}{6} - V_{\mathcal{W}} - \left(\frac{d_{H}}{2} + \left(\frac{d_{H}}{2} - h \right) / \sin \alpha \right) \frac{\pi d_{Tp}^{2}}{4}, \quad V_{\mathcal{W}} = \frac{\pi h^{2}}{3} \left(\frac{3d_{H}}{2} - h \right); \quad h_{\mathcal{W}} = -\frac{\pi h^{2}}{3} \left(\frac{3d_{H}}{2} - h \right); \quad h_{\mathcal{W}} = -\frac{\pi h^{2}}{3} \left(\frac{3d_{H}}{2} - h \right);$$

высота подъёма жидкости в полости 1 за счёт разности давлений в полостях (см. уравнение 11-21); h – высота шарового сегмента заполненного жидкостью в полости 2; $\frac{dh}{d\tau}$ – скорость изменения высоты сегмента (см. уравнение 11.22); $F_{\mu 1} = \frac{\pi d_{Tp}^2}{4 \cdot Sin(\pi - \phi)}$ – площадь испарения в полости 1; $F_{\mu 2} = \pi h(d_{\mu} - h) - F_{\mu 1}$ - площадь испарения в полости 2; $\alpha = \pi - \phi;$ $\frac{d\alpha}{d\tau} = -\frac{d\phi}{d\tau};$ l_{π} – длина столбика жидкости в трубке; $G_{\pi-\pi} = \xi F_{\mu} \frac{p'-p}{\sqrt{2\pi RT'}}$ – массовый расход при испарении (конденсации), определяемый по формуле Герца-Кнудсена [88]; если G_{ж-п} >0, то приходы энергии $\Pi = h'' - u - \frac{\rho R T^2}{1 + b \rho} \frac{da(T)}{dT}$, $\Pi_{\mathfrak{K}} = h'' - u'$; a если $G_{m-\Pi} < 0$, то $\Pi = h - u - \frac{\rho R T^2}{1 + b \rho} \frac{da(T)}{dT}$, $\Pi_m = h - u'$; слагаемое $\frac{\pi d_{Tp}^2}{4} \frac{d(l_m \rho')}{d\tau}$ в уравнениях (11.4) и (11.9) представляет элементарную массу, перетекающую в единицу времени из полости 2 в полость 1 за счет разности давлений; $\xi - \kappa o \Rightarrow \phi \phi$ ициент испарения (конденсации) $\xi = \frac{\rho}{\rho} \exp \left(-\frac{r}{RT'}\right)$ [110]; $\rho'(T')$, $\frac{d\rho'}{dT'}$ – соответственно плотность насыщенной жидко-

сти, определяемая по методу Ганна и Ямады [66] и её производная по

температуре; $\rho''(T',p')$ – плотность насыщенного пара; г – теплота парообразования $r = T' \left(\frac{1}{\rho'} - \frac{1}{\rho'}\right) \frac{dp'}{dT'}$; R – удельная газовая постоянная рабочего тела. В уравнениях для прихода энергии П: h, u – удельные энтальпия и внутренняя энергия перегретого пара; h''(T', \rho'') – удельная энтальпия насыщенного пара; u' = h' – $\frac{p'}{\rho'}$ = h'' – $r - \frac{p'}{\rho'}$; T_c – температура стенки полости; C_v – удельная изохорная теплоёмкость перегретого пара, $C_v = C_{vud} + \frac{RT}{b} \ln(1+b\rho) \frac{d^2(T \cdot a(T))}{dT^2}$, C_{vud} – идеально-газовая теплоёмкость, C_{vud} = $a(1) + a(2)T + a(3)T^2 + a(4)T^3$; C'_v – теплоёмкость насыщенной жидкости, определяемая по методу Лимана - Деннера [82]; C_M , m_M – удельная теплоемкость стенки и её масса; A, B, C, D – аппроксимирующие коэффициенты в уравнении Гарлахера для определения давления насыщенных паров p'(мм рт. ст.) [82], значения которых для диэтилового эфира соответственно равны: A = 57,2;

B = -5105,9; C = -5,945; D = 3,4;
$$\frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \left(CT'^2 - BT' - 2Dp'\right) \left(\frac{T'^2}{p'} - DT'\right) - \frac{dp'}{dT'} = \frac{dp'}{dT$$

производная давления насыщения по температуре; $\frac{\delta Q_H}{d\tau}$, $\frac{\delta Q_\pi}{d\tau}$, $\frac{\delta Q_\pi}{d\tau}$, $\frac{\delta Q_\pi}{d\tau}$ - соответственно тепловые потоки между окружающей средой и стенкой, стенкой и паром, стенкой и жидкостью, определяемые по закону Ньютона - Рихмана.

Математическая модель испарения с наружной поверхности

1. Уравнение скорости изменения температуры испаряющейся жидкости (воды)

$$\frac{dT_{\pi}}{d\tau} = \frac{1}{m_{\pi}c_{\pi}} \left[-\left(r + \frac{p_{\delta}}{\rho}\right) G_{\pi-B} + \alpha_{1}F_{\mu}(T_{B} - T_{\pi}) + \alpha_{2}F_{\mu}(T_{1} - T_{\pi}) \right]. \quad (11.17)$$

2. Уравнение скорости изменения массы испаряющейся воды

$$\frac{\mathrm{dm}_{\mathcal{K}}}{\mathrm{d\tau}} = -G_{\mathcal{K}-\mathcal{B}},\tag{11.18}$$

где m_ж, c_ж – масса и удельная теплоёмкость испаряющейся воды; r – удельная теплота парообразования воды; ρ – плотность воды; G_{ж-в} – расход при испарении воды во влажный воздух, G_{ж-в} = $\frac{\beta \cdot F_u(p_H - p_{\Pi})}{R_{\Pi} \cdot T_B}$;

β (м/c) – коэффициент массоотдачи; p_н(T_ж) – давление насыщенного водяного пара; p_п(T_в, φ, p_б) – парциальное давление пара во влажном воздухе; р_б – барометрическое давление; ф – относительная влаж-R_п – газовая постоянная ность воздуха; водяного пара; $\alpha_1 = \frac{\lambda \cdot 0.5(Gr \cdot Pr)^{0.25}}{T} - коэффициент теплоотдачи между воздухом и$ жидкостью; λ – коэффициент теплопроводности воздуха; Gr, Pr – соответственно числа Грасгофа и Прандтля; L – характерный размер; α₂ - коэффициент теплоотдачи между паром диэтилового эфира в головке и внутренней поверхностью головки; F_и – площадь испарения (const); Т_в – температура воздуха; Т₁ – температура пара эфира в верхней части устройства.

Коэффициент массоотдачи β определяется с помощью диффузионного критериального уравнения

$$\beta = \frac{D \cdot 0.5(Gr_D \cdot Pr_D)^{0.25}}{L},$$

где D – коэффициент диффузии пара в воздух, определяемый по зависимости $D = \frac{2,28}{p_6} \left(\frac{T_B}{273}\right)^{1,8}$, $Gr_D = \frac{gL^3(\rho^{''} - \rho_{\Pi})}{\rho^{''}\upsilon^2}$ – диффузионное число Грасгофа, g – ускорение силы тяжести, $\rho''(T_{\pi})$ – плотность насыщенного водяного пара, ρ_{Π} – плотность водяного пара во влажном воздухе, υ – кинематическая вязкость воздуха, определяемая по формуле Сатерленда $\upsilon = 17,12 \cdot 10^{-6} \cdot \left(\frac{T_B}{273}\right)^{1,5} \cdot \frac{(273 + 111)}{(T_B + 111)\rho_B}$, ρ_B – плотность влажного воздуха, $Pr_D = \frac{\upsilon}{D}$ – диффузионное число Прандтля.

Математическая модель движения

1. Уравнение изменения угловой скорости (Дифференциальное уравнение движения системы в обобщенных координатах – уравнение Лагранжа)

$$\frac{d\omega}{d\tau} = \frac{1}{J_{\Sigma}} \left(M_{\rm B} - M_{\rm H} - \frac{dJ_{\Sigma}}{d\phi} \cdot \frac{\omega^2}{2} \right).$$
(11.19)

2. Кинематическое соотношение

$$\frac{\mathrm{d}\phi}{\mathrm{d}\tau} = \omega \ , \qquad (11.20)$$

где J_{Σ} – суммарный момент инерции, M_B – результирующий момент от сил действующих против часовой стрелки, M_H – результирующий момент от сил действующих по часовой стрелке относительно оси вращения, ϕ – угол поворота устройства.

$$\begin{split} m_{c\phi B} &= 4\pi d_{B}^{2}\delta\rho_{c}; \ G_{c\phi B} = m_{c\phi B} \cdot g; \ m_{c\phi H} = 4\pi d_{H}^{2}\delta\rho_{c}; \ G_{c\phi H} = m_{c\phi H} \cdot g; \\ m_{Tp B} &= \pi d_{Tp}l_{B}\delta\rho_{c}; \ G_{Tp B} = m_{Tp B} \cdot g; \ m_{Tp H} = \pi d_{Tp}(l_{H} + d_{H})\delta\rho_{c}; \\ G_{Tp H} &= m_{Tp H} \cdot g; \ G_{p B} = G_{c\phi B} + G_{Tp B}; \ G_{p H} = G_{c\phi H} + G_{Tp H}. \end{split}$$

Определим координаты приложения равнодействующих сил.

$$l_{p B} = \frac{G_{c \phi B} \left(l_{B} + \frac{d_{B}}{2} \right) + G_{T p B} \frac{l_{B}}{2}}{G_{p B}},$$

$$l_{p H} = \frac{G_{c \phi H} \left(l_{H} + \frac{d_{H}}{2} \right) + G_{T p H} \frac{(l_{H} + d_{H})}{2}}{G_{p H}}.$$

Определение постоянной части момента инерции устройства

$$\begin{split} J_{p1} &= \frac{m_{Tp B} (l,5d_{Tp}^2 + l_B^2)}{l2} + m_{Tp B} \left(\frac{l_B}{2}\right)^2, \\ J_{p2} &= \frac{m_{Tp H} \left[l,5d_{Tp}^2 + (l_H + d_H)^2\right]}{l2} + m_{Tp H} \left(\frac{l_H + d_H}{2}\right)^2, \\ J_{p3} &= \frac{m_{c\varphi B} d_B^2}{6} + m_{c\varphi B} \left(\frac{d_B}{2} + l_B\right)^2, \\ J_{p4} &= \frac{m_{c\varphi H} d_H^2}{6} + m_{c\varphi H} \left(\frac{d_H}{2} + l_H\right)^2, \\ J_{const} &= J_{p1} + J_{p2} + J_{p3} + J_{p4}. \end{split}$$

Главные центральные (относительно центра тяжести) моменты инерции некоторых однородных тел простейшей формы приводятся в прил. 6.

Расстояние между осью вращения и центром тяжести жидкости в трубке

$$l_{M \mathcal{K}} = \left(l_{H} + \frac{d_{H}}{2}\right) + OT - \frac{l_{\mathcal{K}}}{2},$$
$$OT = \frac{\left(\frac{d_{H}}{2} - h\right)}{Sin\alpha}, \qquad l_{\mathcal{K}} = \frac{h_{\mathcal{K}}}{Sin\alpha}.$$

Объём жидкости в трубке

$$V_{\rm Tp} = \frac{l_{\rm K} \cdot \pi d_{\rm Tp}^2}{4} \, .$$

Tak kak: $\Delta p = p_2 - p_1 = \rho' g h_{\mathcal{K}}$, το $h_{\mathcal{K}} d\rho' + \rho' d h_{\mathcal{K}} = \frac{(dp_2 - dp_1)}{g}$.

При допущении, что плотность жидкости р' меняется незначительно, уравнение скорости изменения высоты столбика жидкости в трубке устройства, отсчитываемой от уровня жидкости в нижней сфере, примет вид

$$\frac{\mathrm{dh}_{\mathfrak{K}}}{\mathrm{d}\tau} = \frac{1}{\rho' \cdot g} \left(\frac{\mathrm{dp}_2}{\mathrm{d}\tau} - \frac{\mathrm{dp}_1}{\mathrm{d}\tau} \right). \tag{11.21}$$

В уравнении (11.21):

$$\begin{split} \frac{dp_1}{d\tau} &= R \left\{ \rho_1 \frac{dT_1}{d\tau} \left(\frac{1}{1 - b\rho_1} - \frac{\rho_1}{1 + b\rho_1} \left[a(T_1) + T_1 da(T_1) \right] \right) + \right. \\ &+ T_1 \frac{d\rho_1}{d\tau} \left(\frac{1}{(1 - b\rho_1)^2} - \frac{a(T_1)(2\rho_1 + b\rho_1^2)}{(1 + b\rho_1)^2} \right) \right\}, \\ \frac{dp_2}{d\tau} &= R \left\{ \rho_2 \frac{dT_2}{d\tau} \left(\frac{1}{1 - b\rho_2} - \frac{\rho_2}{1 + b\rho_2} \left[a(T_2) + T_2 da(T_2) \right] \right) + \right. \\ &+ T_2 \frac{d\rho_2}{d\tau} \left(\frac{1}{(1 - b\rho_2)^2} - \frac{a(T_2)(2\rho_2 + b\rho_2^2)}{(1 + b\rho_2)^2} \right) \right\}, \end{split}$$

где для уравнения Редлиха – Квонга в модификации Вильсона da(T) = $-K \cdot a_{K} \frac{T_{KP}}{T^{2}}$; $K = 1,57 + 1,62\omega$; $a_{K} = \frac{0,42748R_{0}T_{KP}}{p_{KP}\mu}$; T_{KP} , $p_{KP} - KPUTU$ ческая температура и давление; ω – фактор ацентричности; R_{0} – универсальная газовая постоянная; μ – молекулярная масса вещества.

Скорость изменения высоты сегмента заполненного жидкостью в нижней сфере

$$\frac{dh}{d\tau} = -\frac{dh_{\mathcal{K}}}{d\tau} \frac{d_{\mathrm{Tp}}^2}{4h(d_{\mathrm{H}} - h)\sin\alpha - d_{\mathrm{Tp}}^2},$$
(11.22)

Скорость изменения длины столбика жидкости в соединительной трубке

$$\frac{dl_{\mathcal{K}}}{d\tau} = -\frac{\cos\alpha}{\sin^2\alpha}h_{\mathcal{K}}\frac{d\alpha}{d\tau} + \frac{1}{\sin\alpha}\frac{dh_{\mathcal{K}}}{d\tau} . \qquad (11.23)$$

При известной высоте сегмента h заполненного жидкостью и диаметру $d_{\rm H}$ нижней сферы определяется объём жидкости в нижней сфере $V_{\rm ж} = \pi h^2 (1.5 d_{\rm H} - h)/3$, после чего определяется координата центра тяжести сегмента $c_{\rm T}$ и определяются переменные моменты инерции сферического сегмента и жидкости в соединительной трубке.

Определить $\frac{dJ_{\Sigma}}{d\phi}$ можно следующим образом. Суммарный момент инерции будет равен $J_{\Sigma} = J_{const} + J_{var}$.

$$J_{var} = J_{varcb} + J_{varTp}$$
.

$$J_{\text{var}c\phi} = \rho' V_{\mathcal{H}} l_{M}^{2}, \quad J_{\text{var}Tp} = \rho' V_{Tp} \left(\frac{l_{\mathcal{H}}^{2}}{12} + l_{M\mathcal{H}}^{2} \right).$$

$$\frac{dJ_{\text{var}}c\phi}{d\phi} = \rho' \left(l_{M}^{2} \frac{dV_{\mathcal{K}}}{d\phi} + 2l_{M}V_{\mathcal{K}} \frac{dl_{M}}{d\phi} \right)$$

$$\frac{\mathrm{d} \mathrm{V}_{\mathrm{s}}}{\mathrm{d} \varphi} = \frac{\mathrm{d}}{\mathrm{d} \varphi} \left(\frac{\pi}{2} \mathrm{h}^2 \mathrm{d}_{\mathrm{H}} - \frac{\pi}{3} \mathrm{h}^3 \right) = \pi \mathrm{h} (\mathrm{d}_{\mathrm{H}} - \mathrm{h}) \frac{\mathrm{d} \mathrm{h}}{\mathrm{d} \varphi}.$$

$$\frac{\mathrm{dl}_{\mathrm{M}}}{\mathrm{d}\phi} = \frac{\mathrm{d}}{\mathrm{d}\phi} \sqrt{l^2 + c_{\mathrm{T}}^2 - 2lc_{\mathrm{T}}\cos(1.5\pi - \phi)} =$$

$$=\frac{2c_{T}\frac{dc_{T}}{d\phi}-2l\frac{dc_{T}}{d\phi}\cos(1.5\pi-\phi)-2lc_{T}(-\sin(1.5\pi-\phi)(-1))}{2\sqrt{l^{2}+c_{T}^{2}-2lc_{T}}\cos(1.5\pi-\phi)}=$$

$$=\frac{\frac{dc_{T}}{d\phi}[2c_{T}-2l\cos(1.5\pi-\phi)]-2lc_{T}\sin(1.5\pi-\phi)}{2\sqrt{l^{2}+c_{T}^{2}-2lc_{T}}\cos(1.5\pi-\phi)}$$

$$\frac{\mathrm{dl}_{^{\mathrm{M}}\mathcal{K}}}{\mathrm{d}\phi} = \frac{\mathrm{d}}{\mathrm{d}\phi} \left(\left(l_{^{\mathrm{H}}} + \frac{\mathrm{d}_{^{\mathrm{H}}}}{2} \right) + \frac{\left(\frac{\mathrm{d}_{^{\mathrm{H}}}}{2} - h \right)}{\sin \alpha} - \frac{l_{^{\mathrm{K}}}}{2} \right) = \\ = \frac{\sin \alpha \left(\frac{-\mathrm{d}h}{\mathrm{d}\phi} \right) - \cos \alpha \left(\frac{\mathrm{d}_{^{\mathrm{H}}}}{2} - h \right) \frac{\mathrm{d}\alpha}{\mathrm{d}\phi}}{\sin^2 \alpha} - \frac{1}{2} \frac{\mathrm{d}l_{^{\mathrm{K}}}}{\mathrm{d}\phi} = \\ = -\left[\frac{\sin \alpha \frac{\mathrm{d}h}{\mathrm{d}\phi} + \cos \alpha \left(\frac{\mathrm{d}_{^{\mathrm{H}}}}{2} - h \right) \frac{\mathrm{d}\alpha}{\mathrm{d}\phi}}{\sin^2 \alpha} + \frac{1}{2} \frac{\mathrm{d}l_{^{\mathrm{K}}}}{\mathrm{d}\phi} \right].$$

Координата центра тяжести сегмента с_т, отсчитываемая от основания полусферы, определяется следующим образом (Рис. 11.7).

Рис. 11.7. К определению координаты центра тяжести сегмента

Так как сегмент ограничен поверхностями z = R - h, $x^2 + y^2 + z^2 = R^2$, то, переходя к цилиндрическим координатам ($x = r\cos\varphi$, $y = r\sin\varphi$, $z = \sqrt{R^2 - r^2}$), получаем
$$c_{T} = z_{c} = \frac{\iiint z r dr d\phi dz}{V} = \frac{\prod_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} dr \int_{k=0}^{2\pi} z r d\phi}{\prod_{k=0}^{R} \sqrt{R^{2} - z^{2}} 2\pi} = \frac{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r dr}{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} = \frac{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r dr}{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} = \frac{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi}{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} = \frac{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi}{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} = \frac{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi}{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} = \frac{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi}{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} = \frac{2\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi}{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} = \frac{\pi \int_{k=0}^{R} (R^{2} - z^{2}) dz}{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{R} dz \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi} \frac{\pi \int_{k=0}^{\sqrt{R^{2} - z^{2}}} z r d\phi$$

Расстояние между осью вращения и центром тяжести жидкости в сферическом сегменте

$$l_{\rm M} = \sqrt{l^2 + c_{\rm T}^2 - 2 \cdot l \cdot c_{\rm T} \operatorname{Cos}(1, 5\pi - \phi)},$$
$$+ \frac{d_{\rm H}}{2}.$$

 $\Gamma д e = l_{\rm H} + \frac{d_{\rm H}}{2}.$

Моменты от действующих сил

 $M_{B} = G_{p B} l_{p B} Cos(\pi - \varphi),$

$$M_{\rm H} = \left[G_{p \, {\rm H}} l_{p \, {\rm H}} + \rho' g (V_{\rm \#} l + V_{\rm Tp} l_{\rm M \, \#}) \right] Cos(\pi - \phi).$$

В представленных уравнениях:

 $d_{\rm B}$, $d_{\rm H}$ – диаметры верхней и нижней сферы; δ – толщина стеклянной стенки, $\rho_{\rm c}$ – плотность стекла, $l_{\rm B}$ – расстояние между верхней сферой и осью вращения, $l_{\rm H}$ – расстояние между нижней сферой и осью вращения.

Индексы: сф – относится к нижней сфере, тр – к трубке. На рис. 11.8 – 11.11 представлены ряд результатов расчета работы устройства изображенного на рис. 65.

Рис. 11.8. Действующие моменты

Рис. 11.9. Угловая скорость

Рис. 11.10. Угол поворота

Рис. 11.11. Текущая длина столбика жидкости в соединительной трубке

Глава 12

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ БЫТОВОЙ ХОЛОДИЛЬНОЙ МАШИНЫ

12.1. Предварительные замечания

Современные достижения технологии хранения в охлажденном и замороженном состоянии, повышение спроса на холодильники увеличенных объемов с несколькими уровнями температур потребовали создания нового поколения бытовых холодильников. Промышленность стала выпускать многокамерные (двух, трех- и более) холодильники. По сравнению с однокамерными (рис. 12.1) они имеют ряд преимуществ, так как обеспечивают быстрое и качественное замораживание продуктов, длительное хранение большого количества различных замороженных продуктов без ухудшения качества, поддержание повышенной влажности в холодильной камере для уменьшения усушки продуктов, эксплуатацию без остановки для оттаивания испарителей в течение полугода и более [5].

Рис. 12.1. Схема агрегата бытового холодильника:

1 – компрессор; 2 – конденсатор; 3 – капиллярная трубка; 4 – испаритель морозильной камеры. В настоящее время двухкамерные и комбинированные холодильники занимают первое место на мировых рынках и в будущем, как показывает развитие рынков США и Японии, окончательно вытеснят другие типы холодильников [6, 75].

В энергетическом отношении они также более эффективны [75]. В таких холодильниках используются одно- и двухиспарительные холодильные агрегаты.

В одноиспарительных агрегатах холод вырабатывается в одной (морозильной) камере, а затем принудительно с помощью вентилятора передается в холодильную камеру. Принципиальным недостатком таких холодильников является использование дорогостоящего низкопотенциального холода для охлаждения камер с повышенной температурой, наличие вентилятора, а значит повышенный шум.

Рис. 12.2. Схема агрегата двухкамерного холодильника «Минск-7»:

1 – компрессор; 2 – конденсатор; 3 – испаритель холодильной камеры; 4 – испаритель морозильной камеры; 5 – капиллярная трубка холодильной камеры; 6 - капиллярная трубка морозильной камеры.

Двухиспарительные агрегаты прямого охлаждения разделяют на однодроссельные и двухдроссельные. В двухдроссельном агрегате основной дроссель устанавливают между конденсатором и высокотемпературным испарителем, а дополнительный дроссель - перед испарителем низкотемпературной камеры (рис. 12.2). Холодильный агент из компрессора через конденсатор подается в основной дроссель, а затем в дополнительный. К недостаткам таких агрегатов можно отнести то, что в них не могут быть достигнуты низкие температуры вследствие прохождения по низкотемпературному испарителю пара от высокотемпературного испарителя, и высокие гидравлические потери.

Рис. 12.3. Схема агрегата двухкамерного холодильника «Мир»:

1 – компрессор; 2 – конденсатор; 3 – капиллярная трубка; 4 – испаритель морозильной камеры; 5 – испаритель холодильной камеры.

В однодроссельных агрегатах холодильный агент сначала подается в испаритель низкотемпературной (морозильной) камеры, а затем в испаритель холодильной камеры (рис. 12.3). К недостаткам таких агрегатов следует отнести затрудненное регулирование температур при изменении тепловых нагрузок [6].

Рис. 12.4. Схема агрегата холодильника фирмы «Бош»:

1 – компрессор; 2 – конденсатор; 3 – испаритель холодильной камеры; 4 – испаритель морозильной камеры; 5 – основная капиллярная трубка; 6 – дополнительная капиллярная трубка; 7 – электромагнитный клапан.

В последние годы появились холодильники, в которых агрегат с одним компрессором имеет специальное устройство - электромагнитный клапан, позволяющий автоматически отключать охлаждение холодильной камеры при работающем компрессоре (рис. 12.4, 12.5) или менять режим работы холодильника [5]. При открытом электромагнитном клапане холодильный агент подается сначала в испаритель холодильной камеры, а затем в испаритель морозильной камеры. При закрытом клапане холодильный агент дросселируется через дополнительную капиллярную трубку в испаритель морозильной камеры. К недостаткам таких агрегатов следует отнести сложность конструкции и наличие дорогостоящего электромагнитного клапана. Общим недостатком двухкамерных (многокамерных) холодильников является повышенная материалоемкость и трудоемкость по сравнению с однокамерными [75].

Рис. 12.5. Схема агрегата холодильника фирмы «Аристон»:

1 – компрессор; 2 – конденсатор; 3 – испаритель холодильной камеры; 4 – испаритель морозильной камеры; 5 – основная капиллярная трубка; 6 – дополнительная капиллярная трубка; 7 – электромагнитный клапан.

Таким образом, все перечисленные типы конструкций двухкамерных холодильников, несмотря на их перспективность, имеют ряд недостатков. Устранение недостатков возможно при увеличении объема экспериментальных и теоретических исследований процессов, протекающих в бытовых холодильных машинах. Этот процесс можно значительно ускорить, если использовать для целей исследований математическое моделирование.

Созданная ранее математическая модель нестационарных процессов, протекающих в бытовой холодильной машине [31, 35, 62], в основном ориентирована на ставшую уже классической схему однокамерного холодильника (рис. 12.6).

Рис. 12.6. Схема агрегата холодильника «Минск-126»:

1 – компрессор; 2 – конденсатор; 3 – испаритель холодильной камеры; 4 – испаритель морозильной камеры; 5 – основная капиллярная трубка; 6 – дополнительная капиллярная трубка; 7 – электромагнитный клапан.

Однако математическое описание элементов холодильной машины позволяет распространить ее на схемы двухкамерных холодильников с последовательным расположением испарителей с одной или несколькими (дополнительными) капиллярными трубками перед испарителем морозильной камеры (рис. 12.3, 12.6)^{*}.

^{*}Рассмотрение других схем (рис. 12.2, 12.4, 12.5) в настоящее время затруднено необходимостью использования математических моделей испарителей с распределенными параметрами, что свою очередь не позволит их использовать при расчете неустановившихся процессов в бытовых холодильных машинах, вследствие значительных затрат машинного времени.

Следует отметить, что по этим схемам выпускается большинство двухкамерных холодильников в нашей стране - Минск-15, Минск-125, Минск-25, Смоленск-6 и другие. Схема агрегата двухкамерного холодильника, представленная на рис. 12.6, является более общей, поэтому применительно к ней ниже будет записана математическая модель.

12.2. Математическая модель двухкамерного бытового холодильника

Математическая модель построена согласно созданным математическим моделям отдельных элементов, входящих в состав холодилььной машины: герметичного компрессора объемного типа, фазовых теплообменников - конденсатора и испарителя, капиллярной трубки.

К допущениям, принятым при моделировании отдельных элементов холодильной машины, в данном случае необходимо добавить допущение о том, что на выходе испарителя низкотемпературной камеры холодильный агент находится в состоянии сухого насыщенного пара. Обоснованность данного допущения подтверждается в работе [5].

Математическая модель с начальными и граничными условиями будет состоять из пяти подсистем уравнений.

Начальными условиями при $\tau = 0$ является равенство давлений и температур холодильного агента во всех элементах агрегата холодильника, находящегося в отепленном состоянии.

$$p_{K} = p_{H1} = p_{H2} = p_{\Pi} = p_{KOW}$$
,

$$T_{\kappa} = T_{\mu 1} = T_{\mu 2} = T_{\pi} = T_{\kappa o \kappa} = T_{oc}$$

где T_{oc} - температура окружающей среды.

1. Подсистема уравнений, описывающих рабочие процессы в компрессоре объемного типа (поршневом)

- уравнение скорости изменения плотности пара холодильного агента в полости компрессора

$$\frac{d\rho_{\pi}}{d\tau} = \frac{1}{W_{\pi}} (G_1 - G_2 - G_y - S_{\pi} \rho_{\pi} V_{\pi}) ,$$

- уравнение скорости изменения температуры пара холодильного агента в полости компрессора

$$\frac{dT_{\pi}}{d\tau} = \frac{1}{c_{V}\rho_{\Pi}W_{\Pi}} \{ (h_{1} - u_{\Pi} - RT_{\Pi}l_{5})G_{1} - (h_{\Pi} - u_{\Pi} - RT_{\Pi}l_{5})G_{2} + \frac{dQ_{BH}}{d\tau} - \rho_{\Pi}RT_{\Pi}\frac{dW_{\Pi}}{d\tau}(1 + l_{1} - l_{5}) \},$$

где l_1, l_5, l_q – комплексы, выражения которых приводятся в табл. 12.1.

- уравнение состояния Боголюбова-Майера

$$p_{\Pi} = \rho_{\Pi} R T_{\Pi} (1+l_1) \quad ,$$

- уравнения, описывающие теплообмен в компрессоре

$$\frac{dQ_{BH}}{d\tau} = \alpha_{BH}F_{BH}(T_{\Pi} - T_{c}) ,$$
$$\frac{dQ_{H}}{d\tau} = \alpha_{H}F_{H}(T_{c} - T_{KOK}) ,$$

 уравнение скорости изменения температуры стенки компрессора

$$\frac{\mathrm{dT}_{\mathrm{c}}}{\mathrm{d\tau}} = \frac{1}{\mathrm{cm}} \left(\frac{\mathrm{dQ}_{\mathrm{BH}}}{\mathrm{d\tau}} - \frac{\mathrm{dQ}_{\mathrm{H}}}{\mathrm{d\tau}} \right) ,$$

- уравнение движения ротора электродвигателя

$$\frac{d\omega}{d\tau} = \frac{1}{J} \left(M_{\mathcal{A}} - M_{c} \right) ,$$

- кинематическое соотношение

$$\frac{d\phi}{d\tau} = \omega$$

,

- зависимость величины хода клапана от действующего на него перепада давления. При $p_n < p_k$ $G_2=0$; при $p_n > p_{кож}$ $G_1=0$. При от-ключении компрессора $G_1=G_2=0$.

Таблица 12.1

q	lq
1	$\sum_{i} \rho^{i} B_{i}$
2	$\sum_{i} \frac{\rho^{i}}{i} B_{i}$
3	$-T\sum_{i} \frac{\rho^{i}}{i} \frac{dB_{i}}{dT}$
4	$\sum_{i} i \rho^{i} B_{i}$
5	$-T\sum_{i} \rho^{i} \frac{dB_{i}}{dT}$
6	$\sum_{i} rac{ ho^{i}}{i} rac{d}{dT} \left(T^{2} rac{dB_{i}}{dT} ight)$ или
	$T\sum_{i} \frac{d(T \cdot B_{i})}{dT^{2}} \frac{\rho^{i}}{i}$

Система уравнений, описывающих рабочие процессы в компрессоре, дополняется уравнениями для M_{d} , M_{c} , J и т.д., приведенными в [30, 31].

2. Подсистема уравнений, описывающих процессы в конденсаторе агрегата при р_к<ps, будет включать:

- уравнение скорости изменения температуры холодильного агента

$$\frac{dT_{\kappa}}{d\tau} = \frac{1}{c_{\nu}\rho_{\kappa}W_{\kappa}} \{ (h_{\pi} - u_{\kappa} - RT_{\kappa}l_{5})G_{2} - (h_{\kappa} - u_{\kappa} - RT_{\kappa}l_{5})G_{3} + \frac{dQ_{BHK}}{d\tau} \},$$

- уравнение состояния

$$p_{\kappa} = \rho_{\kappa} R T_{\kappa} (1 + l_1)$$

При p_к>p_s подсистема уравнений будет включать:

- уравнение скорости изменения температуры парожидкости

$$\frac{dT_{\kappa}}{d\tau} = \frac{-G_{3}\phi(1) + \alpha_{1}F_{1}(T_{c\kappa} - T_{\kappa}) + G_{2}\phi(2)}{V'\phi(3) + V''\phi(4)} ,$$

где выражения $\phi(1)$ - $\phi(4)$, а также производных

$$\left(\frac{d\rho'}{dT}\right)_{H}; \left(\frac{d\rho''}{dT}\right)_{H}; \left(\frac{du'}{dT}\right)_{H}; \left(\frac{du''}{dT}\right)_{H}$$
 приводятся в [31], а также в работе [38].

- уравнение, связывающее параметры холодильного агента на линии насыщения [104]

$$\mathbf{p}_{\mathbf{S}} = \mathbf{f}(\mathbf{T}_{\mathbf{K}}) \ .$$

Так как на входе в конденсатор холодильный находится в состоянии перегретого пара, то в комплексе $\varphi(2)$ необходимо установить $x_0=1$; $h_0^{''}=h_{\Pi}$.

Общие зависимости для случаев $p_K > p_S$ и $p_K < p_S$:

- уравнение скорости изменения плотности холодильного агента

$$\frac{d\rho_{\kappa}}{d\tau} = \frac{1}{W_{\kappa}} (G_2 - G_3) \quad ,$$

- уравнение скорости изменения температуры стенки конденсатора

$$\frac{dT_{c\kappa}}{d\tau} = \frac{1}{m_{\kappa}c_{\kappa}} \left[\alpha_1 (T_{\kappa} - T_{c\kappa})F_1 - \alpha_2 (T_{c\kappa} - T_{oc})F_2 \right] .$$

По известной плотности парожидкости и температуре, определив ρ' и ρ'' , легко находится степень сухости х. Величину степени переохлаждения можно найти по зависимости $\Delta T_{\Pi} = K_T \left(\frac{1-x}{x}\right)$, полученной при допущении о квазистационарном режиме на участке течения переохлажденной жидкости.

Коэффициент К_т зависит от физических свойств жидкого холодного агента, а также условий теплоотдачи и меняется для бытовых холодильных машин в пределах 0,5-2.

3. Подсистема уравнений, описывающих течение холодильного агента по капиллярной трубке, включает:

- зависимость для определения расхода холодильного агента

 $G_3 = \exp(f_0 + f_1 \ln p_\kappa + f_2 \ln d + f_3 \ln l) \varphi(\Delta T) \varphi(x) \varphi(\pi) \,.$

При давлении в испарителе, большем критического ($p_u > p_{\kappa p}$) истечение холодильного агента из капиллярной трубки будет проходить со скоростью более низкой, чем критическая, соответственно и расход будет меньше.

Величина расхода зависит от того, какую долю π от расчетного перепада давлений $p_{\kappa} - p_{\kappa p}$ составляет истинный перепад давлений в трубке $p_{\kappa} - p_{u}$.

$$\pi = \frac{\mathbf{p}_{\mathrm{K}} - \mathbf{p}_{\mathrm{H}}}{\mathbf{p}_{\mathrm{K}} - \mathbf{p}_{\mathrm{K}\mathrm{p}}}.$$

В представленных уравнениях: d, l – диаметр и длина капиллярной трубки; p_к, p_к, p_и - давление в конденсаторе, критическое давление и давление в испарителе.

При $p_{\mu} > p_{\kappa p}$ определяется поправочный коэффициент $\phi(\pi) = \pi^{\frac{0,168}{\sqrt{\pi}}}$, при $p_{\mu} < p_{\kappa p}$ $\phi(\pi)=1$, при $p_{\mu} = p_{\kappa}$ $\phi(\pi)=0$. Выражения для поправочных коэффициентов, учитывающих величину переохлаждения ΔT и степень сухости холодильного агента перед капиллярной трубкой, имеют вид:

$$\varphi(\Delta T) = 1 + a_1 \Delta T^{b_1},$$

 $\varphi(x) = 1 + a_2 x^{b_2}.$

Чтобы знать параметры на выходе капиллярной трубки и определить $\phi(\pi)$ необходимо знать величину критического давления. Зависимость для $p_{\kappa p}$ имеет вид:

$$p_{\kappa p} = \exp\left[\psi_0 + \psi_1 \ln p_{\kappa} + \psi_2 \ln\left(\frac{1250 \cdot d}{l}\right)\right] \xi(\Delta T)\xi(x) ,$$

где $\xi(\Delta T) = 1 + a_3 \Delta T^{b_3}$, $\xi(x) = 1 + a_4 x^{b_4}$.

Аппроксимирущие коэффициенты в представленных зависимостях, для различных холодильных агентов, приводятся в [31].

Зная величину р_{кр} при условии, что на выходе капиллярной трубки насыщенный пар, используя уравнение Фанно или считая процесс изоэнтальпным, можно найти степень сухости, а затем все необходимые параметры на выходе трубки.

Для случая течения по трубке перегретого пара параметры его можно найти, решив систему уравнений:

$$\begin{cases} h_{\kappa} = h_{2\kappa T} \\ h_{2\kappa T} = A + BT_{2\kappa T} + CT_{2\kappa T}^2 + Dp_{\kappa p} + Ep_{\kappa p}^2 \end{cases},$$

где T_{2 кт} - температура на выходе капиллярной трубки.

Величины p_{kp} и G₃ определяются по ранее приведенным зависимостям, в которых положено $\Delta T = 0$; x = 1.

Так как согласно схеме, представленной на рис. 12.3, при срабатывании электромагнитного клапана подключается дополнительная капиллярная трубка, то в модели это учитывается изменением геометрических условий для трубки, а именно изменением ее длины при сохранении неизменного ее внутреннего диаметра. 4. Подсистема уравнений, описывающих процессы в испарителях низкотемпературного (морозильного) и высокотемпературного (холодильной камеры) отделений (рис. 12.7)

Рис. 12.7. Расчетная схема двухкамерного холодильника с ограждением

а) испаритель низкотемпературного отделения при $p_u < p_s$

- уравнение скорости изменения температуры холодильного агента

$$\frac{dT_{\mu 1}}{d\tau} = \frac{1}{c_{\nu}\rho_{\mu 1}W_{\mu 1}} \{ (h_{\kappa} - u_{\mu 1} - RT_{\mu 1}l_5)G_3 - (h_{\mu 1} - u_{\mu 1} - RT_{\mu 1}l_5)G_4 + \frac{dQ_{BH \ \mu 1}}{d\tau} \},$$

- уравнение состояния

$$p_{\mu 1} = \rho_{\mu 1} R T_{\mu 1} (1 + l_1)$$
,

при p_{и1} > p_s

та

$$\frac{dT_{\mu 1}}{d\tau} = \frac{-G_4 \varphi(1) + \alpha_{11} F_{11}(T_{c \,\mu 1} - T_{\mu 1}) + G_3 \varphi(2)}{V' \varphi(3) + V'' \varphi(4)}$$

,

где выражения $\phi(1)$ - $\phi(4)$ имеют вид:

$$\varphi(1) = \frac{r\rho''(x_2 - 1)}{\rho'' - \rho'} + \frac{x_2 r\rho'}{\rho' - \rho''} ,$$

$$\varphi(2) = \frac{r\rho}{\rho' - \rho''} + (x_0 - 1)r_0 + h'' - h''$$
,

$$\varphi(3) = \frac{\frac{p}{\rho''} - \frac{p}{\rho'} - r}{\rho'' - \rho} \rho'' \left(\frac{d\rho'}{dT}\right)_{H} + \rho' \left(\frac{du'}{dT}\right)_{H},$$

$$\varphi(4) = \frac{\frac{p}{\rho} - \frac{p}{\rho} - r}{\rho'' - \rho} \rho' \left(\frac{d\rho''}{dT}\right)_{H} + \rho'' \left(\frac{du''}{dT}\right)_{H},$$

где производные $\left(\frac{d\rho'}{dT}\right)_{H}$, $\left(\frac{d\rho''}{dT}\right)_{H}$, $\left(\frac{du'}{dT}\right)_{H}$, $\left(\frac{du''}{dT}\right)_{H}$, $\left(\frac{du''}{dT}\right)_{H}$ определяются по

таблицам насыщенных паров и приводятся в приложении 9.

- уравнение кривой упругости холодильного агента

$$\mathbf{p}_{\mathrm{S}} = \mathbf{f}(\mathbf{T}_{\mathrm{H}1}).$$

Общие зависимости для случаев $p_{\mu 1} > p_s$ и $p_{\mu 1} < p_s$:

- уравнение скорости изменения плотности холодильного аген-

233

$$\frac{d\rho_{\rm H1}}{d\tau} = \frac{1}{W_{\rm H1}} (G_3 - G_4) ,$$

- уравнение скорости изменения температуры стенки испарителя HTO

$$\frac{\mathrm{d}T_{\mathrm{c}\mu1}}{\mathrm{d}\tau} = \frac{1}{\mathrm{m}_{\mathrm{c}1}\mathrm{c}_{\mathrm{c}1}} [\alpha_{11}(\mathrm{T}_{\mathrm{c}\mu1} - \mathrm{T}_{\mu1})\mathrm{F}_{11} - \alpha_{21}(\mathrm{T}_{\mathrm{M}} - \mathrm{T}_{\mathrm{c}\mu1})\mathrm{F}_{21}],$$

- уравнение скорости изменения температуры воздуха в НТО

$$\frac{\mathrm{d}T_{\mathrm{M}}}{\mathrm{d}\tau} = \frac{1}{\rho_{\mathrm{M}}V_{\mathrm{M}}c_{\mathrm{VB}}} \left[-\alpha_{21}(T_{\mathrm{M}} - T_{\mathrm{CH}})F_{21} + \kappa(\alpha_{5}, \alpha_{3}, \delta, \lambda)F_{5}(T_{\mathrm{oc}} - T_{\mathrm{M}}) + \kappa(\alpha_{4}, \alpha_{3}, \delta, \lambda)F_{3}(T_{\mathrm{XK}} - T_{\mathrm{M}}) \right] ,$$

б) испаритель^{*} высокотемпературного отделения (холодильной камеры)

- уравнение скорости изменения температуры холодильного агента

$$\frac{dT_{\mu2}}{d\tau} = \frac{1}{c_{\nu}\rho_{\mu2}W_{\mu2}} \{ (h_{\mu1} - u_{\mu2} - RT_{\mu2}l_5)G_4 - (h_{\mu2} - u_{\mu2} - RT_{\mu2}l_5)G_5 + \frac{dQ_{BH \mu2}}{d\tau} \},$$

- уравнение состояния

$$p_{\mu 2} = \rho_{\mu 2} R T_{\mu 2} (1 + l_1) ,$$

- уравнение скорости изменения температуры стенки испарителя XK

$$\frac{dT_{c_{H2}}}{d\tau} = \frac{1}{m_{c2}c_{c2}} \left[-\alpha_{12} (T_{c_{H2}} - T_{H2})F_2 + \alpha_{22} (T_{XK} - T_{c_{H2}})F_{22} \right],$$

^{*} Математическое описание этого элемента строилось исходя из допущения, что на выходе испарителя НТО пар сухой насыщенный.

- уравнение скорости изменения температуры воздуха в холодильной камере

$$\frac{dT_{x\kappa}}{d\tau} = \frac{1}{\rho_{x\kappa}V_{x\kappa}c_{vB}} \left[-\alpha_{22}(T_{x\kappa} - T_{cH2})F_{22} + \kappa(\alpha_4, \alpha_3, \delta, \lambda)F_4(T_{x\kappa} - T_M) + \kappa(\alpha_7, \alpha_6, \delta, \lambda)F_6(T_{oc} - T_{x\kappa}) \right] .$$

5. Подсистема уравнений, описывающих процессы в кожухе герметичного компрессора с учетом динамики растворения и выделения холодильного агента из смазочного масла, будет включать:

- уравнение скорости изменения плотности холодильного агента в кожухе компрессора

- уравнение скорости изменения температуры холодильного агента в кожухе компрессора

$$\frac{dT_{KOW}}{d\tau} = \frac{G_5(h_{BX} - u) - G_1 \frac{p_{KOW}}{\rho_{KOW}} + \alpha(T_c - T_{KOW})F + \alpha^*(T_c - T^*)F^* - \psi(1) + \frac{dQ_{\Sigma}}{d\tau}}{(V\rho + V^*\rho^*)\psi(2) + m_M c_M},$$

где $\frac{dQ_{\Sigma}}{d\tau} = \frac{dQ_{\Im \pi}}{d\tau} + \frac{dQ_{\kappa}}{d\tau} - \frac{dQ_{\kappa o \varkappa}}{d\tau} - \frac{dQ_{\Pi p \kappa}}{d\tau},$

- уравнение скорости изменения температуры обмоток электродвигателя

$$\frac{dT_{3\mathcal{A}}}{d\tau} = \frac{1}{m_{3\mathcal{A}}c_{3\mathcal{A}}} \left[N_i \frac{(1-\eta_{3\mathcal{A}})}{\eta_3} - \alpha_{3\mathcal{A}} (T_{3\mathcal{A}} - T_{\kappa o \kappa}) F_{3\mathcal{A}} \right] ,$$

где
$$\frac{dL_i}{d\tau} = S_{\Pi} V_{\Pi i} (p_{\Pi i} - p_{\kappa o \kappa}), \qquad N_i = \frac{L_i}{\tau_{\text{цикла}}}.$$

- уравнение скорости изменения температуры стенки кожуха компрессора

$$\frac{dT_{c \kappa o \kappa}}{d\tau} = \frac{1}{mc} \left[\alpha \left(T_{\kappa o \kappa} - T_{c \kappa o \kappa} \right) F - \alpha_{H} \left(T_{c \kappa o \kappa} - T_{oc} \right) F_{H} \right],$$

- уравнение для определения удельной энтальпии на входе в кожух

$$h_{BX} = h_{H2} + \frac{1}{G_5} \frac{dQ}{d\tau} ,$$

Давление холодильного агента в кожухе герметичного компрессора р_{кож} определяется решением уравнения состояния.

Перед попаданием в полость компрессора холодильный агент проходит по всасывающему патрубку, где дополнительно подогревается. Параметры холодильного агента перед всасывающим клапаном можно определить, решив уравнение энергии

$$m_{\Pi}c_{pBC}\frac{dT_{BC}}{d\tau} = G_{1}(c_{p}T_{KOK} - c_{pBC}T_{BC}) + \alpha_{BC}F_{BC}(T_{CK} - T_{BC})$$

совместно с уравнением состояния р_к

 $p_{KOK} = \rho_{BC} R T_{BC} (1 + l_1).$

Выражения $\psi(1), \psi(2)$ имеют вид:

$$\psi(1) = \frac{(G_1 - G_2) \left(\frac{\partial u}{\partial \rho}\right)_T \left(V\rho + V^* \rho^*\right)}{V + V^* \left(\frac{\partial \rho^*}{\partial \rho}\right)_T},$$

$$\psi(2) = \left(\frac{\partial u}{\partial T}\right)_{\rho} + \frac{V^{*}}{V + V^{*} \left(\frac{\partial \rho^{*}}{\partial \rho}\right)_{T}} \left(\frac{\partial u}{\partial \rho}\right)_{T} \left(\frac{\partial \rho^{*}}{\partial T}\right)_{\rho}.$$

Выражения частных производных $\frac{\partial \rho^*}{\partial T}$, $\frac{\partial \rho^*}{\partial \rho}$ получены путем аппроксимации данных по масло-фреоновым смесям и приводятся в [31, 35].

- уравнение связи между параметрами парообразного холодильного агента (p, T) и плотностью его в смазочном масле ρ^{*}

$$\frac{\rho^*}{\rho_{\rm M}} = \exp(C_1 + C_2 \ln p + C_3 \ln T) ,$$

где С₁, С₂, С₃ – аппроксимующие коэффициенты [31, 35].

В приведенных зависимостях p_к, p_{и1}, p_{и2}, p_п, p_{кож} – текущие давления соответственно в конденсаторе, испарителе HTO, воздухоохладителе XK, полости поршневого компрессора, кожухе;

G₁ – расход из кожуха в компрессор;

G₂ – расход из компрессора в конденсатор;

- G₃ расход через капиллярную трубку;
- G₄ расход из испарителя НТО в испаритель ХК;
- G₅-расход из ХК в кожух.

Индексы к, и1, и2, п, кож – относятся соответственно к параметрам холодильного агента в конденсаторе, испарителе НТО, испарителе ХК, полости компрессора, кожухе герметичного компрессора. Остальные обозначения совпадают с обозначениями, принятыми при описании отдельных элементов бытовой холодильной машины, Согласно представленной математической модели были получены алгоритмы и программы расчета нестационарных рабочих процессов, протекающих в бытовой холодильной машине, на алгоритмическом языке FORTRAN-77.

Блок-схема алгоритма расчета нестационарных процессов в двухкамерном бытовом холодильнике представлена на рис. 12.8.

Рис. 12.8. Блок-схема алгоритма расчета нестационарных процессов в двухкамерном бытовом холодильнике

12.3. Экспериментальные и теоретические исследования нестационарных процессов в бытовых холодильных машинах

Целью экспериментальных исследований является:

- выявление закономерностей изменения давления и температур в элементах бытовой холодильной машины в процессе пуска ее из отепленного состояния;

- проверка адекватности разработанной математической модели бытовой холодильной машины.

Экспериментальные исследования проводились в лаборатории компрессоров Тульского оружейного завода.

В ходе экспериментов измерялись следующие параметры:

1. Давление фреона в элементах бытового холодильника.

2. Температура фреона в элементах холодильника.

3. Температура в элементах конструкции.

4. Мощность, потребляемая компрессором холодильника.

5. Температура воздуха в геометрическом центре испарителя.

12.3.1. Приборы и оборудование

Испытания проводились на бытовой холодильной машине типа ОКА-6М с гнездами для установки датчиков давления и температуры (фото 12.1, 12.2).

В качестве датчиков давления использовались реостатные датчики давления типа ДМП. Датчики такого типа пригодны для измерения давления процессов с частотой до 50 Гц. К преимуществам реостатных датчиков давления следует отнести то, что они могут использоваться без усилительной аппаратуры.

Питание датчиков давления осуществлялось с помощью универсального блока питания Б5-8.

Для регистрации сигнала с датчиков давления использовался шлейфовый осциллограф типа H-117.

Измерение потребляемой мощности производилось с помощью измерительного комплекса К-505.

Для тарировки датчиков давления, контроля давления заправки холодильным агентом агрегата и давления в кожухе герметичного компрессора использовался образцовый манометр класса 0,4.

В качестве датчиков температуры использовались хромель-копелевые термопары.

Фото 12.1. Общий вид экспериментальной установки (спереди)

Инерционность термопар оценивалась по зависимости: $\epsilon_0 = \frac{c}{\alpha S} [116], \ \mbox{где } c = \sum_j c_j \rho_j V_j$ - полная теплоемкость системы тел; S – поверхность теплообмена; α - коэффициент теплообмена между поверхностью термопары и средой, определяемый по критериальной зависимости; c_j – удельная теплоемкость материала термопары; ρ_j – плотность материала; V_j – объем материала термопары. Инерционность термопар при диаметре термопарной проволоки 0,3 мм составила 1-1,5 сек., что вполне допустимо при исследовании переходных режимов бытовой холодильной машины.

Фото 12.2. Общий вид экспериментальной установки (сзади)

Сигналы с датчиков температур регистрировались двенадцатиканальным потенциометром типа КСП-4. Схема размещения датчиков холодильном агрегате представлена на рис. 12.9. Места установки датчиков давления и температуры на конденсаторе и капиллярной трубке обусловлены необходимостью экспериментального определения распределения давления и температуры по их длине с целью проверки приемлемости допущений при написании соответствующих математических моделей.

Рис. 12.9. Схема размещения датчиков на холодильной машине

Датчики давления:

Д1 – вход в теплообменник-конденсатор, выход из компрессо-

pa;

- Д2 середина конденсатора;
- ДЗ конец конденсатора, вход в капиллярную трубку;
- Д4 середина капиллярной трубки;
- Д5 вход в испаритель, конец капиллярной трубки;
- Д6 выход из испарителя;

Д7 – вход в компрессор.

Датчики температуры:

ТФ1 – холодильного агента в начале теплообменникаконденсатора;

ТФ2 – холодильного агента в середине конденсатора;

ТФЗ – холодильного агента в конце конденсатора, в начале капиллярной трубки;

ТФ4 – холодильного агента на выходе из испарителя;

- ТФ5 холодильного агента на входе в компрессор;
- ТС1 стенки в начале теплообменника-конденсатора;
- ТС2 стенки в середине конденсатора;

ТСЗ – стенки на выходе испарителя;

ТС4 – стенки на входе в кожух компрессора;

ТС5 – стенки верхней части кожуха компрессора;

ТС6 – стенки нижней части кожуха компрессора;

TB – воздуха в геометрическом центре низкотемпературного отделения.

Схема размещения датчиков давления и температуры на трубо-проводах холодильной машины представлена на рис. 12.10.

Рис. 12.10. Схема размещения датчиков давления и температуры на трубопроводе бытовой холодильной машины:

1 – датчик давления; 2 – датчик температуры;
 3 – прилив на магистрали; 4 – трубопровод.

12.3.2. Методика эксперимента

Пуск отепленной бытовой холодильной машины при температуре окружающей среды 20 – 32°С и запись величин давлений, температур в элементах машины, а также потребляемой компрессором электрической мощности до момента выхода агрегата холодильника на установившийся циклический режим работы. Количество заправляемого холодильного агента в агрегат было переменным. Проводились экспериментальные исследования на агрегатах с различными герметичными компрессорами и капиллярными трубками различной пропускной способностью – длиной.

В целях снижения времени экспериментов исследования проводились с низкотемпературным отделением незагруженным теплоинерционным веществом. В противном случае время выхода на установившуюся циклическую работу холодильника составит 20 – 30 часов.

12.3.3. Проверка адекватности

С помощью описанной выше экспериментальной установки и методики эксперимента были получены осциллограммы изменения давлений и температур в местах размещения соответствующих датчиков.

Результаты испытаний при давлении заправки $p_3 = 3,3 \cdot 10^5$ Па и температуре окружающей среды $t_{oc} = 32$ °C представлены на рис. 12.11, 12.12. Обработанные результаты испытаний и расчетов по созданной математической модели агрегата для указанной выше дозы заправки представлены на рис. 12.13 – 12.16. Разброс значений давлений и температур в местах расположения датчиков в опытах с одинаковыми условиями составил не более 2 %. Погрешность при обработке экспериментальных результатов составила на линии низкого давления не более 8,5 %, на линии высокого давления – не более 5 %, по температурам – не более 2 %. Среднее квадратическое отклонение результатов расчета от эксперимента составило по давлениям 7,4%, по температурам – 2,4 %.

Анализ представленных результатов позволяет сделать вывод, что созданное математическое описание процессов в бытовой холодильной машине достаточно точно отражает ее неустановившийся характер работы.

Рис. 12.11. Осциллограммы записи давления в различных точках агрегата

Рис. 12.12. Изменение температур хладагента и элементов конструкции в местах расположения датчиков температуры

Рис. 12.13. Характер изменения давления в элементах холодильной машине

Рис. 12.14. Характер изменения температуры в элементах холодильной машины

Рис. 12.15. Характер изменения потребляемой электрической мощности $N_{\rm 9}$ компрессором КХ-0,125 холодильной машины ОКА-6М ($p_3{=}3,3{\cdot}10^5~{\rm Ha})$

Рис. 12.16. Характер изменения потребляемой мощности компрессором XШВ-8 холодильной машины ОКА-6М

12.3.4. Повышение энергетических характеристик бытового холодильника на основе теоретических исследований

Повышение энергетических характеристик бытовых холодильников вместе со снижением затрат на проектирование и изготовление является одним из направлений повышения их конкурентоспособности.

Для сокращения экспериментально-доводочных работ целесообразно использовать математические модели, учитывающие специфику, работы агрегата бытового холодильника, а именно нестационарный характер его работы [32, 34, 78].

На Тульском Оружейном заводе при участии автора была спроектирована и изготовлена опытная партия высокооборотных компрессоров, получивших индекс XШВ-8 (дальнейшая модификация XШВ-8М, 8Б), энергетические характеристики и холодопроизводительность которых, по данным калориметрических испытаний, превышает компрессор КХ-0,125, устанавливаемый в серийный агрегат холодильника ОКА-6; 6М.

Новый компрессор был установлен в агрегат холодильника ОКА-6М без изменения его конструктивных параметров, что привело к понижению энергетических характеристик холодильника. В целях повышения характеристик был выполнен ряд расчетов с помощью математической модели, алгоритмов и программ, учитывающих нестационарный характер процессов в бытовом холодильнике.

В качестве независимых параметров использовались: проходимость капиллярной трубки, а именно – ее длина, длина трубки конденсатора и масса оребрения, давление заправки в отепленном состоянии, то есть массовое количество холодильного агента (R12) в агрегате. Выбор этих параметров обусловлен сравнительно низкими затратами на их изменение заводом-изготовителем, а также при проверке результатов расчетов. Каждый из перечисленных параметров менялся независимо. Таким образом находился локальный минимум функции качества – суточного расхода электроэнергии от соответствующего параметра.

Далее был произведен расчет при найденных значениях независимых параметров. Результаты расчетов представлены на рис. 12.17 – 12.19 и табл. 12.2.

Рис. 12.17. Влияние длины конденсатора $L_{\kappa}\,$ и количества заправляемого холодильного агента $m_{x.a.}$ на суточный расход электроэнергии W

Рис. 12.18. Влияние длины капиллярной трубки l_{кт} на суточный расход электроэнергии:

1- экспериментальные данные; 2 – расчетные данные.

Рис. 12.19. Влияние массы холодильного агента m_{х.а.} на суточный расход электроэнергии

Анализируя результаты, полученные при расчетах, видно, что замена компрессора КХ-0,125 на компрессор ХШВ-8 в составе холодильника ОКА-6М без внесения конструктивных изменений в агрегат приводит к ухудшению показателей его работы. Это подтверждено экспериментальными исследованиями. Расчеты показали, что при замене компрессора необходимо увеличить пропускную способность капиллярной трубки, уменьшив ее длину с 2800 мм до 2000 мм; увеличить объем и площадь конденсатора, увеличив его длину с 14,132 м до 18,132 м, при соответственном увеличении массы оребрения. Доза заправки должна быть уменьшена и составлять при $p_3 = 290 - 310$ кПа соответственно 90 – 100 г холодильного агента R12.

Экспериментальными исследованиями на Оружейном заводе по одному параметру – капиллярной трубке – подтверждена правильность полученных рекомендаций. В таблице отдельно приводятся результаты, которые показал компрессор ХШВ-8Б (Фото 12.3) в составе холодильника ОКА-6М с укороченной до 2000 мм капиллярной трубкой и уменьшенной на 20% дозой холодильного агента.

По сравнению с серийным агрегатом расход электроэнергии был уменьшен более чем на 10 % при снижении количества озоноразрушающего холодильного агента.

Фото 12.3. Компрессор Тульского оружейного завода ХШВ-8Б

Таким образом, созданная математическая модель, алгоритм и программа позволяют находить оптимальные соотношения конструктивных параметров агрегата в целях повышения его энергетических характеристик и значительно сократить объем экспериментальнодоводочных работ.

Результаты проведенных исследований были представлены на Муромский завод им. С. Орджоникидзе, где были реализованы на серийных агрегатах к бытовому холодильнику ОКА-6М.

В таблице 12.2: Q_0 - холодопроизводительность агрегата; N_{\ni} – потребляемая агрегатом мощность; b – коэффициент рабочего времени; W – суточный расход электроэнергии; L_{κ} , $l_{\kappa T}$ – длины конденса-

тора и капиллярной трубки; m_{R12} — масса холодильного агента в агрегате; t_{oc} - температура окружающей среды; p_3 — давление в агрегате отепленного холодильника.

Таблица 12.2

	Тип	Q ₀ ,	N _э , Bt	b	W,	Примечание
	ком-	Вт			кВт · ч	1
	прессора				сутки	
Расчет	КХ-	54	133,0	0,435	1,385	серийный
t _{oc} =25°C	0,125					агрегат
	ХШВ-8	54	167,0	0,350	1,403	l _{кт} =2800мм
	ХШВ-8	54	166,0	0,348	1,385	l _{кт} =2400мм
	XIIIB-8	54	166,0	0,343	1,365	l _{кт} =2000мм
	XIIIB-8	54	167,0	0,346	1,385	l _{кт} =1600мм
	XIIIB-	54	163,0	0,342	1,335	l _{кт} =2000мм,
	8(опт)					L _к =18,142м
Экспери-	КХ-	54	139,0	0,420	1,401	серийный
мент	0,125					агрегат
$t_{oc}=25^{\circ}C$	XIIIB-8	54	175,0	0,339	1,424	l _{кт} =2800мм
	XIIIB-8	54	170,0	0,336	1,371	l _{кт} =2000мм
	XIIIB-8	54	172,0	0,338	1,392	l _{кт} =1600мм
	ХШВ-8Б	54	152,5	0,341	1,248	l _{кт} =2000мм,
						m _{R12} =95г

Результаты расчетов и экспериментов на бытовом холодильнике типа ОКА-6М

В бытовой холодильной машине величина теплопритока определяется в основном температурой окружающего воздуха [14], поэтому обычно ее характеристики строятся как функции этой температуры. В этом случае можно наглядно проследить изменение характеристик бытового холодильника или морозильника во всем рабочем диапазоне температур окружающего воздуха.

При циклической работе агрегата температура кипения, а значит температуры в морозильном и холодильном отделениях будут определяться также настройкой терморегулятора (TP).

На рис. 12.20 приведены расчетные и экспериментальные результаты по влиянию температуры окружающего воздуха T_{oc} на
энергетические характеристики бытового холодильника ОКА-6М, а именно:

- холодопроизводительность агрегата Q₀;

- суточный расход электроэнергии

$$W = \frac{N_{9}b \cdot 24}{1000};$$

- условный удельный электрический холодильный коэффициент

$$K_{E ycn} = \frac{Q_0}{bN_2};$$

- коэффициент рабочего времени

$$b = \frac{\Delta \tau_p}{\Delta \tau_p + \Delta \tau_H} \, .$$

В представленных характеристиках:

- N_э – потребляемая электрическая мощность;

- Δτ_р, – длительность рабочей части цикла;

- Δτ_н – длительность нерабочей части цикла.

Рассматривалась работа агрегата при следующих положениях терморегулятора (TP): нижняя установка TP, что соответствует температуре воздуха в HTO \cong - 18°C; средняя установка TP \cong - 12°C; верхняя установка TP \cong - 6°C.

При циклической работе агрегата влияние температуры окружающего воздуха на расход электроэнергии весьма значительно.

Рост Т_{ос} с 293 до 305 К вызывает увеличение расхода электроэнергии в 2 – 2,5 раза и снижение условного удельного холодильного коэффициента на 25 – 35 %.

Каждый градус повышения температуры окружающего воздуха вызывает увеличение расхода электроэнергии на 8 – 12 % в зависимости от установки терморегулятора.

Рис. 12.20. Влияние Т_{ос} на характеристики холодильника ОКА-6М ∆, □, о - соответственно нижняя, средняя, верхняя установка терморегулятора

Глава 13

МОДЕЛИРОВАНИЕ РЕГУЛИРУЮЩЕГО УСТРОЙСТВА МАЛОЙ ХОЛОДИЛЬНОЙ МАШИНЫ

В малых холодильных машинах применяются в основном два типа регулирующих расход холодильного агента устройств, а именно: терморегулирующий вентиль (ТРВ) и расширительная трубка.

Терморегулирующий вентиль является достаточно распространенным регулятором в транспортных системах кондиционирования воздуха. В его клапане снижается давление холодильного агента до низкого уровня. Жидкий холодильный агент имеет самую низкую температуру при выходе из регулирующего вентиля на входе в испаритель.

В транспортных системах кондиционирования воздуха используются два типа ТРВ: с внутренним уравниванием, который является наиболее распространенным типом ТРВ, и с внешним уравниванием, который используют при необходимости специального регулирования.

Другим распространенным регулятором является капиллярная (расширительная) трубка, которая устанавливается на входе в испаритель, так же как ТРВ. Интенсивность потока через капиллярную трубку зависит в основном от величины переохлаждения в конденсаторе. В настоящее время капиллярные трубки применяют в машинах холодопроизводительностью до 4000Вт. Они представляют трубку длиной 600 - 6000мм с внутренним диаметром 0,63 - 2,29мм [94].

Жидкий холодильный агент поступает в такую трубку, и по мере движения происходит падение его давления за счет трения и ускорения. Часть жидкости при этом превращается в пар. Для получения желаемых результатов можно применить различные сочетания длины и диаметра трубки.

Капиллярные трубки имеют как достоинства, так и недостатки. Они просты по конструкции, дешевы и не имеют движущихся частей. При остановке компрессора происходит выравнивание давлений в элементах холодильной машины и как следствие легкий очередной запуск компрессора.

К недостаткам капиллярных трубок можно отнести то, что они не могут быть настроены в зависимости от переменной нагрузки,

подвержены засорениям, нуждаются в строгом количестве холодильного агента, заправляемого в агрегат.

Расчет капиллярной трубки заключается в нахождении ее диаметра и длины, при которых компрессор и трубка находятся в уравновешенном состоянии при желаемой температуре кипения.

В литературе имеется много способов расчета течения по капиллярным трубкам [13, 20, 29, 95 - 97, 114, 118 - 122, 125, 126, 129]. Часть способов основывается на эмпирических уравнениях, а некоторые на принципах гидравлики. При проектировании капиллярной трубки целью является нахождение ее длины при заданном диаметре, необходимой для расширения заданного массового потока холодильного агента в зависимости от давлений конденсации и кипения.

В данной работе способ расчета, предложенный в [120, 122, 129], дополнен расчетом участка течения переохлажденного холодильного агента [125]. Решение находится последовательным расчетом. Суммарная длина всей трубки определяется сложением отдельных участков трубки, необходимых для последовательного расширения.

При прохождении холодильного агента через капиллярную трубку происходит падение давления вследствие трения и сил инерции. Из баланса сил, действующих на элемент холодильного агента в трубке, имеем:

$$vdp + VdV + \frac{fV^2dl}{2d_{KT}} = 0,$$
 (13.1)

где v = v' + x(v'' - v') - удельный объем смеси насыщенного пара и насыщенной жидкости холодильного агента; x - степень сухости, определяемая по уравнению кривой Фанно, связывающей все состояния с одинаковой массовой плотностью тока и в то же время с одинаковой полной энтальпией [11, 120].

$$x^{2} + 2x \left[\frac{v'}{v' - v'} + \left(\frac{F}{G}\right)^{2} \cdot \frac{h'' - h'}{(v'' - v')^{2}} \right] + \frac{v'^{2} - v_{1}^{2} + 2\left(\frac{F}{G}\right)^{2}(h' - h_{1})}{(v'' - v')^{2}} = 0, \quad (13.2)$$

где F – площадь поперечного сечения капиллярной трубки; G – величина массового расхода через трубку; v_1 , h_1 - удельный объем и энтальпия холодильного агента в начальной точке расширения; V - скорость потока.

Зная величину давления конденсации p_{k} и величину степени переохлаждения Δt_{no} на участке течения переохлажденного холодильного агента (рис. 13.1), можно найти длину этого участка.

Рис. 13.1. К определению величины падения давления ∆р_{по} на участке течения переохлажденной жидкости

$$\Delta l_{\Pi O} = 1,234 \cdot \frac{d_{KT}^5 \cdot \Delta p_{\Pi O}}{fG^2 v_1}.$$
(13.3)

Деля уравнение (1) на v и производя замену $\frac{V}{v}$ на $\frac{G}{F}$ получим:

$$dp = -\frac{G}{F}dV - \frac{G}{2Fd_{KT}} \cdot fVdl. \qquad (13.4)$$

Первое слагаемое в правой части полученного уравнения представляет собой падение давления вследствие ускорения, второе – падение давления вследствие трения. Разделив капиллярную трубку на участки согласно Δp_i и интегрируя для *i*-го участка, получим:

$$\Delta p_{i} = -\frac{G}{F} \Delta V_{i} - \frac{G}{2Fd_{KT}} \cdot f_{m} V_{m} \Delta l_{i}, \qquad (13.5)$$

где $\Delta V_i = V_i - V_H$; V_H - начальная скорость течения; f_m , V_m - средние значения коэффициента трения и скорости на границе i - го участка.

Коэффициент сопротивления трения зависит от числа Рейнольдса и от шероховатости трубки $f = \frac{0.32}{Re^{0.25}}$, где $Re = \frac{Vd_{KT}}{\mu \cdot v}$; μ - динамическая вязкость смеси жидкого и парообразного холодильного агента в состоянии насыщения $\mu = \mu' + x(\mu'' - \mu')$.

Задаваясь величиной общего падения на і - м участке Δp_i и рассчитав падение давления за счет ускорения $\Delta p_{iy} = \frac{G}{F} \Delta V_i$, можно найти величину падения давления за счет трения, а значит и величину участка трубки, где происходит это падение.

$$\Delta l_{i} = \frac{2(\Delta p_{i} - \Delta p_{iy})Fd_{\kappa T}}{Gf_{m}V_{m}}.$$
(13.6)

При расчете возможен вариант, когда суммарного падения давления недостаточно для получения силы, необходимой для создания ускорения. Такое положение называют запиранием трубки, аналогичное явлениям, происходящим в длинных трубопроводах со скоростью потока, равной скорости звука в конце трубки. Уменьшение давления на выходе не будет влиять на величину расхода. Величина падения давления за счет трения становится отрицательной и расчет заканчивается.

При расчете изменения состояния в области влажного пара предполагалось, что между паром холодильного агента и жидкостью всегда устанавливается термодинамическое равновесие, а значит, не возникает запаздывания кипения. Определенные скорости представляют собой средние значения при гомогенном смешении двух фаз влажного пара.

Длина капиллярной трубки 1_{кт} определится как

$$l_{\rm KT} = \Delta l_{\rm HO} + \sum_{i=1}^{m} \Delta l_i \; . \label{eq:KT}$$

На основании полученной модели течения были получены алгоритм и программа расчета течения холодильного агента в капиллярной трубке (Прил. 10). Результаты расчета сравнивались с данными экспериментальных исследований, полученных на установке, созданной на базе агрегата бытового холодильника ОКА-6 [31].

Рис. 13.2. Характер изменения температуры холодильного агента R12 по длине капиллярной трубки

Рис. 13.3. Характер изменения давления холодильного агента R12 по длине капиллярной трубки

Рис. 13.4. Характер изменения степени сухости холодильного агента

Рис. 13.5. Характер изменения скорости холодильного агента

На рис. 13.2 – 13.5 представлены результаты расчета и эксперимента, которые указывают на их достаточную адекватность и возможность использования разработанного алгоритма и программы для расчета течений по капиллярным трубкам, что является актуальным в связи с переходом на новые экологически безопасные перспективные холодильные агенты.

Глава 14

РОТАЦИОННЫЕ ПНЕВМАТИЧЕСКИЕ ДВИГАТЕЛИ

14.1. Общая характеристика и классификация

Пневматические двигатели как приводы различных машин и механизмов широко применяются во многих отраслях промышленности, что объясняется их конструктивными и эксплуатационными особенностями, делающими их в ряде случаев незаменимыми.

Пневматические двигатели применяются во взрывоопасном производстве в случаях, когда возможны поражения работающих электрическим током, что имеет место в горнодобывающей и химической промышленности, в судостроении, в производстве ручного механизированного инструмента, в машиностроении и на транспорте, автомобильных системах управления, в строительстве и других отраслях народного хозяйства страны.

Пневматические двигатели, особенно малой мощности, обладают небольшой относительной массой (приходящейся на единицу мощности), они не боятся перегрузок, просты в конструкции, надежны в эксплуатации и дешевы в изготовлении.

В качестве источника энергии для пневматических двигателей используется сжатый воздух с избыточным давлением 4 - 6 кг/см².

К числу недостатков пневматических двигателей в первую очередь относится их низкий к.п.д. (20 - 30%). С учетом электроэнергии, подводимой к компрессорам, и в зависимости от типа и качества исполнения двигателя, протяженности и состояния воздухопроводных сетей величина его снижается до 5-15%. Другими недостатками пневматических двигателей являются загрязнение воздушной среды масляными аэрозолями, а также шум при работе, уровень которого доходит до 120 дБ при санитарной норме 80 дБ. Для борьбы с шумом создаются специальные глушители, которые, в свою очередь, снижают к.п.д. двигателей [58].

Пневматические двигатели изготавливаются в широком диапазоне мощностей (от 0,05 до 50 кВт) с частотой вращения выходного вала от нескольких десятков до 75 000 об/мин и применяются как в стационарных, так и в передвижных установках.

Наибольшее распространение получили пневматические двигатели сравнительно малой мощности (до 2 кВт), применяемые главным образом как приводы ручных механизированных инструментов, широко используемых в автомобильном хозяйстве, а также средств механизации и автоматизации производственных процессов [58].

По классификации пневматических устройств, разработанной Институтом машиноведения АН СССР, пневматические двигатели входят в подгруппу устройств третьей группы с однократным преобразованием пневматической энергии в механическую работу. В этих устройствах происходит одновременное изменение пневматических и механических параметров. Расчет и анализ работы устройств этой группы производится обычно комплексными методами теории механизмов, термодинамики и газовой динамики. В таблице 14.1 [58] приведена классификация пневматических двигателей.

Таблица 14.1

Пневматические двигатели										
С использов	С использованием кинетической энер-									
	гии сжатого воздуха									
С возвратно- поступатель- ным движени- ем ведущего звена	С враг	цательны ведуп	С вращательным движением ведуще- го звена							
Поршневые	Шесте- ренные	Рота- цион- ные	Роторно- шестеренные	Турбинные						

В свою очередь, основные разновидности пневмодвигателей могут быть классифицированы в зависимости от характера преобразования в них пневматической энергии в механическую работу и вида движения ведущего звена, на которое непосредственно воздействует сжатый воздух (табл. 14.1).

В настоящее время серийно изготавливаются в основном пневмодвигатели следующих типов: шестеренные, поршневые, ротационные и турбинные. Каждый их этих типов двигателей в соответствии с их характеристиками имеет определенную область применения.

14.2. Ротационные пневмодвигатели

На рис. 14.1 показана конструкция ротационного пневмодвигателя. Основными элементами его являются ротор 1 с лопатками 2, расположенный в статоре 3 и покоящийся на подшипниках качения, размещенных в торцовых крышках 4.

Ротационные двигатели являются самым распространенным типом пневматических двигателей. Их производство достигает 90% от общего выпуска пневмодвигателей.

Основным преимуществом ротационных двигателей является их малая относительная масса и меньшие габариты. Уплотнение рабочей камеры менее совершенно, чем в поршневых двигателях, но за счет большего коэффициента расширения сжатого воздуха их к.п.д. выше (табл. 14.2).

Одним из основных недостатков большинства ротационных двигателей можно считать то, что контакт между лопатками и статором возникает вследствие центробежных сил, а не кинематических связей, результатом чего является отсутствие гарантированного запуска двигателя и невозможность работы его на малых оборотах. К числу других недостатков может быть отнесен также сильный шум при работе и сравнительно быстрый износ лопаток [58].

Рис. 14.1. Общий вид ротационного пневмодвигателя

Ротационные двигатели могут быть изготовлены как в реверсивном, так и нереверсивном исполнениях, причем в первом случае они обладают пониженными мощностью и к.п.д. [58].

Таблица 14.2

Характери-	Тип двигателя								
стика двига-	Шестерен	натые							
теля	Прямозубые и	Шеврон-	Поршне-	Ротаци-	Тур-				
	косозубые	ные	вой	онный	бинные				
Мощность,	3 - 4	0	5 - 15	0,05 - 3	0,03 - 2				
кВт									
Частота	2000 - 3	3000	400 - 2000	2000-	20000-				
вращения,				25000	75000				
об/мин									
Расход сво-									
бодного	1,3	1,1	1,1	1,1	1,2				
воздуха на									
1 кВт мощ-									
ности,									
м ³ /мин									
Коэффици-									
ент расши-	-	1,1	1,1	1,3 – 2,0	-				
рения воз-									
духа									
Относитель-	8 - 1	2	5 - 9	1 - 2	2 - 5				
ная масса,									
кг/кВт									
Отношение									
пускового	1,3	1,6	1,8	1,6	1,5				
момента к									
номиналь-									
ному									

Из анализа термодинамических процессов пневмодвигателя следует, что методы расчета ротационного пневмодвигателя, основанные на законах термодинамики для рабочего тела переменной массы, позволили бы наиболее полно увязать протекающие в двигателе процессы с его конструктивными особенностями и частотой вращения ротора [58]. В настоящей работе приводится математическая модель ротационного пневмодвигателя, построенная автором на основе методологии термодинамики тела переменной массы (термодинамики открытых систем), а также ряд результатов полученных в результате расчетов.

14.3. Математическая модель процессов в ротационном пневматическом двигателе (РПД)

Действительные рабочие процессы РПД характеризуются сложными термогазодинамическими явлениями с переменным по массе реальным рабочим телом.

В связи с этим возникла необходимость создания математической модели, позволяющей учесть перечисленные выше явления.

Допущения положенные в основу математической модели:

1. Температура стенок компрессора принимается средней по величине.

2. Коэффициенты теплоотдачи принимаются средними по ячейкам сжатия и пропорциональными плотности рабочего тела.

3. Остальные допущения, положенные в основу модели, традиционны для термодинамики открытых систем [46].

Процесс в РПД рассматривается как совместное решение системы обыкновенных дифференциальных уравнений для каждой ячейки во времени с учетом взаимных протечек и теплообмена.

Общая система уравнений ротационного пневматического двигателя, расчетная схема которого изображена на рис. 14.2, будет состоять из трех подсистем уравнений.

I. Подсистема, описывающая термодинамические процессы в отдельной полости, состоящая из:

- уравнения скорости изменения температуры рабочего тела iой полости

$$\frac{dT_i}{d\tau} = \frac{RT_i}{C_{V_i}\rho_i W_i} \left\{ \left(\frac{h_{i+1,i} - u_i}{RT_i} \right) G_{i+1,i} - \left(G_i + G_{i,i+1} + \rho_i \frac{dW_i}{d\tau} \right) + \frac{Q_{B_i}}{RT_i} \right\}, \quad (14.1)$$

- уравнения скорости изменения плотности рабочего тела

$$\frac{d\rho_{i}}{d\tau} = \frac{1}{W_{i}} \left(G_{i,i+1} - G_{i} - G_{i,i-1} - \rho_{i} \frac{dW_{i}}{d\tau} \right), \qquad (14.2)$$

(14.3)

- уравнение состояния

Рис. 14.2. Расчетная схема РПД

В уравнениях (14.1-14.3): R, C_v- удельные газовая постоянная и изохорная теплоемкость рабочего тела; h _{i+1,i} - удельная энтальпия; u_i удельная внутренняя энергия; G _{i+1,i}, G _{i-1,i} - расходы при протечках, всасывании и нагнетании соответственно; ρ_i - плотность рабочего тела; W_i - объем ячейки сжатия; Q_{Bi} - тепловой поток между рабочим телом и цилиндром компрессора; dW_i/dt - скорость изменения объема ячейки.

В момент соединения полости с окном всасывания $h_{i+1,i} = h_o$, G _{i+1,i} = G_o (рис. 14.2.). Площади проходных сечений при определении расходов на всасывании и нагнетании определяются по углу поворота ротора ϕ , угловому шагу пластин β и известным фазовым углам проточной части РПД (δ_1 , δ_2 , δ_3 , δ_4).

В уравнениях (14.1, 14.2): G_j – расходы рабочего тела при газообмене, включая расход при протечках G_{ут}.

Уплотнение рабочей камеры ротационного двигателя осуществляется главным образом за счет высокой точности изготовления деталей двигателя. Наиболее существенным с этой точки зрения является зазор δ между торцами ротора и боковыми крышками, а также зазор между торцами крышек и лопатками (см. рис. 14.3) [58].

Рис. 14.3. Двигатель с эксцентриситетом на торцевых крышках

На рис. 14.4 [43] показаны возможные пути утечек воздуха из рабочей камеры вследствие неплотностей сопряжения деталей двигателя: рис. 14.4, а - между лопатками и статором через радиальный зазор; рис. 14.4, б - через зазор между торцами лопаток и торцами крышек; рис. 14.4, в - через зазор между торцами крышек и торцами ротора; рис. 14.4, г - через зазор между боковыми поверхностями лопаток и стенками пазов ротора. Кроме того, утечки могут происходить через зазор Δ между шейками ротора и отверстиями в крышках (рис. 14.3). Во всех случаях, кроме второго и последнего, утечки идут в направлении зон основного и дополнительного выхлопов [58].

Эксперименты, проведенные в лаборатории завода «Пневматика», показали, что наибольшей величины (около 80% от общего количества) достигают утечки через зазоры между торцами крышек и торцами ротора и лопаток (рис. 14.4, б и в). Это непосредственно связано с величиной осевых зазоров между ротором и статором [58].

Таким образом, величина торцового зазора δ во многом определяет работу двигателя.

Рис. 14.4. Схемы утечек сжатого воздуха через неплотности сопряжения деталей двигателя [58]

Ниже приводится математическая модель протечек, в которой за основу были приняты работы С.Е. Захаренко [54 - 56].

Расход при протечках в докритическом режиме определяется по зависимости [54]:

$$G_{yT} = S_3 \sqrt{\frac{\rho_1' p_2 [(p_1 / p_2)^2 - 1]}{\ln(p_1 / p_2)^2 + \xi + \lambda_T \Sigma_{III}}},$$

где p₁, T₁ - давление и температура рабочего тела в полости (цилиндре) откуда происходят протечки; p₂ - давление в ячейке, куда происходят протечки (картере двигателя); ρ₁ - плотность рабочего тела в потоке на выходе из щели $\rho'_1 = p_2 / (R \cdot T_1)$; R – газовая постоянная; ξ - коэффициент местных потерь; λ_T - коэффициент трения по длине щели; $\Sigma_{\mu\mu}$ - величина, зависящая от формы и размеров щели; S₃ - площадь зазора при протечках (S₃ = $\Delta \cdot h$), Δ - величина минимального зазора в сопряжении поршень-цилиндр; h - длина (высота) поршня.

Так как коэффициенты: местных потерь ξ , трения $\lambda_{\rm T}$ зависят от скорости рабочего тела в щели, то есть от определяемого расхода, то это предполагает итерационный расчет, что крайне невыгодно.

Для подавляющего большинства случаев режим течения в щелях ламинарный (число Рейнольдса Re ≤1600), поэтому для определения коэффициента трения λ_т можно использовать зависимость

$$\lambda_{\rm T} = \frac{96}{{
m Re}},$$

где Re = $\frac{G_{yT}}{\mu l}$, μ - динамическая вязкость рабочего тела, для воздуха, определяемая по формуле Сатерленда, 1 – длина щели.

Коэффициент местных потерь ξ, также в зависимости от числа Re, можно определить по опытным данным приведенным в работе [54] рис. 14.5.

Рис. 14.5. Кривая зависимости ξ от Re

В широком интервале чисел Re зависимость ξ можно представить в виде линейной функции вида

$$\xi = b_0 + b_1 G_{yT}$$
.

В результате подстановки ξ и λ_{τ} в уравнение (14.3), после алгебраических преобразований можно получить следующее уравнение

$$b_1 G_{y_T}^3 + (a_2 + b_0) G_{y_T}^2 + a_3 G_{y_T} - a_1 = 0,$$

где $a_1 = S_3^2 \rho_1' p_2 (\tau^2 - 1), a_2 = \ln \tau^2, a_3 = 96\Sigma \mu l, b_1 = -\frac{0,001375}{\mu l}, b_0 = 5.$

Величина Σ_щ зависящая от формы и размеров щели приводится для различных случаев течения в работе [53].

В результате решения кубического уравнения получаются три действительных корня, один из которых соответствует реальным условиям протечек через зазор (щель).

Зависимости для определения W_i , dW_i/τ получены с учетом стеснения объема рабочей полости телом пластины, хотя согласно соображениям, изложенным в [102], пластина действует в пазу как поршень, нагнетая пар в торцевые зазоры, где он препятствует утечкам из ячейки, т.е. объем, описанный пластиной, не теряется.

$$\frac{dW}{d\tau} = -\omega R_{II} eL \left(2\sin\frac{\beta}{2}\sin\phi + \frac{e}{R_{II}}\sin\beta\sin2\phi \right) + \frac{L\delta e}{2} \omega \left(2\sin\phi\cos\frac{\beta}{2} + \frac{e}{R_{II}}\sin2\phi\cos\beta \right)$$

где е - величина эксцентриситета; L - длина ротора; R_{μ} - радиус цилиндра; Z - число пластин ($\beta = 2\pi/Z$).

II. Подсистема, описывающая теплообмен в полости РПД

$$Q_{Bi} = \alpha_i (T_i - T_c) F_i$$
, (14.4)

где α_i= α_oρ_i, α_o - определяемый экспериментально удельный коэффициент теплоотдачи; T_c - температура стенки цилиндра двигателя; F_i - площадь теплоотдающей поверхности, определяемая зависимостью

$$F_{i} = 2R_{ij}e\left(\beta + 2\sin\frac{\beta}{2}\cos\phi + \frac{e}{2R_{ij}}\sin\beta\cos2\phi - \frac{e\beta}{2R_{ij}}\right) +$$

+ Le
$$\left[2 + 2\cos\varphi\cos\frac{\beta}{2} - \frac{e}{2R_{II}}(1 - \cos2\varphi\cos\beta)\right]$$

III. Механическая подсистема, включает:упрощенное уравнение углового ускорения

$$\frac{d\omega}{d\tau} = \frac{1}{J} (M_{\pi} - M_c) , \qquad (14.5)$$

- кинематическое соотношение

$$\omega = d\phi / d\tau, \qquad (14.6)$$

где ω - угловая скорость вращения ротора; J - переменный момент инерции ротора с пластинами, определяемый по зависимости

$$J = J_{c} + 0.5m_{\Pi p}(R_{\Pi} - e)^{2} - Zm_{\Pi p}(R_{\Pi} - e - h_{\Pi p}/2)^{2} + m_{\Pi \pi} \sum_{i=1}^{Z} (r_{i} - h_{\Pi \pi}/2)^{2} ,$$

$$r_{i} = R_{\Pi} + e\cos[\phi + \frac{\beta}{2} + \beta(i-1)] - \frac{e^{2}}{2R_{\Pi}} \sin^{2}[\phi + \frac{\beta}{2} + \beta(i-1)] ,$$

где J_c - постоянный момент инерции ротора двигателя и вала; $h_{\rm np}$ - глубина паза ротора; $h_{\rm nn}$ - высота пластины; $m_{\rm np}$ - масса удаленного материала из паза; $m_{\rm nn}$ - масса пластины; M_c - момент сопротивления; $M_{\rm d}$ - движущий момент (рис. 14.6), для которого можно записать

$$\begin{split} \mathbf{M}_{\mathbf{c}} &= \sum_{i=1}^{Z} \mathbf{F}_{\mathbf{p}_{i}} \mathbf{r}_{i} = \sum_{i=1}^{Z} (\mathbf{p}_{i+1} - \mathbf{p}_{i}) \mathbf{L} \cdot \Delta \mathbf{r}_{i} \bigg(\mathbf{R}_{\mathbf{II}} - \mathbf{e} + \frac{\Delta \mathbf{r}_{i}}{2} \bigg) \,, \\ \Delta \mathbf{r}_{i} &= \mathbf{e} \bigg(\cos \bigg(\mathbf{\phi} + \beta(i-1) + \frac{\beta}{2} \bigg) + 1 \bigg) - \frac{\mathbf{e}^{2}}{2\mathbf{R}_{\mathbf{II}}} \sin \bigg(\mathbf{\phi} + \beta(i-1) + \frac{\beta}{2} \bigg) \,. \end{split}$$

Система уравнений (14.1 – 14.6) является замкнутой, позволяющей для различных моментов времени, либо углов поворота вала ϕ , определить текущие характеристики двигателя: давление, плотность, температуру рабочего тела в полостях РПД, действующие моменты, а также интегральные характеристики: потребляемую мощность, расход газа и т.д.

Рис. 14.6. К определению движущего момента

14.4. Расчет рабочих процессов в ротационном пневматическом двигателе

Ниже приведены результаты расчетов работы двигателя PC-32, представленного на рис. 14.7, в зависимости от частоты вращения ротора и аналогичные характеристики приведенные в работе [58]. Расчеты (Прил. 11) проводились при частоте вращения вала двигателя равной 3000 об/мин, давлении в сети 600 кПа, температуре стенки двигателя равной 293 К.

Рис. 14.7. Пневматическая сверлильная машина PC-32 с продольным и поперечным разрезами ротационного двигателя:

1 - двигатель; 2 - пусковое устройство; 3 - дроссельное устройство; 4 - редуктор; 5 - шпиндель; 6 - центробежный регулятор; 7 - нажимное устройство; 8 - корпус; 9 - стяжные болты; 10 - ось коромысла; 11 - коромысло; 12 - пружина; 13 - окна; 14 - верхняя крышка двигателя; 15 - нижняя крышка двигателя; 16 – компенсаторное кольцо

Рис. 14.8. Зависимости изменения давления в ячейке двигателя за цикл

Рис. 14.9. Мощность двигателя

Рис. 14.10. Крутящий момент двигателя

Рис. 14.11. Расход воздуха из сети

Рис. 14.12. Механические характеристики двигателя машины PC-32 с регулятором частоты вращения по данным [58]

Рис. 14.13. Зависимость движущего (крутящего) момента за цикл

Рис. 14.14. Текущий расход при протечке в ячейку двигателя через ограничивающие ее пластины

Рис. 14.15. Текущая величина протечки в сопряжении ротор – крышки статора двигателя

Рис. 14.16. Мощность двигателя

Рис. 14.17. Расход воздуха из сети

На рис. 14.16, 14.17 показано уменьшение мощности N и увеличение расхода воздуха Q для машины PC-32 в зависимости от торцового зазора δ, полученные расчетным путем с помощью разработанного математического описания и алгоритма. По большей части величина этого зазора в реальных конструкциях ограничивается не требованиями обеспечения максимального к.п.д. машины, а технологическими возможностями предприятия-изготовителя [58].

Рис. 14.18. Масса протечек из ячейки за цикл

Результаты приведенные на рис. 14.8 – 14.18 позволяют сделать вывод о достаточной точности разработанной математической модели ротационного пневматического двигателя и возможности использования ее при исследовании и совершенствовании рабочих процессов.

14.5. Определение механических потерь в ротационном пневматическом двигателе

Трущиеся поверхности деталей машин и механизмов во многих случаях разделены тонким слоем вязкой жидкости или газа, в котором развивается давление, предотвращающее соприкосновение по-

верхностей. Закономерности движения такого тонкого вязкого слоя составляют содержание гидродинамической теории смазки, основы которой были заложены в трудах О. Рейнольдса, Н. П. Петрова, Н. Е. Жуковского, С. А. Чаплыгина [51].

Одной из основных особенностей движения смазочного слоя является его малая толщина (она имеет порядок сотых, тысячных долей миллиметра) по сравнению с размерами граничных поверхностей.

Перетечки среды в ротационном пневматическом двигателе (РПД), приводящие к потерям мощности, происходят через радиальный зазор (минимальное расстояние между ротором и цилиндром), через торцевые зазоры (между крышками цилиндра и торцами ротора, между крышками и торцами пластин), а также через зазоры между пластинами и пазами ротора.

Значительную часть потерь мощности, особенно на режимах с малыми массовыми расходами, составляют механические потери. Мощность трения РПД зависит от ряда факторов, главными из которых являются радиус цилиндра R, частота вращения ротора n, масса m и количество пластин z.

Около 80 – 90% механических потерь приходится на трение пластин по цилиндру и в пазах ротора, остальные потери – на трение в подшипниках и сальнике.

Наилучшим способом смазки РПД является введение ее в распыленном виде при помощи магистральной масленки вместе с воздухом, поступающем в двигатель.

В зависимости от количества и качества смазки мощность, расход и срок службы двигателя могут изменяться в широких пределах. К сожалению, магистральные масленки применяют довольно редко, и в большинстве случаев смазка РПД осуществляется путем периодической заливки (через 15 – 20 мин работы) в пусковое устройство двигателя 15 – 20 г турбинного или машинного масла [58].

При уменьшении количества пластин снижаются механические потери, но возрастают перетечки внутри двигателя и депрессия на нагнетании. Оптимальное (с точки зрения суммарных индикаторных и механических потерь) количество пластин для РПД составляет 4 – 8.

Воспользуемся гидродинамической теорией смазки для решения задачи по определению механических потерь в двигателе. При изложении решения будем использовать данные работ [51, 99].

Определение скорости пластин в пазах V_{пл} (рис. 14.19)

$$\frac{d\rho}{d\phi} = \frac{d\rho}{d\phi} \cdot \frac{d\tau}{d\tau} = \frac{d\rho}{d\tau} \cdot \frac{d\tau}{d\phi} = \frac{V_{\Pi\Pi}}{\omega}, \quad V_{\Pi\Pi} = \omega \cdot \frac{d\rho}{d\phi}.$$

Радиус – вектор

$$\rho = e\cos\phi + R_{II}\sqrt{1 - \frac{e^2}{R_{II}^2}\sin^2\phi}, \quad \text{откуда} \quad \frac{d\rho}{d\phi} = -\sin\phi \left(e + \frac{e^2\cos\phi}{R_{II}\sqrt{1 - \frac{e^2}{R_{II}^2}\sin^2\phi}}\right).$$

При малых величинах эксцентриситета е путем разложения функции, представленной квадратным корнем в ряд Маклорена с последующим отбрасыванием членов ряда с порядком более двух, можно получить:

Рис. 14.19. Основные размеры для определения механических потерь в РПД

Сила трения пластины в пазе и центробежная сила

$$F_{\mu \Pi \Pi} = 2\mu \frac{V_{\Pi \Pi}}{\Delta_{\Pi \Pi}} h'_{\Pi \Pi} l_{\Pi \Pi}, \qquad F_{\Pi \delta} = \left(\rho - \frac{h}{2}\right) m_{\Pi \Pi} \omega^2.$$

Суммарная сила, действующая на смазочный слой

$$\label{eq:F_sigma} F_{\Sigma} = F_{\mu}_{\Pi\Pi} + F_{\Pi\bar{D}} \, .$$

Величина зазора пластина – цилиндр (толщина смазочного слоя)

$$\Delta_{\Pi\Pi,\Pi} = \sqrt{\frac{0,16 \cdot \mu \cdot \omega \cdot \rho \cdot \delta^2 \cdot l_{\Pi\Pi}}{F_{\Sigma}}} \,.$$

Сила трения и момент силы трения в сопряжении пластина – цилиндр двигателя

$$F_{\Pi\Pi,\Pi} = \mu \cdot \frac{\omega \cdot \rho}{\Delta_{\Pi\Pi,\Pi}} \cdot \delta \cdot l_{\Pi\Pi}, \qquad M_{\Pi\Pi,\Pi} = F_{\Pi\Pi,\Pi} \cdot \rho.$$

Расчет силы трения и момента силы трения в сопряжении пластина – крышки цилиндра

Расстояние до центра выступающей части пластины

$$\rho_{II.\Pi II} = R_P + \frac{\rho - R_p}{2}.$$

Сила трения и момент

$$F_{\Pi\Pi,\kappa,\mu} = 2\mu \frac{\rho_{\mu,\Pi\Pi} \cdot \omega}{\Delta_{\Pi\Pi,\kappa,\mu}} \delta \cdot h_{\Pi\Pi} = 2\mu \frac{\rho_{\mu,\Pi\Pi} \cdot \omega}{\Delta_{\Pi\Pi,\kappa,\mu}} \delta \cdot (\rho - R_p),$$

$$M_{\Pi\Pi.\kappa.\mu} = F_{\Pi\Pi.\kappa.\mu} \cdot \rho_{\mu.\Pi\Pi}.$$

Сила трения и момент силы в сопряжении ротор – крышки цилиндра

$$F_{p.\kappa,\mu} = 2\mu \frac{V_{cp}}{\Delta_{p.\kappa,\mu}} \pi R_p^2 = \frac{2\mu \frac{K_p}{2}\omega}{\Delta_{p.\kappa,\mu}} \pi R_p^2 = \frac{\mu\omega\pi R_p^3}{\Delta_{p.\kappa,\mu}},$$

$$M_{p.\kappa,\mu} = F_{p.\kappa,\mu} \frac{R_p}{2} = \frac{\mu \omega \pi R_p^4}{2\Delta_{p.\kappa,\mu}}.$$

Следует отметить что, как правило $\Delta_{p.к.ц} = \Delta_{пл.к.ц}$.

Момент между валом ротора и ступицей (в случае подшипни-ков скольжения)

$$M_{cT} = 2\pi\mu \log\left(\frac{d^3}{\delta_{cT}}\right).$$

В представленных уравнениях: R_{μ} – радиус цилиндра, е – эксцентриситет, R_p – радиус ротора, δ – толщина пластины, h – высота пластины, $h_{\pi\pi} = \rho - R_p$ – высота выступающей из ротора части пластины, $h_{\pi\pi}' = h - h_{\pi\pi} = h - (\rho - R_p)$ – высота части пластины располагаемой в роторе двигателя, $\Delta_{\pi\pi}$ – зазор между пластиной и пазом ротора, $\Delta_{\pi\pi, \mu}$ – зазор между пластиной и цилиндром двигателя, $\Delta_{p.к.\mu}$ – зазор между ротором и крышкой цилиндра, $\Delta_{\pi\pi, \kappa, \mu}$ – зазор между ротором и крышкой цилиндра, $\Delta_{\pi\pi, \kappa, \mu}$ – зазор между пластины, $n_{\pi\pi} = \rho_{\pi\pi} h \delta l_{\pi\pi}$ – масса пластины, $\rho_{\pi\pi}$ – плотность материала пластины, $l_{\pi\pi}$ – длина пластины равная длине ротора, ϕ – угол поворота ротора, ω – угловая скорость вращения ротора, μ – динамическая вязкость смазочного масла, l – длина вала в сопряжениях, d – диаметр вала, $\delta_{c\tau}$ – величина зазора в сопряжении вал – крышка двигателя.

В системе смазки ротационных двигателей рекомендуют турбинное масло марки 22 или индустриальное масло в количестве трех четырех капель на 1 м³ воздуха в минуту или другую смазку, по своим качествам близкую указанной. Динамическую вязкость рекомендуемого масла можно определить по уравнениям:

$$\mu = \vartheta \cdot \rho, \qquad \rho = \rho_{20} [1 - \beta \cdot (T - 293)],$$

$$\vartheta = (a_1 x^6 + a_2 x^5 + a_3 x^4 + a_4 x^3 + a_5 x^2 + a_6 x + a_7) \cdot 10^{-6} ,$$

где x = $\left(\frac{T-273}{10}+1\right)$; T – температура стенки двигателя; ρ_{20} - плотность

масла при температуре 20° С; β - температурный коэффициент; a_1 , a_2 , a_3 , a_4 , a_5 , a_6 , a_7 – аппроксимирующие коэффициенты, которые находятся методом регрессии по имеющимся справочным данным.

Так как величины торцевого зазора между ротором и крышками статора, а также пластинами и статором во многом определяют работу двигателя, то исследовалось именно эти влияния на механические характеристики ротационного пневматического двигателя PC-32.

Результаты расчетов проведены для частоты вращения вала n =3000 об/мин, давлении в сети 6 ат и представлены на рис. 14.20 - 14.24.

Рис. 14.20. Зависимость величины зазора между пластиной и статором в процессе работы двигателя

Рис. 14.21. Скорость лопатки в пазу ротора

Рис. 14.22. Силы, действующие на лопатку

Рис. 14.23. Зависимость момента трения

Рис. 14.24. Зависимость механического к.п.д.

Анализ результатов расчетов, приведенных на рис. 14.20-14.24, позволяет сделать вывод об их достаточно хорошей сходимости с имеющимися экспериментальными данными по двигателю PC-32 [58]. Поэтому предложенную методику определения механических потерь, можно рекомендовать для расчетов рабочих процессов РПД, а также при их проектировании.

Соотношение между центробежной силой и силой трения, действующей на лопатку (рис. 14.22), позволяет определить предельное минимальное число оборотов двигателя, ниже которого происходит резкое ухудшение энергетических характеристик и остановка двигателя. Для двигателя PC-32, как показали расчеты, это число составляет 800 об/мин.

Из рис. 14.24 следует, что существует оптимальная величина одностороннего зазора в сопряжении ротор-крышка статора равная 6-10 мкм.

14.6. Повышение характеристик ротационного пневматического двигателя сверлильной машины

В настоящем разделе приводятся результаты расчетов, полученные с помощью программ [49, 50], позволившие получить рекомендации по улучшению технических характеристик пневматического двигателя сверлильной машины PC-32 за счет изменения фазовых углов.

Число лопаток двигателя было равно 6, частота вращения - 4000 об/мин, давление в сети 6 ат.

В таблице 14.3 приводятся исходные данные по фазовым углам двигателя PC-32 относительно оси ротора и оси цилиндра, а на рисунке 14.25 представлена схема такого двигателя с указанными фазовыми углами [58].

Рис. 14.25. Схема двигателя с фазовыми углами:

На рисунке 14.25 обозначены: r_0 - радиус ротора; е – эксцентриситет (расстояние между осями ротора и статора); p_1 - абсолютное давление воздуха на входе в двигатель; p_0 - абсолютное давление воздуха на выхлопе; γ - угол между лопатками, образующими отдельную полость; ϕ'_0 - угол, соответствующий началу зоны впуска; ϕ_0 - угол, соответствующий концу зоны впуска; ϕ_1 - угол, соответствующий началу зоны выхлопа; ϕ_2 - угол, соответствующий концу зоны выхлопа; ϕ - угол поворота ротора.

В ходе численных экспериментов оказалось, что наибольшее влияние на характеристики двигателя оказало изменение угла окончания впуска ϕ_0 . Варьирование углами ϕ_2 , ϕ_1 , ϕ'_0 не привело к существенному улучшению характеристик двигателя, что свидетельствует о его хорошей доводке.

В качестве критерия было взято отношение мощности развиваемой двигателем к объемному расходу воздуха.

Результаты расчетов представлены в таблице 14.4 и на рисунках 14.26 – 14.28, а исходный и оптимальный варианты в таблице 14.4 отмечены жирным шрифтом.

Таблица 14.3

Значения фазовых углов пневматического двигателя РС-32

	Значения (по	Значения (по	Значения углов
Фазовые углы	углу поворота	углу поворота	по оси цилиндра,
	ротора), град	ротора), рад	рад
			(Задаются в ис-
			ходных данных)
$\phi_{0}^{'}$ (начало впуска)	30	0,524	0,440
фо (конец впуска)	70	1,222	1,065
φ ₁ (начало выпуска)	210	3,665	3,748
ф ₂ (конец выпуска)	300	5,236	5,381

Таблица 14.4

Результаты расчетов при изменении фазового угла ϕ_0

Значение ϕ_0	Значение ϕ_0				
(по оси ци-	(по углу пово-				
линдра), рад	рота ротора),	Мощ-	Расход	Расход	<u>Мощность</u>
Задается в	рад	ность,	возду-	возду-	<u>(Вт)</u>
исходных	Пересчитыва-	Вт	xa,	xa,	Расход
данных	ется програм-		кг/с	м ³ /мин	(м ³ /мин)
	мой				
1 0(5	1 000 (DC 00)	10/0	0 0 4 5 0	A A O	0150
1,005	1,222 (PC-32)	1860	0, 0452	2,28	815,8
1,165	1,222 (PC-32) 1,327	2080	0,0452 0,0486	2,28 2,45	815,8 849,0
1,165 1,265	1,222 (PC-32) 1,327 1,431	1860 2080 2270	0,0452 0,0486 0,0518	2,28 2,45 2,61	815,8 849,0 869,7
1,005 1,165 1,265 1,365	1,222 (PC-32) 1,327 1,431 1,532	1860 2080 2270 2420	0,0452 0,0486 0,0518 0,0549	2,28 2,45 2,61 2,77	815,8 849,0 869,7 873,6
1,165 1,265 1,365 1,465	1,222 (PC-32) 1,327 1,431 1,532 1,632	1860 2080 2270 2420 2520	0,0452 0,0486 0,0518 0,0549 0,0577	2,45 2,61 2,77 2,91	815,8 849,0 869,7 873,6 865,0
1,165 1,265 1,365 1,465 1,565	1,222 (PC-32) 1,327 1,431 1,532 1,632 1,730	1860 2080 2270 2420 2520 2570	0,0452 0,0486 0,0518 0,0549 0,0577 0,0602	2,28 2,45 2,61 2,77 2,91 3,04	815,8 849,0 869,7 873,6 865,0 845,4

Рис. 14.26. Зависимость мощности двигателя от угла окончания впуска

Рис. 14.27. Зависимость расхода воздуха двигателя от угла окончания впуска

Таким образом, увеличение ϕ_0 на 0,3 рад (17 град) приводит к увеличению мощности на 30%, но одновременно и к увеличению расхода воздуха на 21,5%. Однако согласно используемому критерию этот вариант лучше исходного.

Рис. 14.28 Критерий N/V - мощность двигателя/объемный расход воздуха

Дальнейшее увеличение угла ϕ_0 не приводит к увеличению мощности двигателя вследствие того, что угловая фаза впуска становится больше угла между лопатками γ (при z = 6, γ = 60°) и в нерабочем состоянии, на впуске, будут находиться две лопатки.

Были также проведены расчеты характеристик двигателя PC-32 при изменении числа лопаток.

В таблице 14.5 и на рисунке 14.29 представлены результаты расчета рабочего процесса РС-32 при числе лопаток соответственно: 4, 6, 8.

Таблица 14.5

Число	Расход	Мощность	Крутящий	Критерий N/G,	
лопаток	воздуха, кг/с	двигателя, Вт	момент, Н•м	кBт/(кг/с)	
4	0,0545	2180	5,22	40,00	
6	0,0451	1860	4,43	41,24	
8	0,0381	1570	3,76	41,21	

Результаты расчета при изменении числа лопаток

Рис. 14.29. Зависимость мощности двигателя от числа лопаток

Следует отметить, что результаты расчета полностью совпадают с данными работ [57, 58]. Двигатель с четырьмя лопатками обладает большей мощностью и крутящим моментом, но одновременно и большим расходом сжатого воздуха. Согласно полученным результатам, по критерию N/G, предпочтительнее использовать ротор с шестью или восемью лопатками. Однако с технологической и практической точки зрения ротор пневматического двигателя с шестью лопатками будет предпочтителен.

14.7. Определение скорости изменения объема рабочей камеры двигателя с тангенциальным расположением лопаток

Для расчета двигателей с тангенциальным расположением лопаток необходимо определить объем рабочей камеры или её торцевую площадь в зависимости от угла поворота ротора.

На рис. 14.30 [58] показаны площадь ABCD при тангенциальном расположении лопаток (она заштрихована) и площадь AB₁ED соответствующая радиальному расположению лопаток.

Обозначив площадь ABCD = F_{T} , площадь AB₁ED = F_{p} ; площадь $\Delta DCE = S_{2}$; площадь $\Delta AB_{1}B = S_{1}$ получим

$$\mathbf{F}_{\mathrm{T}} = \mathbf{F}_{\mathrm{p}} + \mathbf{S}_2 - \mathbf{S}_1.$$

Следует отметить, что в [58] идет некорректное сравнение площадей рабочих камер двигателей с тангенциальным и радиальным расположением лопаток, а именно при разных углах поворота ротора, соответственно ϕ и ϕ + ω . В результате разница указанных площадей получается заниженной.

Примем $S = S_2 - S_1$, тогда $F_T = F_p + S$.

Рис. 14.30. К определению торцевой площади рабочей камеры двигателя с тангенциальным расположением лопаток

Для скорости изменения торцевой площади будем иметь

$$\frac{dF_{\rm T}}{d\phi} = \frac{dF_{\rm p}}{d\phi} + \frac{dS}{d\phi}, \quad \frac{dF_{\rm T}}{d\tau} = \frac{dF_{\rm T}}{d\phi} \cdot \Omega = \left(\frac{dF_{\rm p}}{d\phi} + \frac{dS}{d\phi}\right) \cdot \Omega ,$$

где F_{τ} – торцевая площадь рабочей камеры двигателя с тангенциальным расположением лопаток F_p – торцевая площадь рабочей камеры двигателя с радиальным расположением лопаток, S – поправка к торцевой площади при учете тангенциального расположения лопаток [58], Ω - угловая скорость вращения ротора, φ - угол поворота вала (ротора) двигателя, τ - время.

Величина торцевой площади двигателя с радиальным расположение лопаток F_p (см. 14.3) известна, поэтому определение величины $F_{\rm T}$ сводится к определению площади S.

Для ее определения и скорости ее изменения воспользуемся результатами работы [58] при этом должны быть заданы следующие геометрические параметры (рис. 14.30): радиус ротора r_0 , эксцентриситет е, угол поворота ротора относительно оси эксцентриситета ϕ , угол наклона лопатки α_1 .

Для расчетов требуется определение ряда величин согласно (рис. 14.31) [58]: угла ВАО₁ (ψ) между лопаткой и прямой, соединяющей центр статора с концом лопатки; угла OBO₁ (β), образованного линиями, соединяющими точку В пересечения лопатки с окружностью ротора с центрами ротора и статора; центрального угла AOB (ω), соответствующего выступающей части лопатки; высоты выступающей части лопатки у₀; условной высоты радиальной лопатки х, соответствующей углу поворота ротора φ ; условной высоты радиальной лопатки x, соответствующей углу поворота ротора φ ; условной высоты радиальной лопатки x, радиальной лопатки х, соответствующей углу поворота ротора φ ; условной высоты радиальной лопатки х, соответствующей углу рациения в [58], дополненные уравнениями их производных.

$$\sin \psi = \frac{a \sin \alpha_1 + \sin(\alpha_1 + \varphi)}{a + 1},$$

$$\frac{d(\sin\psi)}{d\phi} = \cos\psi \cdot \frac{d\psi}{d\phi} = \frac{(a+1)\cos(\alpha_1 + \phi) - 0 \cdot [a\sin\alpha_1 + \sin(\alpha_1 + \phi)]}{(a+1)^2} = \frac{\cos(\alpha_1 + \phi)}{a+1} ,$$

$$\frac{\mathrm{d}\psi}{\mathrm{d}\varphi} = \frac{\cos(\alpha_1 + \varphi)}{a+1} \cdot \frac{1}{\cos\psi} \; ,$$

$$\sin\beta = \frac{\sin\phi}{a+\cos\phi} ,$$

$$\frac{d(\sin\beta)}{d\phi} = \cos\beta \cdot \frac{d\beta}{d\phi} = \frac{(a+\cos\phi)\cdot\cos\phi - \sin\phi\cdot(-\sin\phi)}{(a+\cos\phi)^2} = \frac{a\cos\phi+1}{(a+\cos\phi)^2} ,$$

$$\frac{d\beta}{d\phi} = \frac{a\cos\phi+1}{(a+\cos\phi)^2} \cdot \frac{1}{\cos\beta} .$$

Более точно производную $\frac{d\beta}{d\phi}$ можно определить по следующим уравнениям:

$$\sin\beta = \frac{\sin\phi}{\sqrt{a^2 + 2a\cos\phi + 1}}$$

Рис. 14.31. Геометрические параметры тангенциально расположенной лопатки [58]

$$\frac{d\beta}{d\varphi} = \frac{\cos\varphi\sqrt{a^2 + 2a\cos\varphi + 1} + \frac{a\sin^2\varphi}{\sqrt{a^2 + 2a\cos\varphi + 1}}}{a^2 + 2a\cos\varphi + 1} \cdot \frac{1}{\cos\beta},$$

$$Y_0 = K_{Y_0} r_0, \qquad \frac{dY_0}{d\phi} = \frac{dK_{Y_0}}{d\phi} r_0,$$

$$K_{Yo} = \frac{a+1}{a} \cdot \frac{\sin(\alpha_1 + \beta + -\psi)}{\sin(\alpha_1 + \beta)} ,$$

$$\frac{dK_{Yo}}{d\phi} = \frac{a+1}{a} \cdot \frac{\sin(\alpha_1 + \beta)\cos(\alpha_1 + \beta - \psi)\left(\frac{d\beta}{d\phi} - \frac{d\psi}{d\phi}\right) - \sin(\alpha_1 + \beta - \psi)\cos(\alpha_1 + \beta)\frac{d\beta}{d\phi}}{\sin^2(\alpha_1 + \beta)},$$
$$\frac{\sin^2(\alpha_1 + \beta)}{x' = K'_x r_0}, \qquad \frac{dx'}{d\phi} = r_0 \frac{dK'_x}{d\phi},$$

$$K'_{x} = \sqrt{1 + K_{Yo}(K_{Yo} + 2\cos\alpha_{1})} - 1$$
,

$$\frac{dK'_{x}}{d\phi} = \frac{\frac{dK_{Yo}}{d\phi} \cdot (K_{Yo} + 2\cos\alpha_{1}) + K_{Yo} \cdot \frac{dK_{Yo}}{d\phi}}{2\sqrt{1 + K_{Yo}(K_{Yo} + 2\cos\alpha_{1})}} = \frac{\frac{dK_{Yo}}{d\phi}(K_{Yo} + \cos\alpha_{1})}{\sqrt{1 + K_{Yo}(K_{Yo} + 2\cos\alpha_{1})}} ,$$

$$\sin \omega = \frac{K_x}{1 + K_x} \cdot tg\alpha_1 ,$$

$$\frac{d(\sin\omega)}{d\phi} = \cos\phi \ \frac{d\omega}{d\phi} = tg\alpha_1 \left[\frac{(1+K'_x) \cdot \frac{dK'_x}{d\phi} - K'_x \cdot \frac{dK'_x}{d\phi}}{(1+K'_x)^2} \right] = tg\alpha_1 \cdot \frac{\frac{dK'_x}{d\phi}}{(1+K'_x)^2},$$

$$\frac{d\omega}{d\phi} = \frac{tg\alpha_1}{\cos\omega} \cdot \frac{\frac{dK_x}{d\phi}}{(1 + K_x)^2}$$

Более точно производную $\frac{d\omega}{d\phi}$ можно определить по следующим уравнениям:

$$\sin \omega = \frac{-\sin 2\alpha_1 + \sqrt{\sin^2 2\alpha_1 + 4K'_x \sin^2 \alpha_1 (2 + K'_x)}}{2(1 + K'_x)},$$

$$\frac{\mathrm{d}(\sin\omega)}{\mathrm{d}\phi} = \cos\omega \cdot \frac{\mathrm{d}\omega}{\mathrm{d}\phi} = \left[(1 + K_{\mathrm{x}}^{'}) \frac{8\sin^{2}\alpha_{1} \frac{\mathrm{d}K_{\mathrm{x}}^{'}}{\mathrm{d}\phi} (1 + K_{\mathrm{x}}^{'})}{\sqrt{\sin^{2}2\alpha_{1} + 4K_{\mathrm{x}}^{'}\sin^{2}\alpha_{1}(2 + K_{\mathrm{x}}^{'})}} + 2\frac{\mathrm{d}K_{\mathrm{x}}^{'}}{\mathrm{d}\phi} \cdot \right]$$

$$\cdot \left(\sin 2\alpha_1 - \sqrt{\sin^2 2\alpha_1 + 4K'_x \sin^2 \alpha_1 (2 + K'_x)} \right) \right] \cdot \frac{1}{4(1 + K'_x)^2}$$

$$\frac{d\omega}{d\phi} = \frac{1}{\cos \omega} \left[(1 + K'_x) \frac{8\sin^2 \alpha_1 \frac{dK'_x}{d\phi} (1 + K'_x)}{\sqrt{\sin^2 2\alpha_1 + 4K'_x \sin^2 \alpha_1 (2 + K'_x)}} + 2\frac{dK'_x}{d\phi} \cdot \frac{1}{\sqrt{\sin^2 2\alpha_1 + 4K'_x \sin^2 \alpha_1 (2 + K'_x)}} \right]$$

,

$$\cdot \left(\sin 2\alpha_1 - \sqrt{\sin^2 2\alpha_1 + 4K'_x \sin^2 \alpha_1 (2 + K'_x)} \right) \right] \cdot \frac{1}{4(1 + K'_x)^2}$$

Окончательно получим

$$\frac{d\omega}{d\phi} = \frac{2}{\cos\omega} \frac{dK'_{x}}{d\phi} \left[\frac{\sin^{2}\alpha_{1}}{\sqrt{\sin^{2}2\alpha_{1} + 4K'_{x}\sin^{2}\alpha_{1}(2+K'_{x})}} + \frac{\left(\sin 2\alpha_{1} - \sqrt{\sin^{2}2\alpha_{1} + 4K'_{x}\sin^{2}\alpha_{1}(2+K'_{x})}\right)}{4(1+K'_{x})^{2}} \right].$$

Из рис. 14.30 следует, что величину S с большой точностью можно определить как разность площадей ΔDCE и ΔAB₁B.

$$\mathbf{S} = \frac{\sin\alpha_1}{2} (\mathbf{x}_2 \mathbf{Y} \mathbf{o}_2 - \mathbf{x}_1 \mathbf{Y} \mathbf{o}_1).$$

Тогда для $\frac{dS}{d\phi}$ можно получить

$$\frac{\mathrm{dS}}{\mathrm{d\phi}} = \frac{\sin\phi}{2} \left(x_2 \frac{\mathrm{dYo}_2}{\mathrm{d\phi}} + \mathrm{Yo}_2 \frac{\mathrm{dx}_2}{\mathrm{d\phi}} - x_1 \frac{\mathrm{dYo}_1}{\mathrm{d\phi}} - \mathrm{Yo}_1 \frac{\mathrm{dx}_1}{\mathrm{d\phi}} \right),$$

где x₁, x₂ – величина вылета радиальных лопаток (рис. 14.31) [58].

$$x = r_0 \left[\frac{1}{a} \left(\sqrt{(a+1)^2 - \sin^2 \phi} - \cos \phi \right) - 1 \right],$$
$$\frac{dx}{d\phi} = \frac{r_0}{a} \sin \phi \left(1 - \frac{\cos \phi}{\sqrt{(a+1)^2 - \sin^2 \phi}} \right).$$

От угла поворота φ можно перейти к времени τ

$$\frac{\mathrm{dS}}{\mathrm{d\phi}} = \frac{\mathrm{dS}}{\mathrm{d\tau}} \cdot \frac{\mathrm{d\tau}}{\mathrm{d\phi}} = \frac{\mathrm{dS}}{\mathrm{d\tau}} \cdot \frac{1}{\Omega} , \qquad \frac{\mathrm{dS}}{\mathrm{d\tau}} = \frac{\mathrm{dS}}{\mathrm{d\phi}} \cdot \Omega$$

Умножая S, $\frac{dS}{d\phi}$ на длину ротора L, определяется объем рабочей камеры W и скорость её изменения $\frac{dW}{d\tau}$.

На рис. 14.32 приведены результаты расчета S, $\frac{dS}{d\phi}$ для следующих данных: e = 0,006м, r_o = 0,03м, $\alpha_1 = 30^\circ$, $\gamma = 90^\circ$.

Программа, вычисляющая поправку S, её производную $\frac{dS}{d\phi}$ и ряд других величин приводится в приложении 12. При расчетах (рис. 14.30) следует для лопатки 1 брать угол ϕ , а для лопатки 2 угол ϕ + γ .

Точно площади фигур DCE и AB_1B (рис. 14.30) можно определить, если к площадям ΔDCE и ΔAB_1B прибавить площади сегментов с основаниями CE и BB_1 и радиусом равным радиусу статора r.

Из ΔDCE согласно теореме косинусов следует что

 $CE^2 = DC^2 + DE^2 - 2 \cdot DC \cdot DE \cdot \cos \alpha_1$ или $CE = \sqrt{Yo^2 + x^2 - 2Yo \cdot x \cdot \cos \alpha_1}$, так как согласно рис. 14.31 DC = Yo, a DE = x.

Рис. 14.32. Результаты расчета поправки к объему S и ее производной $\frac{dS}{d\phi}$

Обозначим ∠CO₁Е как θ, тогда

$$\sin\frac{\theta}{2} = \frac{CE}{2r} = \frac{\sqrt{Yo^2 + x^2 - 2 \cdot Yo \cdot x \cdot \cos\alpha_1}}{2r}$$

Площадь сегмента при основании СЕ (рис. 14.32) равна:

$$\begin{split} S_{C} &= \frac{r^{2}}{2}(\theta - \sin \theta) \,. \\ \theta &= 2 \arcsin\!\left(\frac{\sqrt{Yo^{2} + x^{2} - 2 \cdot Yo \cdot x \cdot \cos \alpha_{1}}}{2r}\right)\!, \quad \text{тогда} \end{split}$$

$$S_{C} = r^{2} \left[\arcsin \left(\frac{\sqrt{Yo^{2} + x^{2} - 2 \cdot Yo \cdot x \cdot \cos \alpha_{1}}}{2r} \right) - \frac{1}{2r} \right]$$

$$-\frac{1}{2}\sin\left(2\arcsin\left(\frac{\sqrt{Yo^{2}+x^{2}-2\cdot Yo\cdot x\cdot \cos\alpha_{1}}}{2r}\right)\right)\right].$$

Производная $\frac{dS_C}{d\phi}$ будет равна:

$$\frac{\mathrm{dS}_{\mathrm{C}}}{\mathrm{d}\phi} = \frac{\mathrm{r}^2}{2} \left(\frac{\mathrm{d}\theta}{\mathrm{d}\phi} - \cos\theta \frac{\mathrm{d}\theta}{\mathrm{d}\phi} \right) = \frac{\mathrm{r}^2}{2} \frac{\mathrm{d}\theta}{\mathrm{d}\phi} (1 - \cos\theta) \,.$$

$$\frac{d\theta}{d\phi} = \frac{d\left(2\arcsin\left[\frac{\sqrt{Yo^2 + x^2 - 2 \cdot Yo \cdot x \cdot \cos\alpha_1}}{2r}\right]\right)}{d\phi} = \frac{d\theta}{d\phi}$$

$$\frac{2}{\sqrt{1-\frac{(Yo^2+x^2-2\cdot Yo\cdot x\cdot cos\alpha_1)}{4r^2}}}\cdot\frac{1}{2r}\cdot\frac{1}{2\sqrt{Yo^2+x^2-2\cdot Yo\cdot x\cdot cos\alpha_1}}\cdot$$

$$\cdot \frac{d(Yo^{2} + x^{2} - 2 \cdot Yo \cdot x \cdot \cos \alpha_{1})}{d\phi} = \frac{1}{\sqrt{4r^{2} - (Yo^{2} + x^{2} - 2 \cdot Yo \cdot x \cdot \cos \alpha_{1})}}$$

$$\cdot \frac{1}{\sqrt{Yo^2 + x^2 - 2 \cdot Yo \cdot x \cdot \cos \alpha_1}} \cdot \frac{d \left(Yo^2 + x^2 - 2 \cdot Yo \cdot x \cdot \cos \alpha_1 \right)}{d\phi}$$

$$\frac{d(Yo^{2} + x^{2} - 2 \cdot Yo \cdot x \cdot \cos\alpha_{1})}{d\phi} = 2Yo\frac{dYo}{d\phi} + 2x\frac{dx}{d\phi} - 2\cos\alpha_{1}\left(Yo\frac{dx}{d\phi} + x\frac{dYo}{d\phi}\right) =$$

•

$$=2\frac{dYo}{d\phi}(Yo - x\cos\alpha_1) + 2\frac{dx}{d\phi}(x - Yo\cos\alpha_1)$$

Аналогично можно получить площадь сегмента при основании BB₁.

Далее полученные площади сегментов и их производные прибавляются к площадям соответствующих треугольников DCE и AB₁B и производным их площадей.

Площадь теплоотдачи между рабочим телом и стенками камеры можно определить по уравнению

$$S_{T} = L \left[\gamma r_{0} + (\dot{\phi_{2}} - \dot{\phi_{1}}) + Y_{01} + Y_{02} \right] + \frac{2W}{L},$$

где ϕ'_1 , ϕ'_2 – соответственно углы между линией OO₁ и линией соединяющей центр статора O₁ с концами лопаток (рис. 14.30), определяемые по теореме косинусов и отсчитываемые по часовой стрелке; L – длина ротора, γ – угловой шаг между лопатками, W – объем камеры.

$$OA = x' + r_0 = \rho(\phi), \quad OA^2 = e^2 + r^2 - 2er\cos\phi' = \rho^2(\phi), \quad r = r_0 + e,$$

откуда
$$\phi'_1 = \arccos\left(\frac{e^2 + r^2 - \rho^2(\phi)}{2er}\right), \phi'_2 = \arccos\left(\frac{e^2 + r^2 - \rho^2(\phi + \gamma)}{2er}\right),$$

где r – радиус статора; r_o – радиус ротора; е – эксцентриситет; ρ - радиус-вектор; $\rho(\phi + \gamma) = x'_2 + r_o$, $\rho(\phi) = x'_1 + r_o$.

Для учета объема занимаемого пластинами можно воспользоваться следующими зависимостями:

$$\begin{split} W_{\Pi\Pi 1} &= \frac{\delta L}{2} Y_{01}, \quad W_{\Pi\Pi 2} = \frac{\delta L}{2} Y_{02}, \\ & \frac{dW_{\Pi\Pi 1}}{d\phi} = \frac{\delta L}{2} \frac{dY_{01}}{d\phi}, \quad \frac{dW_{\Pi\Pi 2}}{d\phi} = \frac{\delta L}{2} \frac{dY_{02}}{d\phi} \end{split}, \end{split}$$
откуда
$$W_{\Pi\Pi} &= \frac{\delta L}{2} (Y_{01} + Y_{02}), \quad \frac{dW_{\Pi\Pi}}{d\phi} = \frac{\delta L}{2} \left(\frac{dY_{01}}{d\phi} + \frac{dY_{02}}{d\phi} \right)$$
и тогда для точного определения объема камеры W и скорости его изменения можно записать:

$$W = W_p + SL - W_{\Pi\Pi}, \qquad \frac{dW}{d\phi} = \frac{dW_p}{d\phi} + L\frac{dS}{d\phi} - \frac{dW_{\Pi\Pi}}{d\phi},$$

где W_p - объем камеры при радиальном расположении лопаток, SL – поправка к объему камеры в случае тангенциального расположения лопаток.

14.8. Определение механических потерь в ротационном пневматическом двигателе с тангенциальными лопатками

Для решения задачи по определению механических потерь в двигателе с тангенциально расположенными лопатками так же, как и в разделе 14.5, воспользуемся гидродинамической теорией смазки.

При изложении решения будем использовать результаты работ [51, 99].

Определение скорости пластины в пазе V_{пл} (рис. 14.33). Радиус – вектор ОА

$$OA = \rho = \sqrt{OB^{2} + AB^{2} - 2OB \cdot AB\cos(180 - \alpha_{1})} = \sqrt{r_{0}^{2} + Yo^{2} + 2r_{0}Yo\cos\alpha_{1}},$$

откуда
$$\frac{d\rho}{d\phi} = \frac{\frac{dYo}{d\phi}(Yo + r_o \cos \alpha_1)}{\sqrt{r_o^2 + Yo^2 + 2r_o Yo \cos \alpha_1}},$$

где зависимости для Yo и $\frac{dYo}{d\phi}$ приведены в разделе 14.6.

$$V_{\Pi\Pi} = \omega_r \ \frac{\frac{dYo}{d\phi}(Yo + r_o \cos \alpha_1)}{\sqrt{r_o^2 + Yo^2 + 2r_o Yo \cos \alpha_1}} \cos(\alpha_1 - \omega).$$

Сила трения пластины в пазе и проекция центробежной силы на осевую линию паза.

$$F_{\mu \pi \pi} = -2\mu \frac{V_{\pi \pi}}{\Delta_{\pi \pi}} (h - Yo) l_{\pi \pi}, \quad F_{\mu \delta} = \rho_{\mu \pi} \pi_{\pi} m_{\pi \pi} \omega_r^2 \cos(\alpha_1 - \omega + \varepsilon),$$

где $\rho_{\text{цт пл}}$ – расстояние до центра тяжести пластины от оси ротора.

$$\rho_{\text{IIT III}} = \sqrt{OA^2 + \frac{h^2}{4} - 2OA\frac{h}{2}\cos(\alpha_1 - \omega)} = \sqrt{\rho^2 + \frac{h^2}{4} - 2\rho\frac{h}{2}\cos(\alpha_1 - \omega)},$$

ε - угол между линиями ОА и ОС - расстоянием до центра тяжести пластины от оси ротора, определяемый по теореме синусов (рис. 14.33).

Рис. 14.33. К определению механических потерь в РПД с тангенциальными лопатками

Проекция суммарной силы, действующей на смазочный слой на радиус-вектор ОА.

$$F_{\Sigma} = (F_{\mu_{\Pi\Pi}} + F_{II\bar{O}})\cos(\alpha_1 - \omega).$$

Величина зазора пластина – цилиндр (толщина смазочного слоя)

$$\Delta_{\Pi\Pi,\Pi} = \sqrt{\frac{0,16 \cdot \mu \cdot \omega_{r} \cdot \rho \cdot \delta^{2} \cdot l_{\Pi\Pi}}{F_{\Sigma}}}.$$

Сила трения и момент силы трения в сопряжении пластина – статор двигателя

$$F_{\Pi \pi.\,\mathrm{II}} = \mu \cdot \frac{\omega_{\mathrm{r}} \cdot \rho}{\Delta_{\Pi \pi.\,\mathrm{II}}} \cdot \delta \cdot l_{\Pi \pi}, \qquad M_{\Pi \pi.\,\mathrm{II}} = F_{\Pi \pi.\,\mathrm{II}} \cdot \rho.$$

Расчет силы трения и момента силы трения в сопряжении пластина – крышки цилиндра

Расстояние до центра выступающей части пластины от оси ротора

$$\rho_{II,\Pi\Pi} = \sqrt{\rho^2 + \left(\frac{Yo}{2}\right)^2 - 2\rho \frac{Yo}{2} \cos(\alpha_1 - \omega)}.$$

Сила трения и момент

$$F_{\Pi\Pi,\kappa,\mu} = 2\mu \frac{\rho_{\mu,\Pi\Pi} \cdot \omega_{r}}{\Delta_{\Pi\Pi,\kappa,\mu}} \delta \cdot Yo, \qquad M_{\Pi\Pi,\kappa,\mu} = F_{\Pi\Pi,\kappa,\mu} \cdot \rho_{\mu,\Pi\Pi}.$$

Сила трения и момент силы в сопряжении ротор – крышки цилиндра

$$F_{p.\kappa.\mu} = 2\mu \frac{V_{cp}}{\Delta_{p.\kappa.\mu}} \pi r_o^2 = \frac{2\mu \frac{r_o}{2} \omega_r}{\Delta_{p.\kappa.\mu}} \pi r_o^2 = \frac{\mu \omega_r \pi r_o^3}{\Delta_{p.\kappa.\mu}},$$
$$M_{p.\kappa.\mu} = F_{p.\kappa.\mu} \frac{r_o}{2} = \frac{\mu \omega_r \pi r_o^4}{2\Delta_{p.\kappa.\mu}}.$$

Момент между валом ротора и ступицей (в случае подшипни-ков скольжения)

$$M_{cT} = 2\pi\mu \, l\omega_r \left(\frac{d^3}{\delta_{cT}}\right).$$

В представленных уравнениях: r_o – радиус ротора, δ – толщина пластины, h – высота пластины, Yo - высота выступающей из ротора части пластины, Δ_{nn} – зазор между пластиной и пазом ротора, $\Delta_{nn. \, \mu}$ – зазор между пластиной и цилиндром двигателя, $\Delta_{p.к.\mu}$ – зазор между ротором и крышкой цилиндра, $\Delta_{nn. \kappa.\mu}$ – зазор между пластиной и крышкой цилиндра, $\Delta_{p. \kappa.\mu} = \Delta_{nn. \kappa.\mu}$, m_{nn} = $\rho_{nn}h\delta l_{nn}$ – масса пластины, ρ_{nn} – плотность материала пластины, l_{nn} – длина пластины равная длине ротора, ϕ – угол поворота ротора, ω_r – угловая скорость вращения ротора, μ – динамическая вязкость смазочного масла, l – длина вала в сопряжениях, d – диаметр вала, δ_{cr} – величина зазора в сопряжении вал – крышка двигателя.

Все упомянутые зазоры Δ_{nn} , $\Delta_{nn. \mu}$, $\Delta_{p.к.\mu}$, $\Delta_{nn. k.\mu}$ представлены на рис. 14.19 в разделе 14.5.

Примечание. Следует отметить, что начальные углы φ при выводах расчетных зависимостей пневматических двигателей с радиальными и тангенциальными лопатками отличаются на π рад.

14.9. Определение крутящего момента для тангенциальной лопатки

Согласно рис. 14.34 величину равнодействующей силы для лопатки можно определить как $F = (p_i - p_{i-1})Y_0L$, а момент $M = F \cdot EO$, где EO – плечо момента.

Рис. 14.34. К определению крутящего момента

Из \triangle AOB следует, что \angle OBA = 180 - α_1 , OA = x', AB = Y_o, OB = r_o, тогда угол ε можно определить по теореме синусов

$$\frac{\mathbf{r}_{o}}{\sin\varepsilon} = \frac{\mathbf{x}' + \mathbf{r}_{o}}{\sin(180 - \alpha_{1})}, \qquad \varepsilon = \arcsin\left(\frac{\mathbf{r}_{o}\sin\alpha_{1}}{\mathbf{r}_{o} + \mathbf{x}'}\right)$$

Так как Δ АОД прямоугольный, то АД= $(r_0 + x')\cos\varepsilon$ и плечо момента EO = АД – Y₀ / 2 = $(r + x')\cos\varepsilon - \frac{Y_0}{2} = (r + x')\cos\left[\arcsin\left(\frac{r_0\sin\alpha_1}{r_0 + x'}\right)\right] - \frac{Y_0}{2}$.

14.10. Теоретические исследования рабочего процесса ротационного пневматического двигателя с тангенциальными лопатками

Двигатель с радиально расположенными лопатками обладает большими, чем двигатель с тангенциальными лопатками, габаритами и массой, но расходует меньше воздуха и поэтому является более экономичным. Износ лопаток и статора в двигателе с радиальным расположением лопаток будет также меньше, чем в двигателе с тангенциальными лопатками. Однако в ситуациях, где необходимо уменьшить габариты и массу ротационного пневматического двигателя применяется тангенциальное расположение лопаток (рис. 14.35) [58].

Как было показано в работах [46, 48] расчет двигателей с тангенциальным расположением лопаток можно проводить по методике расчета двигателей с радиально расположенными лопатками [46, 47, 58].

Рис. 14.35. Рабочая камера двигателя с тангенциальным расположением лопаток, где α₁ – угол наклона лопатки

При одинаковых габаритах двигатели с тангенциальным расположением лопаток при числе их не более восьми могут обладать большей мощностью, чем двигатели с радиальным расположением лопаток, из-за увеличения относительной величины эксцентриситета [58].

Иначе говоря, если габариты двигателя (диаметр цилиндра, диаметр ротора, длина ротора и т.д.) с радиальным и тангенциальным расположением лопаток будут одинаковые, то за счет увеличенного рабочего объема в двигателях с тангенциальным расположением лопаток будет наблюдаться некоторое увеличение мощностных характеристик – развиваемой мощности и крутящего момента, естественно при увеличении расхода воздуха.

На рис. 14.36 – 14.38 представлены результаты расчетов с помощью программы [50] ряда характеристик двигателя с тангенциальным расположением лопаток при изменении угла наклона лопаток от 0 до 30°.

Расчеты были проведены при давлении в сети $p_{cetu} = 5$ ат, числе лопаток z = 6, числе оборотов n = 4000 об/мин. Исследовалось влияние угла наклона лопатки на технические характеристики двигателя.

Угол наклона лопатки в 25-30° является предельным допустимым. В случае его превышении лопатка может перестать входить в паз ротора, за счет роста силы сопротивления, связанной с её изгибом, что приведет к заклиниванию двигателя или поломке лопатки [58].

Рис. 14.36. Изменение мощности двигателя

Рис. 14.37. Изменение величины крутящего момента

Рис. 14.38. Изменение расхода воздуха

Анализ полученных результатов свидетельствует об их удовлетворительной сходимости с данными, приведенными в работе [58], что свидетельствует о возможном использовании разработанной математической модели и программы расчета [50] для расчетов рабочих процессов и проектирования ротационных двигателей с тангенциально расположенными лопатками.

Глава 15

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПНЕВМАТИЧЕСКОГО ВИБРОГЕНЕРАТОРА

Виброгенераторы это устройства, которые предназначены для создания вибраций корпусов емкостей, заполненных сыпучими материалами, с целью сокращения времени процесса их опорожнения за счет уменьшения сухого трения.

Наибольшее распространение в горной и металлургической промышленности получили пневматические виброгенераторы, выполненные по обратной схеме [39]. Расчетная модель виброгенератора представлена на рис. 15.1

Виброгенератор состоит из наковальни (основание) 1, с которой жестко соединена ось 3, являющаяся направляющей для ударника 2 и выполняющая роль золотникового устройства. Для фиксации ударника в прижатом к наковальне положении при отсутствии подачи воздуха и смене ориентации в пространстве предусмотрена пружина 4.

Полость Б предназначена для создания подъемной силы ударника 2. Дополнительная полость А играет роль пневмопружины и ограничивает перемещение ударника.

Для оценки влияния конструктивных параметров (массы ударника, диаметров полостей и др.) разработана математическая модель функционирования виброгенератора при следующих основных допущениях:

- рабочее тело - воздух, представляющий собой идеальный газ, подчиняющийся уравнению состояния Клапейрона - Менделеева;

- процессы в полостях носят квазиравновесный характер;

- параметры газа в подающей магистрали не меняются во времени;

- масса наковальни бесконечно большая.

В качестве положительного направления движения ударника примем движение от наковальни к упору, т.е. движение, приводящее к сжатию пружины.

Рис.15.1 Пневматический виброгенератор

15.1. Математическая модель функционирования пневматического виброгенератора

Математическая модель функционирования пневматического виброгенератора будет включать три подсистемы уравнений описывающих процессы в полости 1, 2 и движение ударника [39].

Подсистема уравнений, описывающая процессы в полости А, будет включать:

- уравнение скорости изменения плотности газа

$$\frac{d\rho_1}{d\tau} = \frac{1}{W_{01} - S_{\pi 1} X} (G_{01} - \rho_1 S_{\pi 1} V),$$

где ρ_1 - плотность газа в полости A; τ - текущее время; X - перемещение ударника; W_{01} - начальный объем полости A; S_{n1} - рабочая поверхность ударника со стороны полости A; G_{01} - расход газа через систему отверстий с переменной площадью S_1 ; V - скорость перемещения ударника.

- уравнение скорости изменения давления газа

$$\frac{dp_1}{d\tau} = \frac{k-1}{W_{01} - S_{\pi 1} X} \left(h_{01} G_{01} + \frac{k}{k+1} p_1 S_{\pi 1} V + \frac{dQ_1}{d\tau} \right),$$

где p₁ - давление в полости A; h₀₁ - энтальпия втекающего газа; $\frac{dQ_1}{d\tau}$ - тепловой поток от газа к стенкам полости; $k = \frac{C_p}{C_v}$ - показатель адиабаты.

Подсистема уравнений, описывающая процессы в полости Б, будет включать:

- уравнение скорости изменения плотности

$$\frac{d\rho_2}{d\tau} = \frac{1}{W_{02} - S_{\Pi 2}X} (G_{02} - G_{a2} - \rho_2 S_{\Pi 2}V)$$

где ρ_2 - плотность газа в полости Б; W_{02} - начальный объем полости Б; S_{n2} - рабочая поверхность ударника со стороны полости Б; G_{02} - расход газа через систему отверстий с переменной площадью S_2 ; G_{a2} - расход газа через систему клапанных отверстий.

-уравнение скорости изменения давления

$$\frac{dp_2}{d\tau} = \frac{k-1}{W_{02} + S_{\Pi 2} X} \left(h_{02} G_{02} - h_{a2} G_{a2} - \frac{k}{k+1} p_2 S_{\Pi 2} V + \frac{dQ_2}{d\tau} \right),$$

где p_2 - давление в полости 2, h_{02} - энтальпия втекающего газа , h_{a2} - энтальпия вытекающего газа, $\frac{dQ_2}{d\tau}$ - тепловой поток от газа к стенкам полости.

Подсистема уравнений, описывающая движение ударника, включает:

- уравнение движения

$$\frac{dV}{d\tau} = \frac{1}{m} \left[S_{\Pi 2} (p_2 - p_a) - S_{\Pi 1} (p_1 - p_a) - mg \cdot Sin\alpha - \frac{dV}{d\tau} \right]$$

$$-K_{\rm Tp}$$
mg \cdot Cos α $-$ (F₀ + K_pX) $-$ F_{Tp}],

где m - масса ударника, α - угол наклона оси виброгенератора к горизонту, $K_{\rm Tp}$ - коэффициент трения, F_0 - предварительное поджатие пружины, K_p - "жесткость" пружины, $F_{\rm Tp}$ - сила сопротивления движению, обусловленная различными факторами, не описываемыми отдельными уравнениями (сопротивление мембран, трение при перекосах и т.п.).

- кинематическое соотношение

$$\frac{\mathrm{dX}}{\mathrm{d\tau}} = \mathrm{V} \,.$$

Расход газа при перетекании из полости в полость описывается известной зависимостью

$$G = \mu S K_0 (pS)^{0.5} Y,$$

где µ - коэффициент расхода через отверстие; S - площадь отверстия;

$$K_{0} = \left[k \left(\frac{2}{k+1} \right)^{\frac{k+1}{k-1}} \right]^{0,5}; \ p \ и \ \rho - давление \ и \ плотность \ газа \ в \ полости, \ от-$$

куда происходит истечение, Y - функция расхода, определяемая соотношениями если $\pi < \beta_{\kappa p}$, Y=1, иначе,

$$Y = \frac{1}{K_0} \left(\frac{2k}{k+1} (\pi^{2/k} - \pi^{k+1/k-1}) \right)^{0,5}; \quad \pi = \frac{p_a}{p},$$

где p_a - давление в полости, куда происходит истечение; $\beta_{\kappa p}$ - критическое отношение давлений $\beta_{\kappa p} = \left(\frac{2}{k+1}\right)^{\frac{\kappa}{\kappa-1}}$.

Площадь отверстий при перетекании газа из полости в полость в период перекрытия определяется зависимостью

$$S = S_0 - \left[\frac{\pi d^2}{4} \cdot \frac{2\beta}{360} - \left(\frac{d}{2} - h\right)^2 tg\beta\right] n,$$

где n - количество входных отверстий; d - диаметр отверстия; $\beta = \arccos\left(1 - \frac{2h}{d}\right)$; h - высота перекрытого сегмента; $S_0 = \frac{\pi d^2}{4}n$.

Энтальпия газа при перетекании определяется по параметрам газа в полости, откуда происходит истечение

$$h = \frac{k}{k-1} \frac{p}{\rho}.$$

Теплообмен между газом и стенками полости описывается уравнением Ньютона - Рихмана

$$\frac{\mathrm{dQ}}{\mathrm{d\tau}} = \alpha F(T - T_{\mathrm{c}}),$$

где $T = \frac{p}{R\rho}$ - температура газа в полости; R - газовая постоянная данного газа; T_c - температура тепловоспринимающей поверхности (стенок) F; α - коэффициент конвективной теплоотдачи, определяемый по зависимости $\alpha = \alpha_0 \rho$, α_0 - удельный коэффициент теплоотдачи, полученный по имеющимся экспериментальным данным.

Величина Т_с может быть определена из уравнения теплового баланса:

$$T_{c} = T_{0} + \frac{1}{Cm}(Q - Q_{a}),$$

где Q_a - тепло, отдаваемое в окружающую среду; С - теплоемкость материала стенки полости; T_0 - начальная температура, m — масса стенки.

Взаимодействие ударника и наковальни рассматривается как частично упругий удар с коэффициентом восстановления скорости $K_v = 0,1...0,5$, который определяется по экспериментальным данным для данной пары деталей.

В качестве начальных условий можно принять условие нахождения ударника на наковальне, т.е. Х=0 и V=0, при этом параметры газа в полостях одинаковы и равны параметрам питающего газа.

15.2. Исследование зависимости выходных характеристик пневматического виброгенератора от конструктивных параметров

На основании данной математической модели были разработаны алгоритм и программа расчета процессов, протекающих в полостях. Как показали численные эксперименты, через три цикла система входит в автоколебательный режим, по которому определялись выходные характеристики [39].

Анализ результатов расчета 23 вариантов сочетаний конструктивных параметров и условий работы (см. таблицу 15.1) позволил оценить влияние различных факторов на характеристики виброгенератора (рис. 15.2 - 15.9).

В результате изучения зависимостей характеристики виброгенератора от действующих на него факторов, можно сделать следующие основные выводы:

1. Изменение давления воздуха на входе виброгенератора (в пределах 1,5...6 ат) пропорционально изменяет энергию массы в основном путем изменения частоты при мало меняющейся амплитуде. Например: при изменении давления в 2 раза, в 2 раза изменяется энергия.

2. Существенно влияние перекрытия входных отверстий d₁ и d₂, что позволяет регулировать энергию и частоту ударов.

3. Изменение массы ударника практически не изменяет энергию удара, так как уменьшается частота движения.

Рис. 15.2. Изменение характеристик виброгенератора от давления воздуха в пневмосети

Рис. 15.3. Изменение характеристик виброгенератора от диаметра входных отверстий полости А

Рис. 15.4. Изменение характеристик виброгенератора от диаметра входных отверстий полости В

На рис. 15.5-15.9 для варианта 1 (табл. 15.1) приведены результаты расчета текущих параметров виброгенератора в зависимости от времени процесса.

Рис. 15.5. Зависимость силы давления

Рис. 15.6. Зависимость давления в полостях

Рис. 15.7. Ход ударника

Рис. 15.9. Скорость ударника

Таблица 15.1

Зависимость конструктивных параметров виброгенератора
от условий работы

	m	р	α	С	F ₀	Х	d_1	d ₂
	Macca	Дав-	Угол на-	Жест-	Началь-		Диа-	Диа-
Ho-	удар-	ление	клона оси	кость	ное		метр	метр
мер	ника,	сети,	к гори-	пружи-	поджа-	MM	входно-	входно-
вари			зонту,	ны,	тие пру-		го от-	го от-
анта	КГ	ат			жины,		верстия	верстия
			град	Н/мм	Н		полости	полости
							А, мм	Б, мм
1	20	2	90	7,407	0	0	12	12
2	35	2	90	7,407	0	0	12	12
3	20	2	90	7,407	0	6	12	12
4	20	2	90	7,407	0	6	5	12
5	20	5	90	7,407	0	0	12	12
6	20	5	90	7,407	0	6	12	12
7	20	5	90	7,407	0	0	12	5
8	20	5	90	7,407	0	6	5	12
9	20	2	0	7,407	200	0	12	12
10	20	2	0	7,407	200	6	12	12
11	20	2	0	7,407	200	0	5	12
12	20	5	0	7,407	200	6	5	12
13	20	5	0	7,407	200	6	5	5
14	20	2	90	11,124	0	0	12	12
15	20	5	90	11,124	0	0	12	12
16	20	2	-45	7,407	300	0	12	12
17	20	2	-90	11,124	450	6	12	12
18	20	2	-45	11,124	300	0	12	12
19	20	5	-90	11,124	450	6	12	12
20	20	2	-45	17,602	300	0	12	12
21	20	2	-90	7,407	420	0	12	12
22	20	2	-90	11,124	450	0	12	12
23	20	2	-90	17,602	300	0	12	12

Энергия удара для указанного выше варианта составила 41,67 Дж, а частота 58,8 гц.

Глава 16

МОДЕЛИРОВАНИЕ РАБОЧЕГО ПРОЦЕССА ДВИГАТЕЛЯ С ВРАЩАЮЩИМСЯ ЦИЛИНДРОМ-КЛАПАНОМ (RCV – ДВИГАТЕЛЯ)

Британская компания RCV Engines была создана в 1997 году специально для проработки, испытаний и продвижения на рынок всего одного изобретения. RCV расшифровывается как Rotating Cylinder Valve - вращающийся цилиндр-клапан. В принципе, все происходит так же, как в обычном четырехтактном ДВС, но вместо тарельчатых клапанов применен RCV. Это просто отверстие с уплотнителем в боковой поверхности цилиндра. Цилиндр вращается со скоростью, в два раза меньшей скорости вращения коленчатого вала. При этом отверстие в нужные по четырехтактному циклу работы моменты совмещается с двумя "портами": через первый подается топливовоздушная смесь, через второй удаляются продукты сгорания (Рис. 16.1.) [139].

Рис. 16.1. Принцип действия двигателя с вращающимся цилиндром-клапаном

Подобная схема дает возможность обходиться без сложного клапанного механизма, уменьшаются потери на трение при работе клапанов, уменьшается количество деталей, что удешевляет производство и позволяет использовать большие обороты. Более широкие отверстия клапана и "портов" ускоряют газообмен. В результате двигатель становится более надёжным.

Турбулентность, возникающая при вращении цилиндра, улучшает распределение топливной смеси и делает процесс сгорания более интенсивным. В результате сокращается потребление горючего и количество вредных выбросов, а удельная мощность возрастает до уровня 100 л.с./л, что характерно в основном для форсированных моторов. Проблема в том, что реализовать эту схему удалось пока лишь на двигателях объемом до 250 см³, предназначенных для мотороллеров и мотоциклов [139]

Решение проблемы возможно с помощью математического моделирования рабочих процессов, протекающих в двигателе.

При построении математической модели использовалась физическая теория, в рамках которой, при описании процессов, протекающих в ДВС, реализован системный подход. Подобный подход в полной мере реализует тепломеханика - одна из наиболее удачных версий технической термодинамики [67], ориентированная на изучение процессов преобразования энергии, происходящих в цилиндре двигателя внутреннего сгорания. Её особенностью является учёт массового (материального) взаимодействия - помимо двух традиционных для классической термодинамики взаимодействий теплового и механического характера.

Предложенный способ положительно зарекомендовал себя при моделировании аналогичных объектов [46].

Исходная система уравнений математической модели ДВС, разработанной в рамках тепломеханики, основывается на законах:

- сохранения энергии:
$$\frac{dU}{d\tau} = \sum_{k}^{k} \mathbf{h} \cdot \mathbf{G}_{k} + \frac{\delta Q_{T}}{d\tau} + \frac{\delta Q}{d\tau} - p \frac{dW}{d\tau}$$
,
- сохранения массы: $\frac{dm}{dt} = \sum_{k}^{k} \mathbf{G}_{k}$.

Расчётная система будет состоять из трёх подсистем уравнений, а именно:

- термодинамической подсистемы для расчета изменения состояния рабочего тела в цилиндре двигателя;
- подсистемы для расчета теплообмена между рабочим телом и элементами конструкции;
- механической подсистемы для расчета перемещения поршня.

Термодинамическая подсистема включает:

- уравнение скорости изменения температуры рабочего тела

$$\frac{\mathrm{dT}}{\mathrm{d\tau}} = \frac{1}{\mathrm{c}_{\mathrm{V}}(\mathrm{T})\rho\mathrm{W}} \left\{ \sum_{j=0}^{\mathrm{k}} \left(h_{j} - u \right) G_{j} - p \frac{\mathrm{dW}}{\mathrm{d\tau}} + \frac{\delta Q_{\mathrm{X}}}{\mathrm{d\tau}} + \frac{\delta Q_{\mathrm{B}}}{\mathrm{d\tau}} \right\}, \quad (16.1)$$

- уравнение скорости изменения плотности рабочего тела

$$\frac{d\rho}{d\tau} = \frac{1}{W} \left(\sum_{j=0}^{k} G_j - \rho \frac{dW}{d\tau} \right), \qquad (16.2)$$

- уравнение состояния

$$p = \rho RT. \tag{16.3}$$

В уравнениях (1-3): G_j – расходы рабочего тела при газообмене; $c_v(T)$ – удельная изохорная теплоемкость; R – газовая постоянная; h, u – соответственно удельные энтальпия и внутренняя энергия рабочего тела; τ - время.

Тепловой поток выделяющийся при сгорании топлива в двигателе δQ_x/dτ определяется по эмпирической модели И.И. Вибе.

$$\frac{\delta Q_x}{d\tau} = g_{II} \cdot \xi \cdot \psi \cdot Q_H^p \frac{dx}{d\tau} ,$$
$$\frac{dx}{d\tau} = \omega \frac{6,908(m+1)\phi^m}{\phi_Z^{m+1}} \cdot e^{-6,908 \left(\frac{\phi}{\phi_Z}\right)^{m+1}} ,$$
где g_{μ} - цикловая масса топлива; Q_{μ}^{p} - низшая теплота сгорания топлива; m - показатель сгорания; ϕ_{z} - условная длительность сгорания; ξ - коэффициент использования теплоты в двигателе (учитывает потери теплоты на диссоциацию и принимается равным 0,8-0,9); ψ - коэффициент полноты сгорания топлива, $\psi = 1 - \frac{57780000}{Q_{H}^{p}}(1-\alpha)$; α - коэффи

циент избытка воздуха.

Подсистема уравнений теплообмена включает:

- уравнения тепловых потоков

$$\frac{\delta Q_{\rm B}}{d\tau} = \alpha_{\rm B} (T - T_{\rm c}) S_{\rm B} , \qquad (16.4)$$

$$\frac{\delta Q_{\rm H}}{d\tau} = \alpha_{\rm H} (T_{\rm c} - T_0) S_{\rm H} , \qquad (16.5)$$

- уравнение скорости изменения температуры стенки двигателя

$$\frac{dT_{c}}{d\tau} = \frac{1}{c \cdot m} \left(\frac{\delta Q_{B}}{d\tau} - \frac{\delta Q_{H}}{d\tau} \right), \qquad (16.6)$$

где с, m – удельная теплоемкость и масса стенки двигателя; S_в, S_н – площади теплоотдающих поверхностей.

Для расчета коэффициента теплоотдачи α_в между рабочим телом и стенками двигателя используется формула Эйхельберга.

$$\alpha_{\rm B} = 2, 1\sqrt{p \cdot T} \cdot c_{\rm m}^{0,333},$$

где р, Т – текущие давление (ат) и температура (К) в цилиндре двигателя; с_m – средняя скорость поршня.

Механическая подсистема.

В составе энергетической установки двигатель и непосредственно связанный с ним потребитель мощности – трансмиссия (нагрузка), образуют механическую вращательную жесткую систему с одной степенью свободы, а следовательно, с одной обобщенной координатой – углом поворота вала ф [22]. Таким образом механическая подсистема будет включать:

- упрощенное уравнение динамического равновесия вращающихся масс системы двигатель - нагрузка:

$$J_{c} \frac{d\omega}{d\tau} = M_{d} - M_{H}.$$
 (16.7)

- кинематическое соотношение

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = \omega \ . \tag{16.8}$$

Уравнения механической подсистемы дополняются уравнениями: пути (х) и скорости поршня (V), объёма полости цилиндра (W) и скорости его изменения (dW/dt), момента инерции движущихся масс (J_c), движущего момента (M_д), площади теплоотдачи (S_в).

Система уравнений (16.1-16.7) является замкнутой на основе которой был создан алгоритм и программа, позволившие рассчитать рабочий процесс RCV-двигателя. При этом, так как в систему уравнений вошли все основные конструктивные и эксплуатационные параметры, то разработанные: математическое описание, алгоритм и программа будут полезны при проведении модернизации существующих двигателей и их проектировании.

На рис. 16.2, 16.3 представлены результаты расчёта давления и температуры рабочего тела в цилиндре двигателя при n=6000 об/мин.

Рис. 16.2. Изменение давления в цилиндре двигателя

Рис. 16.3. Изменение температуры в цилиндре

Рис. 16.4. Мощность трения

Рис. 16.5. Механический КПД

Рис. 16.6. Удельный эффективный расход топлива

Рис. 16.7. Коэффициент остаточных газов

Рис. 16.8. Коэффициент наполнения

Результаты расчётов, представленные на рис. 16.4-16.8, характеризуют возможности разработанной математической модели и алгоритма. Из анализа полученных результатов следует, что данный тип двигателя имеет сравнительно высокий механический КПД и высокий коэффициент наполнения. Последнее можно объяснить отсутствием в двигателе традиционного механизма газораспределения и клапанов.

В работе [45] была приведена достаточно подробная математическая модель двигателя с вращающимся клапаном-цилиндром, которую можно уточнить учетом протечек протечек через зазор в сопряжении поршень-цилиндр. В результате такого уточнения появилась возможность обоснованно определить такой технологический параметр как упомянутый выше зазор в сопряжении и более точно определить энергетические характеристики двигателя.

Изменения коснулись уравнений скорости изменения температуры и скорости изменения плотности рабочего тела в цилиндре двигателя.

$$\frac{dT}{d\tau} = \frac{1}{c_v(T)\rho W} \left\{ \sum_{j=0}^k (h_j - u) G_j - p \frac{dW}{d\tau} + \frac{\delta Q_x}{d\tau} + \frac{\delta Q_B}{d\tau} \right\},$$
$$\frac{d\rho}{d\tau} = \frac{1}{W} \left(\sum_{j=0}^k G_j - \rho \frac{dW}{d\tau} \right).$$

Таким образом в данных уравнениях: G_j – расходы рабочего тела при газообмене, а также расход при протечках G_{vt}.

Сама методика расчета расходов при протечках была изложена ранее в разделе 14.3.

В целях проверки адекватности уточненного математического описания был проведен расчёт скоростной характеристики RCVдвигателя объёмом 125 см³, которая сравнивалась с экспериментальной характеристикой приведённой в [45] (Рис. 16.9). Расхождение результатов составило не более 5%, что позволило достаточно оптимистично оценить полученные результаты. Также были проведены расчеты работы двигателя на частоте 6000 об/мин при изменении величины зазора в сопряжении поршень - вращающийся цилиндр-клапан, которые приведены на рис. 16.10-16.14.

Рис. 16.9. Сравнение экспериментальной и расчётной кривых мощности четырёхтактного RCV - двигателя объёмом 125 см³

Рис. 16.10. Движущий момент

Рис. 16.11. Литровая мощность

Рис. 16.12. Удельный эффективный расход топлива

Рис. 16.13. Зависимости к.п.д.

Рис. 16.14. Мощность трения

Таким образом, совместный дифференцированный учет механических потерь и протечек с последующим анализом полученных результатов позволяет сделать вывод, что оптимальная величина зазора в сопряжении поршень-цилиндр составляет 24-28 мкм. Использование уточненной математической модели в принципе позволяет прогнозировать временной износ в сопряжении поршень-цилиндр и связанное с ним снижение энергетических характеристик двигателя.

Глава 17

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ РАБОЧИХ ПРОЦЕССОВ АКСИАЛЬНЫХ ПОРШНЕВЫХ КОМПРЕССОРОВ

Автомобильная система кондиционирования воздуха - разновидность системы кондиционирования воздуха, устанавливаемая в автомобиле и позволяющая охлаждать воздух в салоне, а также очищать его от влаги и посторонних запахов. В современных автомобилях является составной частью системы вентиляции и отопления салона.

Особенность такого кондиционера с технической точки зрения заключается в том, что для его работы используется не электричество, а часть мощности двигателя внутреннего сгорания, отбираемая с его коленчатого вала при помощи приводного ремня, иногда общего с ремнём генератора или отдельным (рис. 17.1).

Рис. 17.1. Автомобильная система кондиционирования воздуха

Конденсатор кондиционера обычно располагается под капотом, причём для того, чтобы избежать воздействия на него тепла двигателя, его располагают ближе к переднему бамперу машины, перед

радиатором, но при этом таким образом, чтобы не страдал обдув самого радиатора [140].

Современные установки кондиционирования воздуха, как правило, конструктивно объединены с системой отопления салона, используют общие воздуховоды и систему управления. Органы управления системами обогрева и кондиционирования воздуха на современных автомобилях обычно размещается на панели приборов, или на центральной консоли между водителем и передним пассажиром.

Аксиальные компрессоры, более компактные и легкие, чем обычные, поэтому их применяют в автомобильных холодильных установках. В них используются компрессоры: двух-, шести-, двенадцатицилиндровые (рис. 17.2) с ременным приводом от коленчатого вала двигателя.

Обычно такие компрессоры предназначены для работы в широком диапазоне частоты вращения (от 10 до 100 с⁻¹) при высоких температурах окружающей среды, т. к. компрессор монтируют на автомобильном двигателе [141-143].

Рис. 17.2. Аксиальный компрессор

Математическая модель аксиального, аксиально-оппозитного поршневого холодильного компрессора, в части касающейся термодинамической и теплообменной подсистем, полностью совпадает с математической моделью изложенной в [26-28, 33]. Поэтому речь пойдет только о построении механической подсистемы.

Механическая подсистема уравнений будет включать:

- уравнение движения вала компрессора

$$\frac{d\omega}{d\tau} = \frac{1}{J_{\Sigma}} \left(M_{c} - M_{\pi} - \frac{dJ_{\Sigma}}{d\phi} \cdot \frac{\omega^{2}}{2} \right), \qquad (17.1)$$

- кинематическое соотношение

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = \omega, \qquad (17.2)$$

где ω - угловая скорость вращения вала компрессора, J_{Σ} - суммарный момент инерции, M_c , M_d - моменты сопротивления и движущий, ϕ - угол поворота вала.

Рис. 17.3. К выводу уравнения для пути поршня

- уравнение для пути (х) поршня (рис. 17.3)

$$a = c - c \cdot \cos \varphi$$
, $\frac{c}{s/2} = a / x$, тогда получим:
 $x = \frac{s}{2} \cdot (1 - \cos \varphi)$,

где с – расстояние между осью вала осью цилиндра компрессора.

- уравнение скорости (V) поршня

$$\frac{\mathrm{dx}}{\mathrm{dt}} = \mathrm{V}_{\Pi} = \omega \cdot \frac{\mathrm{s}}{2} \cdot \sin \varphi \,,$$

- уравнение для определения силы сопротивления (P_M) (рис. 17.4)

Рис. 17.4. Определение силы сопротивления

 $P_N = P \cos \alpha; R_{Tp} = P_N \cdot k; P_T = P \sin \alpha,$

 $P_{\Sigma} = R_{Tp} + P_{T} = P_{N} \cdot k + P \sin \alpha = P(k \cdot \cos \alpha + \sin \alpha),$

 $P_M = P_{\Sigma} \cdot \cos \alpha = P \cdot \cos \alpha \cdot (k \cdot \cos \alpha + \sin \alpha),$

где k - коэффициент трения скольжения (качения).

Определение угла (α) между плоскостью поверхности шайбы и плоскостью перпендикулярной к оси вала (поршня) (рис. 17.5).

Рис. 17.5. Определение угла между плоскостью поверхности шайбы и плоскостью перпендикулярной оси вала (поршня)

 $a = c - c \cdot \cos \phi$, $DE = c \cdot \sin \phi$,

$$BE = \sqrt{c^2 \cdot \sin^2 \varphi + c^2 (1 - \cos \varphi)^2} = c \sqrt{2(1 - \cos \varphi)},$$

$$tg\alpha = x/BE = \frac{s/2}{c} \cdot \frac{(1 - \cos\varphi)}{\sqrt{2(1 - \cos\varphi)}} = \frac{s/2}{c} \cdot \sqrt{\frac{(1 - \cos\varphi)}{2}}$$

Таким образом, момент сопротивления компрессора можно определить по уравнению:

$$M_{c} = \sum_{i=1}^{n} (p_{i} - p_{oc}) \cdot S_{\Pi} \cdot c \cdot \cos \alpha_{i} \cdot (k \cdot \cos \alpha_{i} + \sin \alpha_{i}),$$

где S_П - площадь поршня.

Момент инерции движущихся масс (J_{Σ}) складывается из постоянного момента инерции и переменного момента инерции, которые зависят от массы шайбы и вала m_{μ} , $m_{B_{\mu}}$ радиуса шайбы и вала R_{μ} , $R_{B_{\mu}}$ массы поршня со штоком m_{Π} , скорости і-го поршня $V_{\Pi i}$, числа поршней n.

Таким образом, был создан алгоритм расчета рабочих процессов в аксиальных и аксиально-оппозитных поршневых холодильных компрессорах. Результаты расчетов и их сравнение с экспериментальными данными ряда компрессоров [114, 115], представленными в таблице 17.1, позволяют сделать вывод об их достаточной адекватности.

Таблица 17.1

Характеристики	Компрессоры Харьковского ОКТБ ПО				Компрессор	
	"Кристалл"				фирмы	
	KT-	КТК-	КТК-	КГТ-	КГТ-	"Дженерал
	2500	5000Э	5000Γ	7500	10000	Моторс"
						США
Холодопроизводи-	2666	6063	5658	7661	10302	7170
тельность	2500	5800	5800	7500	10000	7000
(расчет/эксп.), Вт						
Удельная холодо-	2,02	2,13	2,24	2,36	2,48	2,04
производительность	1,74	1,74	1,74	1,74	1,74	_
(расчет/эксп.,		,				
не менее), Вт/Вт						
Число цилиндров	12	12	12	12	12	6
Диаметр поршней,	30	30	30	30	30	38
ММ						
Ход поршней, мм	16	12	16	16	16	30
Номинальная частота	25	50	30	50	50	25
вращения вала, с ⁻¹						
Температура	5	5	5	5	5	5
кипения t ₀ , ⁰ С						
Температура	50	50	50	50	50	60
конденсации t_{κ} , ⁰ С						
Холодильный агент	R12	R12	R12	R12	R12	R12

Характеристики аксиальных и аксиально-оппозитных поршневых холодильных компрессоров

Разработанную математическую модель, алгоритм и программу расчета можно рекомендовать для использования в теоретических исследованиях рабочих процессов аксиальных и аксиально-оппозитных поршневых холодильных компрессоров аксиальных компрессоров, а также в целях их проектирования (См. прил. 13).

Глава 18

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОППОЗИТНО-КУЛАЧКОВОГО КОМПРЕССОРА

В работе [71] авторами для снижения уровня «шума» и вибрации была предложена схема поршневого герметичного компрессора для холодильной машины. В компрессоре имеются два цилиндра, работающие не синхронно, т.е. в то время, когда в одном цилиндре происходит сжатие, в другом нагнетание, что не позволяет полностью уравновесить подвижные части компрессора.

В работе [3] предложена схема кинематики герметичного поршневого компрессора, которая в большей степени позволяет его уравновесить, так как цилиндры работают синхронно, а значит, вибрация компрессора будет минимальной. Основным кинематическим элементом является вращающийся кулачок, соединенный с толкателями (крейцкопфами) поршней (рис. 18.1), внешний контур которого представляет собой алгебраическую кривую четвертого порядка – овал Кассини [10]. Математическая модель такого компрессора, построенная на основе методологии термодинамики тела переменной массы [66, 67] от поршневого компрессора традиционной схемы [28, 42] будет отличаться только уравнениями, описывающими кинематику его подвижных элементов.

Запишем эти уравнения.

1. Скорость и путь поршня компрессора

$$V = \frac{dR}{d\phi} \omega ,$$

 $R = \sqrt{c^2 \cos 2\phi + \sqrt{(c^2 \cos 2\phi)^2 + a^4 - c^4}},$

$$\mathbf{x} = \mathbf{R} - \mathbf{r}_1,$$

где

Рис. 18.1. Расчетная схема оппозитно-кулачкового компрессора

$$c = \frac{R_x}{\sqrt{k_z^2 + 1} - \sqrt{k_z^2 - 1}}, \quad r_1 = c\sqrt{k_z^2 - 1}, \quad a = k_z \cdot c,$$

 $R_{\rm x}$ – максимальный ход поршня, $k_{\rm z}$ – соотношение между параметрами а и с, V – скорость поршня, x – путь поршня.

2. Выражение момента сопротивления получим исходя из следующей расчетной схемы (рис. 18.2), записав уравнения сил в проекциях на оси прямоугольной системы координат.

где f – коэффициент трения, tg $\alpha = \frac{1}{R} \left| \frac{dR}{d\varphi} \right|$

Рис. 18.2. К определению момента сопротивления компрессора М_с

3. Момент инерции

$$J = J_{const} + \frac{2m_{\pi} + \left(\frac{dR}{d\phi}\right)^2}{h} ,$$

где J_{const} – постоянный момент инерции ротора электродвигателя и вала, m_{π} – масса поршня с крейцкопфом, h – параметр, определяющий эффективность работы кулачка, изменение которого во времени показано на рис. 18.3.

$$h = \frac{tg\alpha(1 - 2ftg\alpha - f^2)}{tg\alpha + f}$$

Рис. 18.3. Изменение параметра h

Следует отметить, что в зависимости от величины k_z возможно несколько типов овалов Кассини.

 $1 < k_z < \sqrt{2}$ - овал имеет четыре точки перегиба (рис. 18.1); $k_z \ge \sqrt{2}$ - овал похож на эллипс.

На рис. 18.4, 18.5 показаны результаты расчетов рабочего процесса оппозитно-кулачкового компрессора с $R_x = 0,008$ м; f = 0,15; $k_z = 1,5$.

Рис. 18.4. Характер изменения давления (р), скорости (V) и пути (l) поршня в оппозитно-кулачковом компрессоре

Рис. 18.5. Характер изменения моментов сопротивления (M_c) и движущего (M_д) оппозитно-кулачкового компрессора

Результаты расчетов по разработанному алгоритму и экспериментов показывают, что уровень вибрации предложенного варианта компрессора снижается. Однако при этом увеличивается доля механических потерь. Характерно, что для рассматриваемого компрессора имеется сравнительно низкий уровень пульсации движущего момента $M_{\rm g}$.

1. Александров В.С. Прикладная гидроаэромеханика/ В.С. Александров. – Тула: ТулПИ, 1984. – 90с.

2. Архаров А.М. Теория и расчет криогенных систем/ А.М. Архаров, И.В. Марфенина, Е.И. Микулин – М.: Машиностроение, 1978. – 435с.

3. Бабахин В.Н., Елагин М.Ю., Кичаков Л.А., Матасов В.Ф., Карпов В.Н., Тереховкин С.А. Поршневой компрессор. А.с. SU 1800103 A1 СССР, опубл. 07.03.93. Бюл. № 9.

4. Бениович В.С. Ротопоршневые двигатели/ В.С. Бениович, Г.Д. Апазиди, А.М. Бойко. – М.: Машиностроение, 1968. – 151с.

5. Берсудский С.Ю. Перспективные системы охлаждения бытовых компрессионных двухкамерных холодильников/ С.Ю. Берсудский, В.С. Чесноков// Холодильная техника. – 1989. №12. С. 5-8.

6. Бондарь Е.С. Современные бытовые приборы и машины/ Е.С. Бондарь, В.Я. Кравцевич - М.: Машиностроение, 1987. – 222с.

7. Боярский М.Ю. Расчет свойств рабочих веществ с помощью нового кубического уравнения повышенной точности/ М.Ю. Боярский, О.Н. Подчерняев// Холодильная техника. 1991. № 7.

8. Боярский М.Ю. Кубическое уравнение состояния для прогнозирования термодинамических свойств новых рабочих веществ/ М.Ю. Боярский, О.Н. Подчерняев// Холодильная техника. 1991. № 10.

9. Бродянский В.М. Вечный двигатель – прежде и теперь/ В.М. Бродянский. – М.: Энергоатомиздат, 1989. – 256 с.

10. Бронштейн И.Н. Справочник по математике/ И.Н. Бронштейн, К.А. Семендяев – М.: Наука, 1986. – 544 с.

11. Бэр Г.Д. Техническая термодинамика/ Г.Д. Бэр. – М.: Мир, 1977. – 520с.

12. Вайсман М.Д. Термодинамика парожидкостных потоков/ М.Д. Вайсман. – М.: Энергия, 1987.

13. Вейнберг Б.С. Расчет капиллярных трубок для фреонов 12 и 22/ Б.С. Вейнберг// Холодильная техника. – 1969. - №10. – С. 23-28.

14. Вейнберг Б.С. Бытовые компрессионные холодильники/ Б.С. Вейнберг, Л.Н. Вайн. – М.: Пищевая промышленность, 1974. – 272с.

15. Вибе И.И. Новое о рабочем цикле двигателей/ И.И. Вибе. – М.: ГНТИ, 1962. – 272с.

16. Воинов А.Н. Сгорание в быстроходных поршневых двигателях/ А.Н. Воинов. – М.: Машиностроение, 1977. 17. Вукалович М.П. Техническая термодинамика/ М.П. Вукалович, И.И. Новиков. – М.: Энергия, 1968. – 496с.

18. Вукалович М.П. Уравнение состояния перегретого водяного пара, предназначенное для промышленных расчетов на ЭЦВМ/ М.П. Вукалович, А.А. Александров, М.С. Трахтенгерц// Теплоэнер-гетика. 1968. № 9. – С. 86 - 90.

19. Выгодский М.Я. Справочник по высшей математике/ М.Я. Выгодский. – М.: ГИТТЛ, 1957. – 784с.

20. Гребенщиков С.А. Подбор капиллярной трубки для холодильной машины/ С.А. Гребенщиков, Ю.Н. Назаренко, Ю.К. Новиков// Холодильная техника. – 1991. - №10. – С. 14-16.

21. Двигатели внутреннего сгорания. Теория рабочих процессов/ В.Н. Луканин [и др.]. – М.: 1989.

22. Двигатели внутреннего сгорания. Устройство и работа поршневых и комбинированных двигателей/ Под ред. А.С. Орлина – М.: Машиностроение, 1970. – 384с.

23. Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей/ Под ред. А.С. Орлина, М.Г. Круглова – М.: Машиностроение, 1983. – 372с.

24. Двигатели внутреннего сгорания. Конструирование и расчет на прочность поршневых и комбинированных двигателей/ Под ред. А.С. Орлина, М.Г. Круглова – М.: Машиностроение, 1984. – 384с.

25. Дейч М.Е. Газодинамика двухфазных сред/ М.Е. Дейч, Г.А. Филиппов. – М.: Энергоиздат, 1981.

26. Елагин М.Ю. К вопросу исследования переходных процессов в поршневом компрессоре холодильных машин/ М.Ю. Елагин, А.П. Ушаков// III Всесоюз. науч.- техн. конф. по холодильному машиностроению: Тез. докл. - Одесса., 1982.

27. Елагин М.Ю. Методика проектирования компрессора обеспечивающего минимальную удельную мощность/ М.Ю. Елагин, В.Н. Карпов// III Всесоюз. науч.- техн. конф. по холодильному машиностроению: Тез. докл.- Одесса, 1982.

28. Елагин М.Ю. Математическая модель поршневого компрессора/ М.Ю. Елагин, А.П. Ушаков// Тула: ТПИ, 1984, 10с. (Рук. деп. в ЦИНТИхимнефтемаш №1226, 25.07.84г.)

29. Елагин М.Ю. Математическая модель для расчета капиллярных трубок/ М.Ю. Елагин// Холодильная техника. – 1984. - №7. – С. 39-40. 30. Елагин М.Ю. Разработка математической модели нестационарных процессов компрессорной холодильной машины для применения в алгоритмах оптимального проектирования: Дис. ... канд. техн. наук. – Тула, 1984. – 131с.

31. Елагин М.Ю. Повышение эффективности бытовых холодильных машин на основе математического моделирования нестационарных рабочих процессов: Дис. ... докт. техн. наук. – С-Петербург, 1993. – 250с.

32. Елагин М.Ю. Модернизация бытового холодильника под перспективный компрессор на основании математической модели, учитывающей нестационарность его работы/ М.Ю. Елагин, В.Н. Бабахин, С.А. Тереховкин// Всес. Науч. – практ. Конф. «Пути интенсификации производства с применением искусственного холода в отраслях АПК, торговле и на транспорте: Тез. докл – Одесса. 1989. С 6.

33. Елагин М.Ю. Проектирование поршневого компрессора минимальной энергоемкости/ М.Ю. Елагин, В.Н. Бабахин // Холодильная техника. - 1989. - № 3.

34. Елагин М.Ю. Оптимизация соотношений конструктивных параметров бытового холодильника на основе математического моделирования/ М.Ю. Елагин, В.Н. Бабахин, С.А. Тереховкин// Холодильная техника. – 1990. - №10. – С.4-5.

35. Елагин М.Ю. Математическая модель нестационарных процессов компрессорной холодильной машины с капиллярной трубкой/ М.Ю. Елагин, Н.В. Семенчева, А.П. Ушаков - М.: 1986. – 16с. Деп. в ЦИНТИхимнефтемаш 04.11.86, № 1613.

36. Елагин М.Ю. Аналитический аппарат термодинамики тела переменной массы применительно к уравнению состояния Редлиха – Квонга/ М.Ю. Елагин. - М.: 1990. -20с. – Деп. в ЦИНТИхимнефтемаш 01.08.90, № 2128.

37. Елагин М.Ю. Термодинамика тела переменной массы, подчиняющегося уравнению состояния Боголюбова – Майера/ М.Ю. Елагин, Ю.П. Саклаков, А.П. Ушаков. – М.: 1984. – 9с. – Деп. в ЦИНТИхимнефтемаш 25.07.84, № 1227.

38. Елагин М.Ю. Математическая модель нестационарных процессов компрессорной холодильной машины с капиллярной трубкой/ М.Ю. Елагин, Н.В. Семенчева, А.П. Ушаков. – М.: 1986. – 16с. – Деп. В ЦИНТИхимнефтемаш 04.11.86, № 1613.

39. Елагин М.Ю. Исследование зависимости выходных характеристик пневматического вибровозбудителя от конструктивных пара-

метров/ М.Ю. Елагин, К.Н. Киреев, В.С. Кутепов, А.П. Ушаков// Известия ТулГУ: Подъемно-транспортные машины, под ред. Н.И. Харитонова. Тула, 1997. 186с.

40. Елагин М.Ю. Повышение эффективности бытовых холодильных машин на основе математического моделирования нестационарных рабочих процессов: Дис. ... докт. техн. наук. - С.-Петербург, 1993.

41. Елагин М.Ю. Математическое моделирование нестационарных процессов в открытых термодинамических системах/ М.Ю. Елагин. – Тула: ТулГУ, 1999. – 112с.

42. Елагин М.Ю. Математическое моделирование рабочих процессов аксиальных поршневых компрессоров/ М.Ю. Елагин, Е.М. Чуканова// Известия ТулГУ. Серия автомобильный транспорт, вып. 6, 2002.

43. Елагин М.Ю. Динамическая модель испарения рабочего тела./ М.Ю. Елагин, С.В. Филин, Известия ТулГУ. Серия. Автомобильный транспорт. Вып. 8. – Тула: Изд-во ТулГУ, 2004. – С. 135-138.

44. Елагин М.Ю. Математическое моделирование процесса сушки в сушильной камере конвективного типа/ М.Ю. Елагин// Изв. Тул-ГУ. Сер. Автомобильный транспорт. Вып. 9. 2005.

45. Елагин М.Ю. Моделирование рабочего процесса в двигателе с вращающимся цилиндром-клапаном/ М.Ю. Елагин, М.Н. Яковлев// Известия ТулГУ. Технические науки. Вып. 1. Тула: Изд-во ТулГУ, 2010 – С. 240 – 245.

46. Елагин М.Ю. Термодинамика открытых систем/М.Ю. Елагин – Тула: ТулГУ, 2013. – 400с. - Библиогр.: С. 300 - 308. - 500 экз. – ISBN 978-5-7679-2451-6.

47. Елагин М.Ю. Моделирование рабочего процесса ротационного пневматического двигателя с радиальными лопатками/ М.Ю. Елагин, Е.М. Сидоров// Известия ТулГУ. Серия: Технич. науки. Вып. 6. – Тула: 2014. С. 88-96.

48. Елагин М.Ю. Моделирование рабочего процесса ротационного пневматического двигателя с тангенциальными лопатками/ М.Ю. Елагин, Е.М. Сидоров //Известия ТулГУ. Серия Технич. науки. Вып. 12. Ч. 1. – Тула: 2015. С. 170–178.

49. Елагин М.Ю. Программа для расчета рабочих процессов ротационных пневматических двигателей с радиальными лопатками/ М.Ю. Елагин, Е.М. Сидоров// Номер рег. RU 2017613834, от 03.04.2017, номер и дата пост. 2016662940 от 28.11.2016. 50. Елагин М.Ю. Программа для расчета рабочих процессов ротационных пневматических двигателей с тангенциальными лопатками/ М.Ю. Елагин, Е.М. Сидоров// Номер рег. RU 2017614262, от 10.04.2017, номер и дата пост. 2016662951 от 28.11.2016.

51. Емцев Б. Т. Техническая гидромеханика/ Б. Т. Емцев. – М.: Машиностроение, 1987. – 440с.

52. Епифанова В.И. Низкотемпературные радиальные турбодетандеры/ В.И. Епифанова – М.: Машиностроение, 1974. - 395с.

53. Захаренко С.Е. К вопросу о протечках газа через щели. - Труды Ленинградского политехнического института им. М. И. Калинина, 1953, № 2, с. 144 - 160.

54. Захаренко С.Е. Экспериментальное исследование протечек газа через щели. - Труды Ленинградского политехнического института им. М. И. Калинина, 1953, № 2, с. 161-170.

55. Захаренко С.Е. Расчет коловратных компрессоров. - Труды Ленинградского политехнического института им. М. И. Калинина, 1954, № 2, с. 90-104.

56. Захаренко С.Е. Расчет зазоров в коловратных компрессорах. -Труды Ленинградского политехнического института им. М. И. Калинина, 1954, № 2, с. 105-108.

57. Зеленецкий С.Б. Ротационные пневматические двигатели – расчет и конструирование/ С.Б. Зеленецкий, Е.Л. Симкин – Л.: ЛДНТП, 1961. - 68 с.

58. Зеленецкий С.Б. Ротационные пневматические двигатели/ С.Б. Зеленецкий, Е.Д. Рябков, А.Г. Микеров – Л.: Машиностроение, 1976. 240 с.

59. Кириллин В.А. Техническая термодинамика/ В.А. Кириллин, В.В. Сычев, А.Е. Шейндлин. – М.: Наука, 1974. – 592с

60. Лавренченко Г.К. Единые уравнения состояния холодильных масел по ограниченным данным/Г.К. Лавренченко и [др.]// Холодильная техника. 1990. № 1.

61. Лариков Н.Н. Теплотехника/ Н.Н. Лариков. – М.: Стройиздат, 1985. – 432с.

62. Исследование переходных режимов рабочих процессов, протекающих в бытовых холодильных установках: Отчет о НИР (закл.) ТулПИ. - №80-868, № ГР 8042866; Инв. № 2830023418. – М.: ВНТИЦ, 1983. – 75с.

63. Мамонтов М.А. К вопросу о термодинамике газа в период изменения его количества/М.А. Мамонтов// Тр. ТМП. Вып. 1. 1941. 64. Мамонтов М.А. Теория тепловых двигателей/ М.А. Мамонтов. – Самарканд, 1943.

65. Мамонтов М.А. Вопросы термодинамики тела переменной массы/ М.А. Мамонтов. – М.: 1962.

66. Мамонтов М.А. Некоторые случаи течения газа по трубкам, насадкам и проточным сосудам/ М.А. Мамонтов. – М.: Оборонгиз, 1951. – 490с.

67. Мамонтов М.А. Основы термодинамики тела переменной массы/ М.А. Мамонтов. – Тула: Приокское книжное изд., 1970. – 87с.

68. Мамонтов М.А. Оковы Прометея/ М.А. Мамонтов. – Тула: изд. ТВАИ, 1976. – 41 с.

69. Мартыновский В.С. Циклы, схемы и характеристики термотрансформаторов/ В.С. Мартыновский – М.: Энергия, 1979. – 288с.

70. Мехтиев Р.И. Математическое моделирование процесса турбулентного выгорания в поршневых двигателях с принудительным зажиганием/ Р.И. Мехтиев, Х.Б. Багиров, М.Н. Фарзалиев// Химическая физика процессов горения и взрыва. Проблемы теплоэнергетики: Материалы VIII Всесоюз. Симпозиума по горению и взрыву. – Черноголовка, 1986. – С. 107 – 111.

71. Набережных А.И. Анализ работы и рекомендации по повышению основных показателей качества герметичных хладоновых компрессоров для бытовых холодильников/ А.И. Набережных, О.П. Голубев, А.В. Максимов, С.П. Посеренин – М.: МТИ, 1985. – 70 с.

72. Некоторые вопросы динамики газовых приводов, рабочие тела которых подчиняются уравнению состояния Абеля/ Б.М. Подчуфаров [и др.]// Динамика и точность функционирования тепломеханических систем. 1971. Вып. 1. С. 3 – 33.

73. О математическом описании функционирования привода, рабочим телом которого является парожидкостная среда/ Б.М. Подчуфаров [и др.]//Динамика и точность функционирования тепломеханических систем. Вып. 4. 1973. С. 11 – 20.

74. Перельштейн И.И. Обобщенные температурные зависимости для давления насыщенных паров и плотности кипящей жидкости/ И.И. Перельштейн, Е.Б. Парушин. – М.: ВНИХИ, 1976. – С. 13 – 26.

75. Плужников О.Н. Повышение энергетической эффективности двухкамерных бытовых холодильников/ О.Н. Плужников, В.Ф. Возный, Г.К. Лавренченко, М.Г. Хмельнюк// Холодильная техника. - 1991. - №2. – С. 5 – 7.

76. Подчуфаров Б.М. Расчет газового двигателя с учетом свойств реальных газов/ Б.М. Подчуфаров// Машиноведение. 1970. № 5.

77. Подчуфаров Ю.Б. Уравнения термодинамики переменного количества газа Ван-дер-Ваальса/ Ю.Б. Подчуфаров// Вопросы оптимизации и автоматизации конструкторских работ. 1971. Вып. 9. С. 37 – 43.

78. Разработка методов проектирования компрессионных холодильных машин с капиллярной трубкой, имеющих минимальные затраты на производство и эксплуатацию: Отчет о НИР (закл.)/ ТулПИ. - № 85-321; Инв. № 02880057894. – М.: ВНТИЦ, 1989. – 80с.

79. Расширительные машины/ К.И. Страхович [и др.]. – М. – Л.: Машиностроение, 1966. – 295с.

80. Ривкин С.Л. Уравнения для расчета термодинамических свойств насыщенного и переохлажденного водяного пара/ С.Л. Ривкин, А.А. Александров// Теплоэнергетика. 1971. № 8. С. 65 – 68.

81. Ривкин С.Л. Уравнение состояния воды и водяного пара для машинных расчетов процессов и оборудования электростанций/ С.Л. Ривкин, Е.А. Кременевская// Теплоэнергетика. 1977. № 3. С. 69 – 73.

82. Рид Р. Свойства газов и жидкостей: справочное пособие; пер. с англ./ Р. Рид, Дж. Праусниц, Т. Шервуд; под ред. Б.И. Соколова. – 3-е изд., перераб. и доп. – Л.: Химия, 1982. – 592с.

83. Рувинский Г.Я. Методика разработки единых уравнений состояния смесей хладагент-масло по ограниченным данным/ Г.Я. Рувинский, Г.К. Лавренченко, В.В. Канаев// Холодильная техника. 1987. № 3.

84. Рувинский Г.Я. Теплофизические свойства R134а/ Г.Я. Рувинский, Г.К. Лавренченко, С.В. Ильюшенко// Холодильная техника. – 1990. - №7. – С. 20-26.

85. Свиридов Ю.Б. Топливо и топливоподача автотракторных дизелей/ Ю.Б. Свиридов, Л.В. Малявинский, М.М. Вихерт. – Л.: Машиностроение, 1979. – 248с.

86. Семенчева Н.В. Математическое моделирование переходных процессов в испарителях холодильных машин/ Н.В. Семенчева, М.Ю. Елагин, А.П. Ушаков. – М.: - 8с. – Деп. в ЦИНТИхимнефтемаш 14.06.94, № 1193.

87. Семенчева Н.В. К уточнению математической модели динамических процессов в барабане парогенератора/Н.В. Семенчева. – М.: 1981. – 8с. – Деп. в Информэнерго 25.03.81, № Д/831. 88. Семенчева Н.В. Математическое моделирование парожидкостных процессов/ Н.В. Семенчева. – Тула: ТулГУ, 1998. – 72с.

89. Семенчева Н.В. Математическое моделирование процессов в кожухе герметичного компрессора с учетом динамики растворения и выделения хладагента из смазочного масла/ Н.В. Семенчева, М.Ю. Елагин, А.П. Ушаков. – М., 1984. – 8с. – Деп. В ЦИНТИхимнефтемаш 14.06.84, № 1192.

90. Соколов Е.Я. Энергетические основы трансформации тепла и процессов охлаждения/ Е.Я. Соколов, В.М. Бродянский – М.: Энергоиздат, 1981. – 320с.

91. Страхович К.И. Прикладная газодинамика/ К.И. Страхович. – Л.-М., 1937.

92. Стуканов В.А. Основы теории автомобильных двигателей и автомобиля/ В.А. Стуканов. –М.: ФОРУМ – ИНФРА-М, 2004. – 368 с.

93. Сухомлинов Р.М. Трохоидные компрессоры/ Р.М. Сухомлинов. – Харьков: Вища школа, 1975. – 152с.

94. Стоккер В.Ф. Холодильная техника и кондиционирование воздуха. – М.: Машгиз, 1962. – 316с.

95. Сутырина Т.М. Экспериментальное исследование дросселирования фреона-12 в трубах// Холодильная техника. – 1967. - №9. – С. 14-18.

96. Сутырина Т.М. Дросселирование холодильного агента в трубке постоянного сечения/ Т.М. Сутырина// Холодильная техника. – 1966. - №1. – С. 16-22.

97. Сутырина Т.М. Исследование процесса расширения жидкого фреона-12 в сопле/ Т.М. Сутырина// Холодильная техника. – 1964. - №4. – С. 45-51.

98. Сычев В.В. Скорость звука в воде и водяном паре на линии насыщения/ В.В. Сычев// ИФЖ, 1961. Т.4, № 6. С. 64 – 69.

99. Тарг С. М. Основные задачи теории ламинарных течений/ С. М. Тарг. – М. – Л.: Гостехиздат, 1951. – 420с.

100. Теоретические основы теплотехники. Теплотехнический эксперимент: справочник/ под ред. В.А. Григорьева, В.М. Зорина. – М.: Энергоатомиздат, 1989. – 560с.

101. Теоретические основы хладотехники. Тепломассообмен/ С.Н. Богданов [и др.]. – М.: Агропромиздат, 1986. – 320с.

102. Тепловые и конструктивные расчеты холодильных машин/ Под ред. И. А. Сакуна. - Л.: Машиностроение, 1987. - 424с.

103. Теплотехника/ В.И. Крутов [и др.]. – М.: Машиностроение, 1986. – 432с.

104. Теплофизические основы получения искусственного холода: справочник/ Под ред. А.В. Быкова – М.: Пищевая промышленность, 1980. – 232с.

105. Техническая термодинамика и теплопередача/ В.И. Кушнырев [и др.]. – М.: Стройиздат, 1986. – 464с.

106. Уокер Дж. Физический фейерверк: - 2-е изд. Пер. с англ./ Под ред. И.Ш. Слободецкого. – М.: Мир, 1988. – 298 с., ил.

107. Чистяков Ф.М. Термические уравнения для процессов с переменной массой/Ф.М. Чистяков, А.П. Ушаков, М.Ю. Елагин// Сб. науч. докл. 4-й Всесоюз. Научн. Конф. «Научно-технические проблемы и достижения в криогенной технике» («Криогеника 87»). Ч.2. – Балашиха, 1988. – С. 218 – 224.

108. Холодильные компрессоры: справочник/ А.В. Быков [и др.]. – М.: Легкая и пищевая промышленность, 1981. – 280с.

109. Холодильные машины. Справочник/ Под ред. А.В. Быкова. – М.: Легкая и пищевая промышленность, 1982. – 224с.

110. Френкель Я.И. Кинетическая теория испарения/ Я.И. Френкель. – Л.: Наука, 1975. – 592с.

111. Шатуны в отставку// Тюнинг автомобилей. 2002, №3, С. 92 – 97.

112. Шулейкин В.В. Кинетическая теория испарения/ В.В. Шулейкин// Журн. Рус. Физико – хим. Общ-ва. – 1926. Ч. Физическая. Т. LVIII. Вып. 3. С. 527 – 540.

113. Элементы систем автоматизированного проектирования ДВС. Алгоритмы прикладных программ/ Р.М. Петриченко [и др.]. – Л.: Машиностроение, 1990. – 328с.

114. Якобсон В.Б. Малые холодильные машины/ В.Б. Якобсон – М.: Пищевая промышленность, 1977. – 368с.

115. Ярошенко П.П. Аксиально-оппозитные поршневые холодильные компрессоры/ П.П. Ярошенко, Л.В. Глабай, Л.Н. Деревянко// Холодильная техника. 1990, № 11.

116. Ярышев Н.А. Теоретические основы измерения нестационарных температур/ Н.А. Ярышев – Л.: Энергия, 1967. – 299с.

117. ASHRAE Guide and Data Book. Equipment. New York, 1972.

118. ASHRAE Guide and Data Book. Application. New York, 1970.

119. Backstrom M. Zur Berechnung des Kapillarrohres als Drosselvorrichtung, Kaltetechnik, 10, 283-289 (1958). 120. Bolstad, M.M., and R.C Jordan.: Theory and Use of the Capillary Tube Expansion Device. Refrig. Eng., vol. 56, no. 6, p. 519, December, 1948.

121. Barnes F.J.: Ph. D. tezis Departament of Chemical Engineering, University of California/ F.J. Barnes: Berkeley, 1973; King C.J., Personal Communication/ C.J. King, 1974.

122. Cooper, I., C.K. Chu and W.R. Brisken.: Simple Selection Method for Capillaries Derived from Physical Flow Conditions. Refrig. Eng., vol. 65, no. 7, p. 37, Juli, 1957.

123. Frank D.L. "The Drinking Bird and the Scientific Method, J. Chem. Ed., 50, 211 (1973).

124. Gaines J.L. "Dunking Bird," Am. J. Phys., 27, 189 (1959).

125. Hisao Koisumi, Kunio Yokojama. Characteristics of Refrigerant Flow in a Capillary Tube, ASHRAE transactions, Technical and Symposium papers at the 1980 semiannual meeting in Los-Angeles, California of the ASHRAE, 1980, Volume 86, Part. 1, p. 19-27.

126. Hopcins, N.E.: Rating the Restrictor Tube. Refrig. Eng., vol. 58, no. 11, p. 1087, November, 1950.

127. Jaeger H.P. Empirische Methoden zur Vorausberechnung termodynamische Eigenschaften von Ol – Kaltemittel – Gemischen. – Kaltetechnik – Klimatisierung/ H.P. Jaeger, 1973. №2, S. 35-52.

128. Kolb K.B. " 'Reciprocating' Engine," Phys. Teacher, 4, 121 (1966).

129. Lathrop, H.F.: Application and Characteristics of Capillary Tubes, Refrig. Eng., vol. 56, no. 2, p. 129, August, 1948.

130. Miller J.S. "Physics of the Dunking Duck," Am. J. Phys., 26, 42 (1958).

131. Murrow R.B. Saturday Review, 50, 51 (3 June 1967).

132. Pasqua, P.F.: Metastable Flow of Freon 12, Refrig. Eng., vol. 61, no. 10, p. 1084, October 1953.

133. Plymb R.C. "Physical Chemistry of the Dunking Duck," J. Chem. Ed., 50, 213 (1973).

134. Redlich O., and J.N.S. Kwong: Chem. Rev., 44: 233 (1949).

135. Soave G. Chem. Eng. Sci./ G. Soave, 1972. 27 (1197).

136. Staebler, L.A.: Theory and Use of a Capillary Tube for Liquid Refrigerant Control, ASHRAE Journal, January, 1981, p. 62-64.

137. Vera J.H. and Prausnitz: Chem. Eng. J., 3:1 (1972).

138. Wilson G.M. Adv. Gryog. Eng., 9: 168 (1964), 11: 392 (1966).

139. http://www.vostokcooter.ru/index.php.

140. https://ru.wikipedia.org/wiki.

141. https://www.youtube.com/watch?v=OQS0dqmaDVk.

142. http://vipwash.ru/sistema-ohlazhdeniya/avtomobilnyy-kompressor-kondicionera.

143. http://avtozam.com/elektronika/ac/remont-kompressoraavtokondicionera/#.

ПРИЛОЖЕНИЕ

Приложение 1

```
С
       ПРОГРАММА ДЛЯ ВЫЧИСЛЕНИЯ РАСХОДА СМЕСИ РЕАЛЬНЫХ ГАЗОВ,
С
           ПОДЧИНЯЮЩЕЙСЯ УРАВНЕНИЮ СОСТОЯНИЯ РЕДЛИХА-КВОНГА
С
       _____
С
       common/fxa/im,ic,tkr(5),pkr(5),om(5),yk(5),ar(5),adt(4,5),
       adr(4,5)
       С
                 im
                      - НОМЕР МОДИФИКАЦИИ УРАВНЕНИЯ СОСТОЯНИЯ
С
                 im=1 - ОРИГИНАЛ УРАВНЕНИЯ РЕДЛИХА-КВОНГА
С
                 im=2 - МОДИФИКАЦИЯ ВИЛЬСОНА
С
                 im=3 - МОДИФИКАЦИЯ БАРНЕ-КИНГА
С
                 im=4 - МОДИФИКАЦИЯ СОАВЕ
С
       ic - ПРИЗНАК ДЛЯ ОПРЕДЕЛЕНИЯ CV0 ( ic = 1 - данные ВНИХИ,
С
С
       ic = 2 - данные Р.РИДА ); п - ЧИСЛО КОМПОНЕНТОВ СМЕСИ
          tkr, pkr - КРИТИЧЕСКАЯ ТЕМПЕРАТУРА, К; ДАВЛЕНИЕ, ПА
С
          от - ФАКТОР АЦЕНТРИЧНОСТИ
С
          ук - МАССИВ МАССОВЫХ ДОЛЕЙ КОМПОНЕНТОВ
С
          ar - ГАЗОВАЯ ПОСТОЯННАЯ, ДЖ/КГ*К
С
      t0, p0 - ТЕМПЕРАТУРА, К; И ДАВЛЕНИЕ, ПА В ПОЛОСТИ ИСТЕЧЕНИЯ
С
          рс - ДАВЛЕНИЕ СРЕДЫ, КУДА ПРОИСХОДИТ ИСТЕЧЕНИЕ, ПА
С
       _____
С
       write (*,*)'im,ic,n'
       read (5,*)im,ic,n
       write (6,1)im, ic, n
       write (*,*)'Введите массовые доли масла и хладагентов'
       read (5, *) (yk(i), i=1, 5)
       write (6,*)'
                            tkr,
                                  pkr,
                       i,
                                      om,
                                             vk,
                                                   ar'
       do 4 i=1,n
4
       write (6,3)i,tkr(i),pkr(i),om(i),yk(i),ar(i)
       write (6,*)'
                             массив
                                      adt'
       write (6,7)adt
       write (6,*)'
                                      adr'
                             массив
       write (6,7)adr
       write (*,*)'
                       введите p0,t0'
       read (5,*)p0,t0
       write (6,5)p0,t0
       pc=p0
       write (6,90)
       write (6,8)
       write (6,90)
6
       g=gkv(t0,p0,pc,n)
       write (6,7)t0,p0,pc,g
       pc=pc-1.e 5
       if(pc.lt.2.e 5) go to 9
       go to 6
9
       write (6,90)
       stop
```

```
1
        format(1x,'im=',i2,1x,'ic=',i2,1x,'n=',i2)
3
        format(2x, i2, 5e10.3)
5
        format(2x,'p0,t0',1x,2e10.3)
7
        format(2x, 4e10.3)
        format(7x,'t0',8x,'p0',8x,'pc',8x,'g')
8
        format(1x, 60(1h-))
90
       end
С
       block data
С
                        _____
       common/fxa/im,ic,tkr(5),pkr(5),om(5),yk(5),ar(5),adt(4,5),
       adr(4,5)
     *
       DATA TKR/2220.43,385.,369.2,353.2,374.53/,PKR/4826000.,
     *
       4119000.,4990000.,3192000.,4055000./,
     *
       OM/-0.3,0.176,0.215,0.253,
     *
       0.326/, AR/26.65, 68.76, 96.16, 53.824, 81.50/
        ----- XФ-12-16, R-12, R-22, R-115, R-134a
С
       data adt/268.26,0.65852,-0.40058E-3,0.33645E-6,
     *
       -0.6228, 7.2890, 10.3950, -6.1750,
     *
       0.0452,0.770,18.828,-10.001,
     *
       -1.0406, 11.646, 18.204, -10.317,
       -0.1348,2.4933,28.905,-14.877/
С
       ----- R-12, R-22, R-115
       DATA ADR/4*0.,
     *
       7.547,4.257E-2,-3.603E-5,1.037E-8,
       4.132,3.865E-2,-2.294E-5,7.305E-9,
     *
       6.648,8.340E-2,-6.904E-5,1.944E-8,4*0./
     *
       end
С
        function gkv(t0,p0,pc,n)
С
        _____
       real i,i0
       common/r/r,at,d1at,d2at,b,cv0
       equivalence (cv0,cv)
       data em/1000.0/
       ro0=rorkv(t0,p0,n)
       w1=cv0/r
       w1=w1+1./(1.-b*ro0)-at*ro0/(1.+b*ro0)
     * +t0*d1at*alog(1.+b*ro0)/b
       i0=r*t0*w1
       t=(t0+t0)*cv0/(cv0+cv0+r)
       et=em
20
       e0=et
        t1=t
       ro=adrokv(ro0,t0,t1,n)
       cv=cv+r*t1*alog(1.+b*ro)*(2.*d1at+t1*d2at)/b
       w^{2=3.}/(1.-b*r_{0})+(cv_{0}+cv_{0})/r
       w2=w2-at*ro*(4.+3.*b*ro)/(1.+b*ro)/
       (1.+b*ro)+2.*t1*d1at*alog(1.+b*ro)/b
       w3=1./(1.-b*ro)-ro/(1.+b*ro)*(at+t1*d1at)
       t=2.*t0*w1/(w2+r/cv*w3*w3)
       t=(t+t1)/2.
       Et=abs(1.-t1/t)
                               359
```

50		if(et-e0)20,50,50
50		$p_{k=r^{-1}r_{0}(1.)(1b^{r_{0}}-r_{0}a_{1}/(1.+b^{r_{0}}))$
		rok = ro
		11 (pc.1e.pk)go to 80
		et=em
40		e0=et
		tl=t
		ro=rorkv(t1,pc,n)
		t=adtkv(t0,ro0,ro,n)
		t=(t+t1)/2.
		Et=abs(1t1/t)
		if(et-e0)40,80,80
80		call rrkv(t,n)
		i=cv0*t
		i=i+r*t*(1./(1b*ro)-at*ro/(1.+b*ro)+
	*	t*d1at*alog(1.+b*ro)/b)
		if(i0.le.i) i=i0
		akv=ro*sart(2.*(i0-i))
с		write(6,1)ro0,ro,rok,t,tk
C		write $(6, 2)$ cv, pk, i, i0
1		format(1x, ro0, ro, rok, t, tk', 5e10.3)
2		format(3x, 'cy, pk, i, i0', 4e10, 3)
_		return
		end
с		
		<pre>function adtkv(t0,ro0,ro,n)</pre>
С		function adtkv(t0,ro0,ro,n)
C c C		function adtkv(t0,ro0,ro,n) ВЫЧИСЛЕНИЕ ТЕМПЕРАТУРЫ ПО УРАВНЕНИЮ АДИАБАТЫ
C C C		function adtkv(t0,ro0,ro,n) ————————————————————————————————————
C C C		function adtkv(t0,ro0,ro,n) BIJYICJIEHNE TEMILEPATYPIJ IIO YPABHEHNIO AQUABATIJ common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv)
C c C		function adtkv(t0,ro0,ro,n) BHYNCJEHNE TEMMEPATYPH NO YPABHEHNO AQNABATH common/r/r,at,d1at,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/
C C C		function adtkv(t0,ro0,ro,n) ————————————————————————————————————
C C C		function adtkv(t0,ro0,ro,n) ————————————————————————————————————
C C C		function adtkv(t0,ro0,ro,n) BUYUCJEHUE TEMNEPATYPU NO YPABHEHUNO AQUABATU common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return
C C C		function adtkv(t0,ro0,ro,n) ————————————————————————————————————
C C 5		function adtkv(t0,ro0,ro,n) BHYMCJEHME TEMHEPATYPH HO YPABHEHMO AQMAEATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) wl=alog(ro/ro0)+alog(1 +b*ro0)*(at+t0*
C C 5	*	function adtkv(t0,ro0,ro,n) BHYMCJEHME TEMMEPATYPH NO YPABHEHMO AQMABATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/btalog((1 -b*ro0)/(1 -b*ro))
C C 5	*	function adtkv(t0,ro0,ro,n) ВЫЧИСЛЕНИЕ ТЕМПЕРАТУРЫ ПО УРАВНЕНИЮ АДИАБАТЫ common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0)
С С 5	*	function adtkv(t0,ro0,ro,n) BЫЧИСЛЕНИЕ ТЕМПЕРАТУРЫ ПО УРАВНЕНИЮ АДИАБАТЫ common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0)
C C 5	*	function adtkv(t0,ro0,ro,n) BHYMCJEHME TEMΠEPATYPH ΠΟ YPABHEHMO AJMAEATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em +1-+
C C 5	*	<pre>function adtkv(t0,ro0,ro,n) BH4NCJIEHNE TEMILEPATYPH IIO YPABHEHNNO AJUABATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t o0=o</pre>
C C 5 40	*	<pre>function adtkv(t0,ro0,ro,n) BNUACJEHAE TEMILEPATYPN IIO YPABHEHANO AJUAEATN common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t e0=e call rrkv(t1 n)</pre>
C C 5	*	function adtkv(t0,ro0,ro,n) BHYMCJEHNE TEMMEPATYPH NO YPABHEHNKO AJUAEATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t e0=e call rrkv(t1,n) w2=w1-av0(rtolog(1+b)
C C 5 40	*	function adtkv(t0,ro0,ro,n) BHYMCJEHME TEMΠEPATYPE ΠΟ YPABHEHMO AJMAEATE common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t e0=e call rrkv(t1,n) w2=w1-cv0/r*alog(t1/t0) w2=w1-cv0/r*alog(t1/t0)
C C 5 40	*	<pre>function adtkv(t0,ro0,ro,n) BHYMCJEHME TEMHEPATYPH HO YPABHEHMO AJMAEATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t e0=e call rrkv(t1,n) w2=w1-cv0/r*alog(t1/t0) w2=w2-alog(1.+b*ro)*(at+t1*dlat)/b currents#t1talog(1.+b*ro)*(2.tdlat)/b</pre>
C C 5 40	*	<pre>function adtkv(t0,ro0,ro,n) BHYMCJEHME TEMHEPATYPH HO YPABHEHMO AJMAEATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t e0=e call rrkv(t1,n) w2=w1-cv0/r*alog(t1/t0) w2=w2-alog(1.+b*ro)*(at+t1*d1at)/b cv=cv+r*t1*alog(1.+b*ro)*(2.*d1at+t1*d2at)/b w2= m(n(f1b*ro))/(2.*d1at+t1*d2at)/b</pre>
C C 5	*	<pre>function adtkv(t0,ro0,ro,n) BHUMCJEHME TEMMEPATYPH NO YPABHEHMO AJMAEATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t e0=e call rrkv(t1,n) w2=w1-cv0/r*alog(t1/t0) w2=w2-alog(1.+b*ro)*(at+t1*dlat)/b cv=cv+r*t1*alog(1.+b*ro)*(2.*dlat+t1*d2at)/b w3=-cv/r/t1-alog(1.+b*ro)*(2.*dlat+t1*d2at)/b</pre>
C C 5 40	*	<pre>function adtkv(t0,ro0,ro,n) BHYMCJEHNE TEMMEPATYPH NO YPABHEHND AJMABATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) w1=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t e0=e call rrkv(t1,n) w2=w1-cv0/r*alog(t1/t0) w2=w2-alog(1.+b*ro)*(at+t1*dlat)/b cv=cv+r*t1*alog(1.+b*ro)*(2.*dlat+t1*d2at)/b w3=-cv/r/t1-alog(1.+b*ro)*(2.*dlat+t1*d2at)/b t=t1*(1w2/(w3*t1)) e=etheta(1.+t1/t)</pre>
C C 5 40	*	function adtkv(t0,ro0,ro,n) BHMUCJEHNE TEMIEPATYPH NO YPABHEHND AJUAEATH common/r/r,at,dlat,d2at,b,cv0 equivalence (cv0,cv) data em/1000.0/ if(ro0.ne.ro) go to 5 adtkv=t0 return call rrkv(t0,n) wl=alog(ro/ro0)+alog(1.+b*ro0)*(at+t0* dlat)/b+alog((1b*ro0)/(1b*ro)) t=t0*(ro/ro0)**(r/cv0) e=em t1=t e0=e call rrkv(t1,n) w2=w1-cv0/r*alog(t1/t0) w2=w2-alog(1.+b*ro)*(at+t1*dlat)/b cv=cv+r*t1*alog(1.+b*ro)*(2.*dlat+t1*d2at)/b w3=-cv/r/t1-alog(1.+b*ro)*(2.*dlat+t1*d2at)/b t=t1*(1w2/(w3*t1)) e=abs(1t1/t) if(a = 0) 40 80 80
C C 5 40	*	<pre>function adtkv(t0,ro0,ro,n) </pre>
```
return
       end
С
       subroutine rrkv(t,n)
С
       _____
       dimension aat(5), a1at(5), a2at(5), ab(5), tkr(5), pkr(5),
    *
       om(5), yk(5), ar(5), adt(4,5), acv0(5), fo1(5), fo2(5),
       ykm(5), adr(4, 5)
       common/r/r,at,d1at,d2at,b,cv0
       common/fxa/im, ic, tkr, pkr, om, yk, ar, adt, adr
       ----- ykm - МАССИВ МОЛЬНЫХ ДОЛЕЙ КОМПОНЕНТОВ ------
С
       f1=0.
       F2 = 0.
       Tk=0.
       Ac=0.
       Do 10 i=1,n
10
       ac=ac+yk(i)*ar(i)
       do 9 i=1,N
9
       ykm(i)=yk(i)*ar(i)/ac
       p=0.
       Opm=0.
       B=0.
       D1at=0.
       R=0.
       At=0.
       D2at=0.
       Cv0=0.
       Cv0m = ((adt(1,1)+2.*adt(2,1)*t+3.*adt(3,1)*
       t*t+4.*adt(4,1)*t*t*t)/8.314-1.)*ar(1)
       if(im.eq.3.or.im.eq.4) go to 7
       go to 4
С
                        МОДИФИКАЦИИ БАРНЕ-КИНГА И СОАВЕ
С
         ПАРАМЕТРЫ ВЫСШИХ (БИНАРНЫХ) ВЗАИМОДЕЙСТВИЙ НЕ УЧИТЫВАЮТСЯ
С
С
       7
       do 8 i=1,n
       r=r+yk(i)*ar(i)
       tk=tk+ykm(i)*tkr(i)
       opm=opm+ykm(i) *om(i)
8
       p=p+ykm(i)*tkr(i)/pkr(i)
       pk=tk/p
       call rkt(im,t,tk,pk,opm,r,b,at,d1at,d2at,f1,f2)
4
       do 5 i=1,n
       if(im.eq.3.or.im.eq.4) go to 5
       call rkt(im,t,tkr(i),pkr(i),om(i),ar(i),ab(i),aat(i),
    * alat(i),a2at(i),fo1(i),fo2(i))
       b=b+ykm(i)*ab(i)
       ----- МОДИФИКАЦИЯ ВИЛЬСОНА
С
       go to(2,3), im
3
       at=at+ykm(i) *aat(i)
       dlat=dlat+ykm(i) *alat(i)
       d2at=d2at+ykm(i)*a2at(i)
       go to 6
```

С		ОРИГИНАЛ УРАВНЕНИЯ РЕДЛИХА-КВОНГА
2		f1=f1+ykm(i)*fo1(i)
		$f^2 = f^2 + v km(i) * f^2(i)$
		if(i n n) = n
		11(1.1.0.17) go to 0 2+-4 034tbtf1tt2 /f2/ttt1 5
		al-4.934^D^II^^2./IZ/l^^I.3
		d2at=3.75*at/t/t
6		r=r+yk(i)*ar(i)
5		continue
с		РАСЧЕТ ТЕПЛОЕМКОСТИ ПО ДАННЫМ ВНИХИ
		DO 1 I=2,N
		if(ic.eq.1)acv0(i) = ar(i)*(adt(1,i)*1000./t+adt(2,i)+
	*	adt(3,i)*t/1000.+adt(4,i)*t*t/1.e 6)
С		РАСЧЕТ ТЕПЛОЕМКОСТИ ПО ЛАННЫМ Р. РИЛА
-		if(ic eq 2)acv0(i) = ar(i)*(4187 *(adr(1 i)+adr(2 i)*t+
	*	adr(3, i) + + + + + adr(4, i) + + + + + + / 8314 = 1
		$au(3,1) = c^{2} $
1		
T		
		cv0=cv0+yk(1)*cv0m
		return
		end
С		
		function rorkv(t,p,n)
С		
с		вычисление плотности по известным t, p
С		
		common/r/r,at,d1at,d2at,b,cv0
		data $em/1000 0/$
		call rrkv(t n)
		c = cn
10		
10		
		eu=e
		al=1b*roU
		a2=1.+b*ro0
		z1=p/(ro0*r*t)
		z2=1./a1-at*ro0/a2
		z3=1./(a1*a1)-at*ro0*(1.+a2)/a2/a2
		ro=ro0*(1(z2-z1)/z3)
		e=abs(1ro0/ro)
		if(e-e0)10,30,30
30		rorkv=ro0
		return
		end
C		
C		function advoku(rol + 0 + n)
c		
C		
C		вычисление плотности по уравнению адиабаты
С		
		common/r/r,at,d1at,d2at,b,cv0
		data em/1000.0/

	adrokv=ro0
	return
5	call rrkv(t0,n)
	w1 = -cv0/r*alog(t/t0)
	w1=w1+alog(1.+b*ro0)*(at+t0*d1at)/b
	ro=ro0*(t/t0)**(cv0/r)
	call rrkv(t,n)
	e=em
20	ro1=ro
	e0=e
	$w^2 = a \log (ro1/ro0) + w^1 - a \log (1 + b + ro1) +$
	* $(at+t*d1at)/b+alog((1,-b*ro0)/(1,-b*ro1))$
	$w_{3=1}/r_{0}+b/(1,-b*r_{0})-(at+t*d_{1})/(1,+b*r_{0})$
	ro=ro1*(1w2/(w3*ro1))
	e=abs(1,-ro1/ro)
	if(e-e0)20,40,40
40	adrokv=ro1
	return
	end
С	
	<pre>subroutine rkt(im,t,tkr,pkr,om,r,b,at,d1at,d2at,f1,f2)</pre>
С	
	real k
	b=0.08664*r*tkr/pkr
	ak=4.934*b
	go to(1,2,3,4),im
1	f1 = (tkr**2.5/(pkr/98100.))**0.5
	f2=tkr/(pkr/98100.)
	return
2	k=1.57+1.62*om
	at=ak*(1.+k*(tkr/t-1.))
	dlat=-k*ak*tkr/t/t
	d2at=-d1at*2./t
	return
3	k=0.9+1.21*om
	at=ak*(1.+k*((tkr/t)**1.5-1.))
	d1at=-1.5*k*ak*tkr**1.5/t**2.5
	d2at=-2.5*d1at/t
	return
4	k=0.48+1.574*om-0.176*om*om
	at=ak*tkr/t*(1.+k*(1sqrt(t/tkr)))**2.
	D1at = -k*ak*tkr/t/t*((1.+k)**2./k-(1.+k)*sqrt(t/tkr))
	d2at=2.*ak*(1.+k)**2.*tkr/t/t-1.5*k*(1.+k)*ak*
	* sqrt(tkr)/t**2.5
	return
	end
С	

Результаты расчета по программе RSX.FOR

im= 1 ic= 1 n= 5

ı,	tkr,	pkr,	om,	yk,	ar	
1	222E+04	483E+0)7 - 300E+0	00 000E+00	2665+02	
2	385E+03	412E+0)7 176E+0	000000000000000000000000000000000000	688E+02	
3	369E+03	499E+0)7 215E+(000E+00	962E+02	
4	353E+03	319E+0)7 253E+(1000 ± 00	538E+02	
5	375E+03	406E+0)7 326E+0	000E+00	815E+02	
5					.0101.02	
		массив	adt			
.2	268E+03	.659E+00	401E-03	.336E-06		
6	523E+00	.729E+01	.104E+02	618E+01		
. 4	152E-01	.770E+00	.188E+02	100E+02		
1	L04E+01	.116E+02	.182E+02	103E+02		
1	L35E+00	.249E+01	.289E+02	149E+02		
		массив	adr			
. ()00E+00	.000E+00	.000E+00	.000E+00		
.7	755E+01	.426E-01	360E-04	.104E-07		
. 4	113E+01	.386E-01	229E-04	.731E-08		
. 6	565E+01	.834E-01	690E-04	.194E-07		
. 0)00E+00	.000E+00	.000E+00	.000E+00		
F	50,t0 .	300E+07	.343E+03			
	 t0	0 0م	 pc	 a		
	t0	0م	pc	g		
	t0 543E+03	р0 . 300E+07	pc .300E+07	g .293E+05		
 . 3 . 3	t0 343E+03 343E+03	p0 .300E+07 .300E+07	pc .300E+07 .290E+07	g . 293E+05 . 305E+05		
	t0 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07	g .293E+05 .305E+05 .314E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07	g .293E+05 .305E+05 .314E+05 .321E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .407E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07 .220E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .407E+05 .327E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07 .220E+07 .210E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .407E+05 .327E+05 .315E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07 .210E+07 .200E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .407E+05 .327E+05 .315E+05 .315E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07 .220E+07 .210E+07 .200E+07 .190E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .407E+05 .327E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07 .210E+07 .210E+07 .190E+07 .180E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .327E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 . 300E+07 . 300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07 .210E+07 .200E+07 .190E+07 .170E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .407E+05 .327E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03	p0 . 300E+07 . 300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .260E+07 .250E+07 .240E+07 .230E+07 .210E+07 .200E+07 .190E+07 .180E+07 .160E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03 343E+03	p0 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07 .300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .260E+07 .250E+07 .230E+07 .210E+07 .210E+07 .190E+07 .180E+07 .160E+07 .150E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03	p0 . 300E+07 . 300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .260E+07 .250E+07 .240E+07 .210E+07 .210E+07 .200E+07 .190E+07 .180E+07 .150E+07 .140E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03	p0 . 300E+07 . 300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07 .210E+07 .200E+07 .190E+07 .190E+07 .160E+07 .150E+07 .130E+07 .130E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03	p0 . 300E+07 . 300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .250E+07 .230E+07 .210E+07 .210E+07 .200E+07 .190E+07 .180E+07 .150E+07 .150E+07 .120E+07 .120E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03	p0 . 300E+07 . 300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .250E+07 .240E+07 .230E+07 .210E+07 .200E+07 .190E+07 .190E+07 .160E+07 .150E+07 .120E+07 .120E+07 .10E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 343E+03	p0 . 300E+07 . 300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .240E+07 .230E+07 .210E+07 .200E+07 .190E+07 .190E+07 .160E+07 .150E+07 .120E+07 .120E+07 .100E+07 .100E+07	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		
	t0 43E+03 43E+03 3	p0 . 300E+07 . 300E+07	pc .300E+07 .290E+07 .280E+07 .270E+07 .260E+07 .250E+07 .250E+07 .240E+07 .230E+07 .210E+07 .200E+07 .190E+07 .190E+07 .160E+07 .150E+07 .120E+07 .120E+07 .100E+07 .900E+06	g .293E+05 .305E+05 .314E+05 .321E+05 .684E+05 .601E+05 .365E+05 .365E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05 .315E+05		

.343E+03	.300E+07	.700E+06	.315E+05	
.343E+03	.300E+07	.600E+06	.315E+05	
.343E+03	.300E+07	.500E+06	.315E+05	
.343E+03	.300E+07	.400E+06	.315E+05	
.343E+03	.300E+07	.300E+06	.315E+05	
.343E+03	.300E+07	.200E+06	.315E+05	

Приложение 2

(Расчеты термодинамических и теплофизических свойств)

С	PRG FOR
c	Программа определения показателя адиабаты, теплоемкостей.
c	
c	См: 1. Лейч М.Е., Филиппов Г.А. Газолинамика пвухфазных средМ.:
c	Энергоиздат, 1981г.
c	2 Вайсман М П Пермолинамика парожилкостных потоков $-П$:
c	Энергия 1967г
c	
С	Используется таблица насыщенных паров R - 134а
С	См: Рувинский Г.Я., Лавренченко Г.К., Ильюшенко С.В.
С	Теплофизические свойства R134а. Холодильная техника, №7, 1990
С	
	REAL KTX
	DIMENSION VI(28),VII(28),UI(28),UII(28),RT(28)
	COMMON/R/N,M,P(28),T(28),ROI(28),ROII(28),HI(28),HII(28),SI(28),
	* SII(28),X(6)
С	ВХОДНЫЕ ДАННЫЕ
С	Р, Т – массив давлений и температур насыщения, бар; К
С	ROI, ROII - удельные плотности насыщенной жидкости и пара, кг/м3
С	HI, HII - удельные энтальтпии насыщенной жидкости и пара, кДж/кг
С	SI, SII - удельные энтропии насыщенной жидкости и пара, кДж/кг*К
С	
	WRITE (6,91)
	WRITE (6,6)
	WRITE (6,91)
	DO 7 I=1,N
	RT(I) = HII(I) - HI(I)
	WRITE (6,15)T(I),P(I),ROI(I),ROII(I),HI(I),HII(I),RT(I),SI(I),
	* SII(I)
	DT=5.
	P(I) = P(I) * 1.E + 5
	VI(I)=1./ROI(I)
	VII(I)=1./ROII(I)
	HI(I)=HI(I)*1000.
	HII(I)=HII(I)*1000.
	UI(I)=HI(I)-P(I)*VI(I)
	UII(I)=HII(I)-P(I)*VII(I)
7	CONTINUE
	WRITE (6,91)
	WRITE (6,3)
	WRITE (6,91)
	DO 1 J=1,M
	DO 1 $I=1, N-1$

```
DPT=(P(I+1)-P(I))/DT
       DVI = (VI(I+1) - VI(I))/DT
       DVII = (VII(I+1) - VII(I))/DT
       V=VI(I)*(1.-X(J))+VII(I)*X(J)
     DUI = (UI(I+1) - UI(I))/DT
     DUII=(UII(I+1)-UII(I))/DT
     DV=VII(I)-VI(I)
     DU=UII(I)-UI(I)
       CVIDF=DUI-DVI*DU/DV
       CVIIDF=DUII-DVII*DU/DV
       CV=CVIDF*(1.-X(J))+CVIIDF*X(J)
       ADF=V*DPT*SQRT(T(I)/CV)
       KTX=V*T(I)*DPT*DPT/(P(I)*CV)
     CI=T(I)*1000.*(SI(I+1)-SI(I))/DT
     CII=T(I)*1000.*(SII(I+1)-SII(I))/DT
1
       WRITE (6,2)X(J),T(I),V,KTX,CVIDF,CVIIDF,CV,ADF,CI,CII
     WRITE (6,91)
       STOP
2
       FORMAT (F4.1, F6.1, E10.3, F6.3, 3E9.3, F7.1, E9.3, E10.3)
3
       FORMAT (2X, 'X', 3X, 'T', 8X, 'V', 7X, 'KTX', 3X, 'CIDF', 4X, 'CIIDF',
       5X, 'CV', 7X, 'ADF', 5X, 'CI', 7X, 'CII')
     *
       FORMAT(4X, 'T', 5X, 'P', 4X, 'ROI', 4X, 'ROII', 3X, 'HI', 4X, 'HII', 4X,
6
     *
       'R',5X,'SI',5X,'SII')
15
       FORMAT (2X, F5.0, F6.2, F7.1, F7.2, 3F6.1, 2F7.4)
91
     FORMAT(80(1H-))
С
        ----- выходные данные ------
          Х
С
                 - Степень сухости
С
          т
                 - Температура, К
С
          v
                 - Удельный объем влажного пара, м3/кг
С
          KTX
                 - Показатель адиабаты
С
          CVIDF - Теплоемкость жидкой фазы при подходе к левой
С
              пограничной кривой из двухфазной области, Дж/кг*К
С
          CVIIDF - Теплоемкость газообразной фазы при подходе к правой
С
                пограничной кривой из двухфазной области, Дж/кг*К
С
               - Теплоемкость влажного пара при V=const, Дж/кг*К
        cv
С
                 - Скорость звука во влажном паре, м/с
          ADF
С
     CI - Теплоемкость вдоль левой ветви пограничной кривой, Дж/кг*К
       CII- Теплоемкость вдоль правой ветви пограничной кривой, Дж/кг*К
С
       _____
С
       STOP
       END
С
       _____
       BLOCK DATA R134a
С
                           _____
       COMMON/R/N,M,P(28),T(28),ROI(28),ROII(28),HI(28),HII(28),
     *
       SI(28),SII(28),X(6)
       DATA P/0.63,0.81,1.03,1.29,1.6,1.96,2.39,2.89,3.46,4.12,4.87,
       5.71,6.66,7.72,8.89,10.19,11.63,13.21,14.94,16.84,18.91,21.18,
     *
     *
       23.65,26.35,29.28,32.48,35.96,39.76/
       DATA T/238.,243.,248.,253.,258.,263.,268.,273.,278.,283.,288.,
       293., 298., 303., 308., 313., 318., 323., 328., 333., 338., 343., 348.,
    *
       353.,358.,363.,368.,373./
       DATA ROI/1419.6,1396.9,1379.5,1363.2,1347.3,1331.3,1315.2,
       1298.7, 1281.8, 1264.6, 1246.8, 1228.4, 1209.6, 1190.1, 1169.9, 1149.0, \\
     *
     *
       1127.2,1104.5,1080.6,1055.3,1028.2,998.8,966.5,930.0,887.6,
     *
       835 .8,766.1,633.8/
       DATA ROII/3.44,4.35,5.43,6.71,8.21,9.97,12.02,14.39,17.13,20.28,
```

* 23.87,27.96,32.61,37.89,43.87,50.64,58.32,67.05,77.03,88.48, * 101.73,117.25,135.68,158.06,186.12,223.23,277.80,393.85/ DATA HI/347.8,356.7,364.4,371.5,378.4,385.4,392.6,400.0,407.6, 415.5,423.4,431.5,439.5,447.5,455.5,463.3,471.0,478.7,486.3, * 493.9,501.5,509.3,517.4,526.0,535.3,545.6,557.9,576.4/ * DATA HII/573.3,577.1,581.1,585.2,589.2,593.2,597.2,601.0,604.7, * 608.2,611.5,614.7,617.6,620.3,622.7,624.9,626.8,628.4,629.8, * 630.8,631.4,631.6,631.3,630.3,628.4,625.1,619.2,605.0/ DATA SI/3.8071,3.8423,3.8716,3.8983,3.9237,3.9489,3.9743,4.0, * 4.0261, 4.0523, 4.0785, 4.1045, 4.1301, 4.1551, 4.1795, 4.203, 4.2258, * 4.248, 4.2696, 4.2907, 4.3117, 4.3328, 4.3544, 4.3768, 4.4008, 4.4273, 4.4585,4.506/,N/28/,M/6/ * DATA SII/4.7536,4.7487,4.7452,4.7424,4.7403,4.7386,4.7372, * 4.7358,4.7344,4.733,4.7314,4.7295,4.7274,4.725,4.7222,4.719, 4.7154,4.7114,4.7068,4.7017,4.6958,4.6891,4.6814,4.6722,4.6609, * * 4.6463,4.6252,4.5825/,X/0.,0.2,0.4,0.6,0.8,1./ END

Результаты расчета по программе PRG.for

т	P	ROI	ROII	HI	HII	R	SI		SII	
238	 3	1419.6	3.44	347.8	573.3	225.5	3.8071	4.	 7536	
243	381	1396.9	4.35	356.7	577.1	220.4	3.8423	4.	7487	
248	3. 1.03	1379.5	5.43	364.4	581.1	216.7	3.8716	4.	7452	
253	3. 1.29	1363.2	6.71	371.5	585.2	213.7	3.8983	4.	7424	
258	3. 1.60	1347.3	8.21	378.4	589.2	210.8	3.9237	4.	7403	
263	3. 1.96	1331.3	9.97	385.4	593.2	207.8	3.9489	4.	7386	
268	3. 2.39	1315.2	12.02	392.6	597.2	204.6	3.9743	4.	7372	
273	3. 2.89	1298.7	14.39	400.0	601.0	201.0	4.0000	4.	7358	
278	3. 3.46	1281.8	17.13	407.6	604.7	197.1	4.0261	4.	7344	
283	3. 4.12	1264.6	20.28	415.5	608.2	192.7	4.0523	4.	7330	
288	8. 4.87	1246.8	23.87	423.4	611.5	188.1	4.0785	4.	7314	
293	3. 5.71	1228.4	27.96	431.5	614.7	183.2	4.1045	4.	7295	
298	8. 6.66	1209.6	32.61	439.5	617.6	178.1	4.1301	4.	7274	
303	3. 7.72	1190.1	37.89	447.5	620.3	172.8	4.1551	4.	7250	
308	8. 8.89	1169.9	43.87	455.5	622.7	167.2	4.1795	4.	7222	
313	3. 10.19	1149.0	50.64	463.3	624.9	161.6	4.2030	4.	7190	
318	8. 11.63	1127.2	58.32	471.0	626.8	155.8	4.2258	4.	7154	
323	3. 13.21	1104.5	67.05	478.7	628.4	149.7	4.2480	4.	7114	
328	3. 14.94	1080.6	77.03	486.3	629.8	143.5	4.2696	4.	7068	
333	3. 16.84	1055.3	88.48	493.9	630.8	136.9	4.2907	4.	7017	
338	8. 18.91	1028.2	101.73	501.5	631.4	129.9	4.3117	4.	6958	
343	3. 21.18	998.8	117.25	509.3	631.6	122.3	4.3328	4.	6891	
348	3. 23.65	966.5	135.68	517.4	631.3	113.9	4.3544	4.	6814	
353	3. 26.35	930.0	158.06	526.0	630.3	104.3	4.3768	4.	6722	
358	3. 29.28	887.6	186.12	535.3	628.4	93.1	4.4008	4.	6609	
363	3. 32.48	835.8	223.23	545.6	625.1	79.5	4.4273	4.	6463	
368	3. 35.96	766.1	277.80	557.9	619.2	61.3	4.4585	4.	6252	
373	3. 39.76	633.8	393.85	576.4	605.0	28.6	4.5060	4.	5825	
x	 T	v	ктх с	 IDF	CIIDF	cv	AD)F	CI	CII
.0 2	38.0.7	04E-03	.019 .17	 8E+04 .	939E+04	 1 .178E	 +04	. 9	.168E+04	233E+03
.02	43.0 .7	16E-03	.027 .15	4E+04 .	878E+04	1.154E	+04 1	.3	.142E+04	170E+03

.0 248.0	.725E-03	.033	.141E+04	.835E+04	.141E+04	1.6	.132E+04	139E+03
.0 253.0	.734E-03	.040	.137E+04	.789E+04	.137E+04	2.0	.129E+04	106E+03
0 258 0	742E-03	045	139E+04	757E+04	139E+04	23	130E+04	- 877E+02
0 263 0	7518-03	052	1438+04	7238+04	1/35+04	2.0	1348+04	- 736E+02
.0 203.0	.751E-05	.052	1472-04	. 7236+04	1432+04	2.0	1202.04	7505+02
.0 200.0	.760E-03	.050	.14/6+04	.00/6+04	.14/6+04	3.2	.1306+04	7506+02
.0 273.0	.770E-03	.063	.151E+04	.658E+04	.151E+04	3.7	.143E+04	764E+02
.0 278.0	.780E-03	.070	.156E+04	.625E+04	.156E+04	4.3	.146E+04	778E+02
.0 283.0	.791E-03	.078	.156E+04	.592E+04	.156E+04	5.1	.148E+04	905E+02
.0 288.0	.802E-03	.084	.160E+04	.565E+04	.160E+04	5.7	.150E+04	109E+03
.0 293.0	.814E-03	.096	.157E+04	.534E+04	.157E+04	6.7	.150E+04	123E+03
0 298 0	827E-03	106	157E+04	508E+04	157E+04	7.6	149E+04	- 143E+03
0 303 0	8408-03	116	1568+04	481 - 404	1568+04	87	1485+04	-170E+03
0 309 0	055E-02	122	1512+04	4578+04	1510-04	10.0	1452+04	- 107E+02
.0 308.0	.855E-03	. 1.32	.1516+04	.45/6+04	.1516+04	10.0	1436+04	19/6+03
.0 313.0	.8/0E-03	.149	.1496+04	.434E+04	.1496+04	11.5	.1436+04	225E+03
.0 318.0	.887E-03	.164	.148E+04	.413E+04	.148E+04	13.0	.141E+04	254E+03
.0 323.0	.905E-03	.183	.145E+04	.396E+04	.145E+04	14.8	.140E+04	297E+03
.0 328.0	.925E-03	.205	.143E+04	.377E+04	.143E+04	16.8	.138E+04	335E+03
.0 333.0	.948E-03	.227	.141E+04	.361E+04	.141E+04	19.0	.140E+04	393E+03
.0 338.0	.973E-03	.250	.143E+04	.347E+04	.143E+04	21.5	.143E+04	453E+03
.0 343.0	.100E-02	.271	.146E+04	.334E+04	.146E+04	24.0	.148E+04	528E+03
0 348 0	103E-02	293	152E+04	321E+04	152E+04	26.8	156E+04	- 640E+03
0 353 0	1098-02	211	1500-04	3008+04	1500-04	20.0	1600-04	- 709F+03
.0 353.0	1120 02		1600-04	.3095+04	1600.04	29.7	1000.04	/901+03
.0 358.0	.113E-02	. 336	.168E+04	.29/E+04	.1686+04	33.3	.1908+04	1056+04
.0 363.0	.120E-02	.352	.184E+04	.283E+04	.184E+04	37.0	.227E+04	153E+04
.0 368.0	.131E-02	.363	.212E+04	.263E+04	.212E+04	41.3	.350E+04	314E+04
.2 238.0	.587E-01	.871	.178E+04	.939E+04	.330E+04	56.8	.168E+04	233E+03
.2 243.0	.465E-01	.906	.154E+04	.878E+04	.298E+04	58.4	.142E+04	170E+03
.2 248.0	.374E-01	.870	.141E+04	.835E+04	.280E+04	57.9	.132E+04	139E+03
.2 253.0	.304E-01	.856	.137E+04	.789E+04	.268E+04	57.9	.129E+04	106E+03
2 258 0	250E-01	794	139E+04	757E+04	263E+04	56.3	130E+04	- 877E+02
2 263 0	2078-01	702	1/38+04	7238+04	2508+04	56.6	1348+04	- 736E+02
.2 205.0	170E-01	750	1478104	697E+04	2552+04	56.0	1200104	7500-02
.2 200.0	.1/2E-01	. / 59	.14/6+04	.00/6+04	.2556+04	55.9	1422.04	750E+02
.2 2/3.0	.145E-01	. /0/	.1516+04	.6586+04	.2526+04	54.5	.1436+04	/64E+02
.2 278.0	.123E-01	.689	.156E+04	.625E+04	.250E+04	54.1	.146E+04	778E+02
.2 283.0	.105E-01	.667	.156E+04	.592E+04	.243E+04	53.7	.148E+04	905E+02
.2 288.0	.902E-02	.626	.160E+04	.565E+04	.241E+04	52.4	.150E+04	109E+03
.2 293.0	.780E-02	. 622	.157E+04	.534E+04	.233E+04	52.6	.150E+04	123E+03
.2 298.0	.679E-02	. 602	.157E+04	.508E+04	.227E+04	52.2	.149E+04	143E+03
.2 303.0	.595E-02	. 578	.156E+04	.481E+04	.221E+04	51.5	.148E+04	170E+03
2 308 0	524E-02	578	151E+04	457E+04	213E+04	51.9	145E+04	- 197E+03
2 313 0	4658-02	576	1495+04	4348+04	2068+04	52.2	1435+04	-225E+03
2 210 0	.405E 02	562	1492+04	412E+04	2018+04	52.2	1412+04	- 25/12+02
.2 318.0	.414E-02	. 505	.1465+04	.4136+04	.2016+04	52.1	.1416+04	2546+03
.2 323.0	.3/IE-02	.55/	.145E+04	.3965+04	.1956+04	52.2	.1408+04	29/E+03
.2 328.0	.334E-02	.557	.143E+04	.377E+04	.190E+04	52.7	.138E+04	335E+03
.2 333.0	.302E-02	.552	.141E+04	.361E+04	.185E+04	53.0	.140E+04	393E+03
.2 338.0	.274E-02	.550	.143E+04	.347E+04	.184E+04	53.4	.143E+04	453E+03
.2 343.0	.251E-02	.540	.146E+04	.334E+04	.184E+04	53.5	.148E+04	528E+03
.2 348.0	.230E-02	.532	.152E+04	.321E+04	.185E+04	53.8	.156E+04	640E+03
.2 353.0	.213E-02	.517	.159E+04	.309E+04	.189E+04	53.8	.169E+04	798E+03
.2 358.0	198E-02	.511	168E+04	297E+04	.194E+04	54.4	190E+04	105E+04
2 363 0	1858-02	492	1848+04	2835+04	2048+04	54 4	2278+04	-153E+04
2 369 0	176E 02	. 4 92	2120104	2622104	2030104	54.4	2500104	2140104
.2 300.0	.1/0E-02	.400	1707.04	.2036+04	.2236+04	54.5	1000-04	3146+04
.4 238.0	.11/E+00	1.185	.1/86+04	.9396+04	.4826+04	93.3	.1086+04	2336+03
.4 243.0	.924E-01	1.210	.154E+04	.8/8E+04	.443E+04	95.2	.142E+04	1/UE+03
.4 248.0	.741E-01	1.152	.141E+04	.835E+04	.419E+04	93.8	.132E+04	139E+03
.4 253.0	.601E-01	1.137	.137E+04	.789E+04	.398E+04	93.9	.129E+04	106E+03
.4 258.0	.492E-01	1.064	.139E+04	.757E+04	.386E+04	91.5	.130E+04	877E+02
.4 263.0	.406E-01	1.074	.143E+04	.723E+04	.375E+04	92.4	.134E+04	736E+02
.4 268.0	.337E-01	1.043	.147E+04	.687E+04	.363E+04	91.7	.138E+04	750E+02
.4 273.0	.283E-01	. 982	.151E+04	.658E+04	.353E+04	89.5	.143E+04	764E+02
.4 278.0	.238E-01	. 970	.156E+04	.625E+04	.344E+04	89.4	.146E+04	778E+02
4 283 0	2028-01	945	156E+04	592E+04	330E+04	88 7	1482+04	- 9058+02
A 282 0	1728-01	201	160	5658104	3225-04	86 7	1500-04	- 100F+02
	· · · · · · · · · · · · · · · · · · ·						• TO 0 1 1 0 4	· · · · · · · · · · · · · · · · · · ·

. 4	293.0	.148E-01	.890	.157E+04	.534E+04	.308E+04	86.7	.150E+04	123E+03
.4	298.0	.128E-01	.863	.157E+04	.508E+04	.297E+04	85.7	.149E+04	143E+03
.4	303.0	.111E-01	.831	.156E+04	.481E+04	.286E+04	84.2	.148E+04	170E+03
.4	308.0	.963E-02	.824	.151E+04	.457E+04	.274E+04	84.0	.145E+04	197E+03
.4	313.0	.842E-02	.817	.149E+04	.434E+04	.263E+04	83.7	.143E+04	225E+03
. 4	318.0	739E-02	.796	.148E+04	413E+04	254E+04	82.7	.141E+04	254E+03
<u>م</u>	323 0	651E-02	777	145E+04	396E+04	245E+04	81 7	140E+04	-297E+03
	328 0	5758-02	. , , , ,	1438+04	3778+04	2378+04	81 3	1385+04	-335E+03
	222.0	500E-02	. 7 7 5 2	1415+04	261E+04	220E+04	01.3	1402+04	- 303E+03
. 4	222.0	. 309E-02	.755	1422104	247E+04	2295704	80.3 70 F	1422104	393E+03
.4	338.0	.4526-02	. /41	.1436+04	.34/E+04	.2256+04	79.5	.1436+04	453E+03
.4	343.0	.4016-02	. /1/	.1466+04	.334E+04	.2216+04	78.0	.1486+04	528E+03
.4	348.0	.357E-02	. 698	.152E+04	.321E+04	.219E+04	76.8	.156E+04	640E+03
. 4	353.0	.318E-02	.667	.159E+04	.309E+04	.219E+04	74.7	.169E+04	798E+03
. 4	358.0	.283E-02	. 645	.168E+04	.297E+04	.219E+04	73.0	.190E+04	105E+04
. 4	363.0	.251E-02	.607	.184E+04	.283E+04	.224E+04	70.4	.227E+04	153E+04
. 4	368.0	.222E-02	.564	.212E+04	.263E+04	.233E+04	67.2	.350E+04	314E+04
. 6	238.0	.175E+00	1.348	.178E+04	.939E+04	.634E+04	121.8	.168E+04	233E+03
. 6	243.0	.138E+00	1.364	.154E+04	.878E+04	.588E+04	123.6	.142E+04	170E+03
. 6	248.0	.111E+00	1.294	.141E+04	.835E+04	.557E+04	121.5	.132E+04	139E+03
. 6	253.0	.897E-01	1.280	.137E+04	.789E+04	.528E+04	121.7	.129E+04	106E+03
. 6	258.0	.734E-01	1.204	.139E+04	.757E+04	.510E+04	118.9	.130E+04	877E+02
. 6	263.0	605E-01	1.223	.143E+04	723E+04	491E+04	120.4	.134E+04	736E+02
. 6	268.0	502E-01	1,196	147E+04	687E+04	471E+04	119.8	138E+04	750E+02
6	273 0	4208-01	1 134	1518+04	658F±04	4558+04	117 3	1438+04	-764E+02
۰. د	272.0	3532-01	1 1 2 0	1568+04	625E+04	1382701	117 5	1462+04	- 779E+02
. 0 6	278.0	.333E-01	1 106	1562104	5025E+04	4100104	116 7	1400-04	//00+02
.0	203.0	.2996-01	1.100	1600+04	.5926+04	4105+04	110./	1500.04	905E+02
. 0	288.0	.2556-01	1.055	.1606+04	.5656+04	.4036+04	114.4	.1506+04	1096+03
. 6	293.0	.218E-01	1.052	.15/E+04	.5346+04	.383E+04	114.4	.1506+04	123E+03
. 6	298.0	.187E-01	1.025	.157E+04	.508E+04	.368E+04	113.1	.149E+04	143E+03
. 6	303.0	.162E-01	.990	.156E+04	.481E+04	.351E+04	111.2	.148E+04	170E+03
. 6	308.0	.140E-01	.981	.151E+04	.457E+04	.335E+04	110.5	.145E+04	197E+03
. 6	313.0	.122E-01	.972	.149E+04	.434E+04	.320E+04	109.9	.143E+04	225E+03
. 6	318.0	.106E-01	.948	.148E+04	.413E+04	.307E+04	108.3	.141E+04	254E+03
. 6	323.0	.931E-02	. 922	.145E+04	.396E+04	.295E+04	106.5	.140E+04	297E+03
. 6	328.0	.816E-02	.913	.143E+04	.377E+04	.283E+04	105.5	.138E+04	335E+03
. 6	333.0	.716E-02	.889	.141E+04	.361E+04	.273E+04	103.6	.140E+04	393E+03
. 6	338.0	.629E-02	.873	.143E+04	.347E+04	.265E+04	101.9	.143E+04	453E+03
. 6	343.0	.552E-02	.843	.146E+04	.334E+04	.259E+04	99.2	.148E+04	528E+03
. 6	348.0	.484E-02	.819	.152E+04	.321E+04	.253E+04	96.8	.156E+04	640E+03
. 6	353.0	.423E-02	.780	.159E+04	.309E+04	.249E+04	93.2	.169E+04	798E+03
6	358.0	367E-02	750	168E+04	297E+04	245E+04	89.8	190E+04	105E+04
. 6	363.0	317E - 02	.704	184E+04	283E+04	244E+04	85.1	227E+04	153E+04
6	368 0	268E-02	652	212E+04	263E+04	243E+04	79.3	3508+04	-314E+04
. 0	238 0	2335+00	1 1 1 1	1798+04	0305+04	7978+04	145 7	1692+04	- 333ET03
. 0	230.0	194E+00	1 167	1548+04	.939E+04	722E+04	143.7	1422+04	233E+03
. 0	243.0	1/70.00	1 200	1/10104	9255104	606E-04	111 0	1225704	- 120E+03
. 0	248.0	.14/E+00	1.300	.1416+04	.0355+04	.6965+04	144.0	.1326+04	139E+03
. 8	253.0	.1198+00	1.366	.13/E+04	. /895+04	.659E+04	145.0	.129E+04	106E+03
. 8	258.0	.976E-01	1.289	.139E+04	.757E+04	.633E+04	141.8	.130E+04	877E+02
. 8	263.0	.804E-01	1.315	.143E+04	.723E+04	.607E+04	143.9	.134E+04	736E+02
. 8	268.0	.667E-01	1.293	.147E+04	.687E+04	.579E+04	143.6	.138E+04	750E+02
. 8	273.0	.557E-01	1.230	.151E+04	.658E+04	.556E+04	140.8	.143E+04	764E+02
. 8	278.0	.469E-01	1.234	.156E+04	.625E+04	.532E+04	141.4	.146E+04	778E+02
. 8	283.0	.396E-01	1.212	.156E+04	.592E+04	.505E+04	140.6	.148E+04	905E+02
. 8	288.0	.337E-01	1.162	.160E+04	.565E+04	.484E+04	138.0	.150E+04	109E+03
. 8	293.0	.288E-01	1.162	.157E+04	.534E+04	.459E+04	138.1	.150E+04	123E+03
. 8	298.0	.247E-01	1.134	.157E+04	.508E+04	.438E+04	136.6	.149E+04	143E+03
. 8	303.0	.213E-01	1.099	.156E+04	.481E+04	.416E+04	134.4	.148E+04	170E+03
. 8	308.0	.184E-01	1.089	.151E+04	.457E+04	.396E+04	133.5	.145E+04	197E+03
. 8	313.0	.160E-01	1.080	.149E+04	.434E+04	.377E+04	132.6	.143E+04	225E+03
. 8	318.0	.139E-01	1.055	.148E+04	.413E+04	.360E+04	130.6	.141E+04	254E+03
. 9	323 0	121E-01	1.025	145E+04	3965+04	346E+04	128 1	140E+04	- 2978+03
. U Q	328 0	1068-01	1 015	1432-04	3778±04	3308+04	126 6	1382104	- 332ET
. 0 . R	333 0	923E-02	988	141E+04	361E+04	317E+04	123 9	140E+04	- 303E+03

. 8	338.0	.806E-02	.970	.143E+04	.347E+04	.306E+04	121.6	.143E+04453E+03
. 8	343.0	.702E-02	.936	.146E+04	.334E+04	.296E+04	118.0	.148E+04528E+03
. 8	348.0	.610E-02	.912	.152E+04	.321E+04	.287E+04	114.7	.156E+04640E+03
. 8	353.0	.528E-02	.869	.159E+04	.309E+04	.279E+04	109.9	.169E+04798E+03
. 8	358.0	.452E-02	.836	.168E+04	.297E+04	.271E+04	105.2	.190E+04105E+04
. 8	363.0	.382E-02	.786	.184E+04	.283E+04	.263E+04	98.8	.227E+04153E+04
. 8	368.0	.314E-02	.733	.212E+04	.263E+04	.253E+04	91.0	.350E+04314E+04
1.0	238.0	.291E+00	1.516	.178E+04	.939E+04	.939E+04	166.6	.168E+04233E+03
1.0	243.0	.230E+00	1.520	.154E+04	.878E+04	.878E+04	168.2	.142E+04170E+03
1.0	248.0	.184E+00	1.437	.141E+04	.835E+04	.835E+04	165.1	.132E+04139E+03
1.0	253.0	.149E+00	1.424	.137E+04	789E+04	789E+04	165.4	.129E+04106E+03
1.0	258.0	122E+00	1.346	139E+04	757E+04	757E+04	161.9	130E+04 - 877E+02
1.0	263.0	100E+00	1.378	143E+04	723E+04	723E+04	164.6	134E+04 - 736E+02
1.0	268.0	832E-01	1.359	147E+04	687E+04	687E+04	164.4	138E+04 - 750E+02
1.0	273.0	.695E-01	1.297	.151E+04	.658E+04	.658E+04	161.4	.143E+04764E+02
1 0	278 0	584E-01	1 307	156E+04	625E+04	625E+04	162 5	146E+04 - 778E+02
1 0	283 0	493E-01	1 287	156E+04	592E+04	592E+04	161 7	148E+04 - 905E+02
1 0	288 0	419E-01	1 238	160E+04	565E+04	565E+04	158 9	150E+04 - 109E+03
1 0	200.0	358E-01	1 240	157E+04	534E+04	534E+04	159 1	150E+04 - 123E+03
1 0	298 0	307E-01	1 214	1578+04	5088+04	508F+04	157 /	149E+04 = 143E+03
1.0	290.0	.307E-01	1 170	1562+04	191E+04	191E+04	155 0	149E+04 = .145E+03 148E+04 = 170E+03
1.0	202.0	.204E-01	1 160	1512+04	.401E+04	401E+04	153.0	145E+04 = 107E+03
1.0	212 0	.220E-01	1 160	1402+04	.457E+04	.437E+04	153.0	143E+04 = .19/E+03
1.0	210 0	1718-01	1 1 2 4	1495+04	.4346+04	4120104	152.0	14121042232+03
1.0	310.0	.1/1E-01	1 100	1465-04	.4136+04	.4136+04	100.4	1400.04 2070.02
1.0	323.0	.149E-01	1 002	1435+04	2778104	.390E+04	14/.4 1/5 5	129510429/2+03
1.0	328.0	.130E-01	1.092	.143E+04	.3//E+04	.3//E+04	145.5	.138E+04335E+03
1.0	333.0	.113E-01	1.062	1416+04	.361E+04	.361E+04	142.2	1408+043938+03
1.0	338.0	.983E-02	1.044	.143E+04	.34/E+04	.34/E+04	125.3	.143E+04453E+03
1.0	343.0	.8536-02	1.009	.1468+04	.3346+04	.334E+04	135.0	.148E+04528E+03
1.0	348.0	./3/E-02	. 985	.1526+04	.3216+04	.321E+04	131.0	.156E+04640E+03
1.0	353.0	.633E-02	.941	.159E+04	.3095+04	.309E+04	125.2	.169E+04/98E+03
1.0	358.0	.53/E-02	.906	.1686+04	.29/E+04	.29/E+04	119.4	.1908+041058+04
1.0	363.0	.4486-02	.85/	.1846+04	.2836+04	.2836+04	100.0	.2278+041538+04
1.0	368.0	.360E-02	.808	.2126+04	.263E+04	.263E+04	102.2	.350E+04314E+04
		PRGHM. В Программ ско	OR на опре орости	 Эделения Звука во	показате показате о влажном	еля адиаб м паре (п	 аты, т арожид	 еплоемкостей, кости). костир волы
c	CM	и 1 Пойн	MF				va nev	
c	CR	с. т. деич		, • ////////////////////////////////////	- I.A. IC	азодинами	ка дву	хфазных сред. м
C a		Энер	огоизда	4 4 , 1961) 	г.			_
C		2. Ваис	ман М	.д. терм	одинамика	а парожид	костны	х потоковЛ.:
С		Энер	огия, 1	1967r.				
С		(Использ	уются	аппрокси	мационны	е зависим	юсти г	ириведенные в:
С	Т	еоретичес	кие ос	сновы те	плотехнин	ки. – М:	Энерго	атомиздат, 1988)
С								
	RE	AL KTX						
	D	IMENSION	T(38),	X(6)				
	CC	MMON/CF/C	:(6.9)	TFS/A(4))			
			(C1 (Q)	C2(9) C	3(9) c1/0	9) (5(9)	C6 (9)	
		ΔΠΔ Π/070 ΔΠΔ Π/070	22 (2)	202 20	2 212	202 222	312	353 363 373
	* 20		·,203.	,233,30 13 ADD	,.CIC,.C	JZJ.,JJJ.	,	2 A02 A02
	^ _38	.,393.,4	103.,41	13.,423.	,433.,443	5.,455.,4	03.,4/	J.,40J.,49J.,
	* 50	3.,513.,5	23.,5	53.,543.	, 553., 563	5.,5/3.,5	os.,59	3.,0U3.,6I3.,
	* 62	3.,633.,6	43./,2	K/0.,0.2	,0.4,0.6	,0.8,1./,	M,N/6,	38/
	DC) 10 J=1,9)					
	C1	(J) = C(1, J)	Г)					
	C2	(J)=C(2,J	г)					
	C3	(J)=C(3,J	г)					
	C4	(J) = C(4)	r)					
		$\sim \sim $						

		C5(J) = C(5, J)
10		C6(J) = C(6, J)
		WRITE(6,9)
		WRITE(6,4)
		WRITE (6,9)
		WRITE (6,11) (C1 (J), C2 (J), C3 (J), C4 (J), C5 (J), C6 (J), J=1,9)
6		FORMAT (1x, 6E10, 3)
-		WRTTE (6.9)
		WRITE (6 3)
		MATTE (0,5) Matter (6.0)
		WRITE (0, 5)
		DO I J = I, M
		CALL DURT $(T(1), P, DPT, VI, VII, DVI, DVII, HI, HII, RT, UI, UII, DUI,$
	×	
		V=VI*(1X(J))+VII*X(J)
		DU=UII-UI
		DV=VII-VI
		CVIDF=DUI-DVI*DU/DV
		CVIIDF=DUII-DVII*DU/DV
		CV=CVIDF*(1X(J))+CVIIDF*X(J)
		ADF=V*DPT*SQRT(T(I)/CV)
		KTX=V*T(I)*DPT*DPT/(P*CV)
1		WRITE (6,2)X(J),T(I),V,KTX,CVIDF,CVIIDF,CV,ADF
		WRITE (6,9)
2		FORMAT (F5.3, F6.1, E10.3, F5.2, 3E9.3, F7.1)
3		FORMAT (3X, 'X', 3X, 'T', 8X, 'V', 6X, 'KTX', 3X, 'CIDF', 4X, 'CIIDF',
	*	5X, 'CV ',7X, 'ADF ')
4		FORMAT(10x, ' Аппроксимирующие коэффициенты, для описания'/
	*	['] термолинамических свойств волы и воляного пара в',
	*	'состоянии насышения')
9		FORMAT $(1 \times 79 (1 H -))$
c		Выхолные ланные
c		
C C		T = Temperatura K
c		$V = V_{TOTT} W W of a N DEDWUODO EDDD N^2/m$
c		
		КIХ - Показатель адиаоаты СИПРЕ Посторически жиской форм при состоро и сорой
		СVIDF - теплоемкость жидкой фазы при подходе к левои
		пограничной кривой из двухфазной области, дж/кг^к
C		СVIIDF - Теплоемкость газоооразной фазы при подходе к правои
C		пограничной кривой из двухфазной области, Дж/кг*К
C		CV - Теплоемкость влажного пара при V=const, Дж/кг*К
С		ADF - Скорость звука во влажном паре, м/с
С		
		STOP
		END
С		
		SUBROUTINE DURT(T,P,DPT,VI,VII,DVI,DVII,HI,HII,RT,UI,UII,DUI,
	*	DUII, DHI, DHII)
С		
С		Определение: V′, V″, p, U′, U″, H′, H″, a также
С		их производных по температуре
С		
		COMMON/CFS/C1(9),C2(9),C3(9),C4(9),C5(9),C6(9)/TFS/A(4)
		VI=YY(C1,9,T,DVI)
		P=PT(T,A,DPT)
		VII=(YY(C2,9,T,DVII)*1.E5)/P
		DVII=DVII*1.E5/P-VII*DPT/P

	HI=YY(C3,9,T,DHI)*1.E3
	HII=YY(C4,9,T,DHII)*1.E3
	DHII=DHII*1.E3
	RT=HII-HI
	UII=HII-P*VII
	DUI=DHI-P*DVI-VI*DPT
	DUII=DHII-P*DVII-VII*DPT
	RETURN
	END
С	
C	
c	Подпрограмма расчета термодинамических свойств водяного пара
С	
	DIMENSION A(N)
	YY=A(1)
	DO 1 I=2, N (T) + (T) (C(T) - C(C)) + (T - 1)
T	YY=YY+A(1) * (T/64/.2665) ** (1-1)
	DII=A(2)/04/.2005
2	DO = 1-3, N DVY=DVY+(A(T)*(T-1)/647 2665)*(T/647 2665)**(T-2)
2	RETURN
	END
c	
C	
C	FUNCTION PT(T,A,DPT)
c	FUNCTION PT(T,A,DPT)
c c	FUNCTION PT(T,A,DPT)
с с с	FUNCTION PT(T,A,DPT) Определение давления насыщения р(Ts) и его производной по Т
с с с	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) DTTTTE (TYP (A(1) + 1000 (TT + A(2) + A(2) + TT (1000 + A(4) + A(0) (TT + A(2) + A(2) + TT (1000 + A(4) + A(0) + A(2) + A(4) + A(0) + A(4) + A(4) + A(0) +
с с с	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T)
с с с	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) DETTION
с с с	FUNCTION PT (T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END
c c c c	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END
с с с	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF
с с с с с	FUNCTION PT (T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF
с с с с с с	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END
с ссс с ссс	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT= (EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT* (A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END
с ссс с ссс	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT= (EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT* (A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END
с с с с с с с	FUNCTION PT (T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT= (EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF ИСХОДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАБОЧЕГО ТЕЛА СОММОN/CF/C(6,9)/TFS/A(4) DATA C/0.10550687,-0.113877427E3,0.215918638E5,-0.24509085E5,
с с с с с с с	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF ИСХОДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАБОЧЕГО ТЕЛА СОММОN/CF/C(6,9)/TFS/A(4) DATA C/0.10550687,-0.113877427E3,0.215918638E5,-0.24509085E5, 0.99827606E1,0.271669973E2,-0.133737977E1,0.145614699E4, 0.01001070700 0.011000000000000000000000
	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT= (EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF ИСХОДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАЕОЧЕГО ТЕЛА СОММОN/CF/C(6,9)/TFS/A(4) DATA C/0.10550687,-0.113877427E3,0.215918638E5,-0.24509085E5, 0.99827606E1,0.271669973E2,-0.133737977E1,0.145614699E4, -0.294899186E6,0.343138528E6,-0.2160952E3,0.672212793E1, 0.10007/C227E1
с с с с с с с	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF ИСХОДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАБОЧЕГО ТЕЛА СОММОN/CF/C(6,9)/TFS/A(4) DATA C/0.10550687,-0.113877427E3,0.215918638E5,-0.24509085E5, 0.99827606E1,0.271669973E2,-0.133737977E1,0.145614699E4, -0.294899186E6,0.343138528E6,-0.216409052E3,0.672212793E1, 0.742997633E1,-0.802294912E4,0.168533091E7,-0.191174351E7, 0.144021447E4,-0.747E10787E2,-0.234015092E2,0.250207080E5
с с с с с с с	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF UCX0ДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАБОЧЕГО ТЕЛА COMMON/CF/C(6,9)/TFS/A(4) DATA C/0.10550687,-0.113877427E3,0.215918638E5,-0.24509085E5, 0.99827606E1,0.271669973E2,-0.133737977E1,0.145614699E4, -0.294899186E6,0.343138528E6,-0.21640952E3,0.672212793E1, 0.742997633E1,-0.802294912E4,0.168533091E7,-0.191174351E7, 0.144031447E4,-0.747510787E3,-0.234015993E2,0.250397989E5, -0.53946696E77.0.6052736EE7,-0.4040970932E4,0.359212673E4
с с с с с с	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT= (EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF
с с с с с с с	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT= (EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF UCXOДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАБОЧЕГО ТЕЛА COMMON/CF/C(6,9)/TFS/A(4) DATA C/0.10550687,-0.113877427E3,0.215918638E5,-0.24509085E5, 0.99827606E1,0.271669973E2,-0.133737977E1,0.145614699E4, -0.294899186E6,0.343138528E6,-0.216409052E3,0.672212793E1, 0.742997633E1,-0.802294912E4,0.168533091E7,-0.191174351E7, 0.144031447E4,-0.747510787E3,-0.234015993E2,0.25039788E5, -0.539468966E7,0.605373655E7,-0.494997083E4,0.358212673E4, 0.45690972E2,-0.48344913E5,0.106814779E8,-0.1188622165E8, 0.102815156E5 -0.851820171E4 -0.56217816E2 0.59168416E5
	<pre>FUNCTION PT(T,A,DPT) Oпределение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF UCXOДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАБОЧЕГО ТЕЛА COMMON/CF/C(6,9)/TFS/A(4) DATA C/0.10550687,-0.113877427E3,0.215918638E5,-0.24509085E5, 0.99827606E1,0.271669973E2,-0.133737977E1,0.145614699E4, -0.294899186E6,0.343138528E6,-0.216409052E3,0.672212793E1, 0.742997633E1,-0.802294912E4,0.168533091E7,-0.191174351E7, 0.144031447E4,-0.747510787E3,-0.234015993E2,0.25039788E5, -0.539468966E7,0.605373655E7,-0.494997083E4,0.358212673E4, 0.45690972E2,-0.48344913E5,0.106814779E8,-0.1188622165E8, 0.102815156E5,-0.851820171E4,-0.566217816E2,0.59168416E5, -0.13404054E8,0.148342520E8,-0.13395892E5.0.119151822E5.</pre>
с с с с с с с	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END ELOCK DATA TF
	FUNCTION PT (T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END
	FUNCTION PT(T,A,DPT) Onpegenehue давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END MCX0ДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАЕОЧЕГО ТЕЛА MCX0ДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАЕОЧЕГО ТЕЛА COMMON/CF/C(6,9)/TFS/A(4) DATA C/0.10550687,-0.113877427E3,0.215918638E5,-0.24509085E5, 0.99827606E1,0.271669973E2,-0.133737977E1,0.145614699E4, -0.294899186E6,0.343138528E6,-0.216409052E3,0.672212793E1, 0.742997633E1,-0.802294912E4,0.168533091E7,-0.191174351E7, 0.144031447E4,-0.747510787E3,-0.234015993E2,0.250397989E5, -0.53946896E7,0.605373655E7,-0.494997083E4,0.358212673E4, 0.45690972E2,-0.48344913E5,0.106814779E8,-0.1188622165E8, 0.102815156E5,-0.851820171E4,-0.566217816E2,0.59168416E5, -0.13404054E8,0.148342520E8,-0.13395892E5,0.119151822E5, 0.434983366E2,-0.448590775E5,0.104168615E8,-0.115037973E8, 0.107466052E5,-0.999463182E4,-0.189459451E2,0.192719313E5, -0.4586357E7,0.507143921E7,-0.486608948E4,0.46773083E4.
	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END
с с с с с с с с	FUNCTION PT(T,A,DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END BLOCK DATA TF
	FUNCTION PT(T, A, DPT) Определение давления насыщения p(Ts) и его производной по T DIMENSION A(4) PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6 DPT=PT*(A(3)/1000A(1)*1000./T**2+A(4)/T) RETURN END

Результаты расчета по программе PRGHM.FOR

Аппј	роксими свой	ирующие коэ ств воды и :	 ффици водян	енты, для юго пара	я описания в состоян	я термодии нии насыще	намических эния
1	 06F±00		 216	 	 45 <u>.</u>		 272F±02
_ 1	3/5101	II4E+03	- 205	SE+052	43E+05 .3	985401 9165403	672E+02
. 1.	432+01	- 802E+04	160	E + 07 = 1	91E+07 1	44E+04 -	748E+03
- 2	342+02	250E+05	- 530	E + 07 = 6	05E+07 - 4	1952+04	358E+04
. 2.	57E+02	- 483E+05	107	/E+08 - 1	19E+08 1	03E+05 -	852E+04
- 5	66E+02	592E+05	- 134	E+08 1	48E+08 - 1	34E+05	119E+05
	35E+02	- 449E+05	104	E+08 - 1	15E+08 1	07E+05 -	999E+04
1	89E+02	.193E+05	459	E + 07 . 5	07E+07 - 4	187E+04	.468E+04
.3	58E+01	359E+04	.877	'E+069'	74E+06 .9	954E+03 -	.943E+03
х 	T 	v	ктх 	CIDF	CIIDF	cv	ADF
.000	273.0	.100E-02	.00	.417E+04	.166E+06	.417E+04	.0
.000	283.0	.100E-02	.00	.419E+04	.151E+06	.419E+04	.0
.000	293.0	.100E-02	.00	.419E+04	.138E+06	.419E+04	.0
.000	303.0	.100E-02	.00	.419E+04	.126E+06	.419E+04	.1
.000	313.0	.101E-02	.00	.418E+04	.115E+06	.418E+04	.1
.000	323.0	.101E-02	.00	.418E+04	.106E+06	.418E+04	.2
.000	333.0	.102E-02	.00	.418E+04	.972E+05	.418E+04	.3
.000	343.0	.102E-02	.00	.418E+04	.895E+05	.418E+04	. 4
.000	353.0	.103E-02	.01	.419E+04	.827E+05	.419E+04	. 6
.000	363.0	.104E-02	.01	.420E+04	.765E+05	.420E+04	.8
.000	373.0	.104E-02	.01	.422E+04	.709E+05	.422E+04	1.1
.000	383.0	.105E-02	.02	.423E+04	.659E+05	.423E+04	1.5
.000	393.0	.106E-02	.02	.425E+04	.613E+05	.425E+04	2.0
.000	403.0	.107E-02	.02	.426E+04	.571E+05	.426E+04	2.6
.000	413.0	.108E-02	.03	.428E+04	.533E+05	.428E+04	3.4
.000	423.0	.109E-02	.04	.430E+04	.498E+05	.430E+04	4.3
.000	433.0	.110E-02	.04	.432E+04	.465E+05	.432E+04	5.5
.000	443.0	.111E-02	.05	.435E+04	.436E+05	.435E+04	6.8
.000	453.0	.113E-02	.06	.438E+04	.409E+05	.438E+04	8.3
.000	463.0	.114E-02	.07	.441E+04	.384E+05	.441E+04	10.2
.000	473.0	.115E-02	.08	.445E+04	.361E+05	.445E+04	12.2
.000	483.0	.117E-02	.10	.449E+04	.339E+05	.449E+04	14.6
.000	493.0	.119E-02	.11	.454E+04	.320E+05	.454E+04	17.4
.000	503.0	.121E-02	.12	.459E+04	.301E+05	.459E+04	20.5
.000	513.0	.123E-02	.14	.465E+04	.284E+05	.465E+04	24.0
.000	523.0	.125E-02	.16	.471E+04	.269E+05	.471E+04	27.9
.000	533.0	.128E-02	.18	.478E+04	.254E+05	.478E+04	32.4
.000	543.0	.130E-02	.20	.485E+04	.240E+05	.485E+04	37.4
.000	553.0	.133E-02	.22	.495E+04	.227E+05	.495E+04	43.1
.000	563.0	.137E-02	.24	.505E+04	.214E+05	.505E+04	49.3
.000	573.0	.140E-02	.26	.517E+04	.202E+05	.517E+04	56.2
.000	583.0	.145E-02	.29	.532E+04	.191E+05	.532E+04	64.1
.000	593.0	.150E-02	.31	.550E+04	.180E+05	.550E+04	72.9
.000	603.0	.156E-02	.34	.573E+04	.169E+05	.573E+04	82.7

.000	613.0	.164E-02	.37	.599E+04	.160E+05	.599E+04	93.9
.000	623.0	.173E-02	.40	.630E+04	.151E+05	.630E+04	107.3
.000	633.0	.186E-02	. 44	.663E+04	.145E+05	.663E+04	123.4
.000	643.0	.202E-02	.50	.690E+04	.144E+05	.690E+04	144.6
.200	273.0	.419E+02	1.01	.417E+04	.166E+06	.366E+05	159.1
.200	283.0	.216E+02	1.00	.419E+04	.151E+06	.336E+05	161.4
.200	293.0	.117E+02	. 99	.419E+04	.138E+06	.309E+05	163.5
.200	303.0	.664E+01	. 98	.419E+04	.126E+06	.285E+05	165.6
.200	313.0	.393E+01	. 98	.418E+04	.115E+06	.264E+05	167.6
.200	323.0	.242E+01	. 97	.418E+04	.106E+06	.245E+05	169.5
.200	333.0	.154E+01	.96	.418E+04	.972E+05	.228E+05	171.3
.200	343.0	.102E+01	. 95	.418E+04	.895E+05	.213E+05	172.9
.200	353.0	.686E+00	. 94	.419E+04	.827E+05	.199E+05	174.5
.200	363.0	.476E+00	. 93	.420E+04	.765E+05	.187E+05	175.7
.200	373.0	.337E+00	. 92	.422E+04	.709E+05	.176E+05	176.9
.200	383.0	.244E+00	. 91	.423E+04	.659E+05	.166E+05	177.8
.200	393.0	.180E+00	.90	.425E+04	.613E+05	.157E+05	178.6
.200	403.0	.135E+00	.88	.426E+04	.571E+05	.148E+05	179.2
.200	413.0	.103E+00	. 87	.428E+04	.533E+05	.141E+05	179.8
.200	423.0	.797E-01	.86	.430E+04	.498E+05	.134E+05	180.1
.200	433.0	.625E-01	.85	.432E+04	.465E+05	.128E+05	180.3
.200	443.0	.496E-01	.83	.435E+04	.436E+05	.122E+05	180.4
.200	453.0	.398E-01	. 82	.438E+04	.409E+05	.117E+05	180.3
.200	463.0	.323E-01	.80	.441E+04	.384E+05	.112E+05	180.1
.200	473.0	.264E-01	.79	.445E+04	.361E+05	.108E+05	179.9
.200	483.0	.218E-01	.77	.449E+04	.339E+05	.104E+05	179.4
.200	493.0	.182E-01	.76	454E+04	320E+05	100E+05	178.8
.200	503.0	.153E-01	. 75	459E+04	301E+05	970E+04	178.3
.200	513.0	.129E-01	.73	465E+04	284E+05	941E+04	177.5
.200	523.0	.110E-01	.72	471E+04	269E+05	915E+04	176.9
.200	533.0	.946E-02	.70	478E+04	.254E+05	.890E+04	176.3
.200	543.0	.816E-02	. 69	.485E+04	.240E+05	.868E+04	175.6
.200	553.0	.709E-02	. 67	495E+04	227E+05	849E+04	175.0
.200	563.0	620E-02	. 66	505E+04	214E+05	832E+04	174.3
.200	573.0	.545E-02	. 65	517E+04	202E+05	818E+04	173.9
.200	583.0	482E-02	. 63	532E+04	191E+05	807E+04	173.4
.200	593.0	430E-02	. 62	550E+04	180E+05	800E+04	173.1
.200	603.0	.385E-02	. 61	573E+04	169E+05	797E+04	172.7
.200	613.0	.348E-02	.59	599E+04	160E+05	799E+04	172.7
.200	623.0	.317E-02	.58	.630E+04	.151E+05	.807E+04	173.1
.200	633.0	.291E-02	.56	663E+04	145E+05	.821E+04	173.8
.200	643.0	.272E-02	.55	.690E+04	.144E+05	.841E+04	176.2
400	273 0	839E+02	1 07	417E+04	166E+06	690E+05	231 7
400	283 0	431E+02	1 06	419E+04	151E+06	630E+05	235 7
400	293 0	234E+02	1 06	419E+04	138E+06	576E+05	239 5
400	303 0	133E+02	1 06	419E+04	126E+06	529E+05	223.3
.400	313 0	.787E+01	1.06	.418E+04	.115E+06	.486E+05	247 0
.400	323 0	.485E+01	1.06	.418E+04	.106E+06	448E+05	250 7
400	333 0	.309E+01	1.06	.418E+04	.972E+05	414E+05	254 1
.400	343 0	203E+01	1.05	.418E+04	895E+05	.383E+05	257 4
.400	353.0	.137E+01	1.05	.419E+04	.827E+05	.356E+05	260.7
.400	363.0	.950E+00	1.05	.420E+04	.765E+05	.331E+05	263.6

.400	373.0	.674E+00	1.04	.422E+04	.709E+05	.309E+05	266.3
.400	383.0	.487E+00	1.04	.423E+04	.659E+05	.289E+05	268.7
.400	393.0	.359E+00	1.03	.425E+04	.613E+05	.271E+05	270.9
.400	403.0	.269E+00	1.03	.426E+04	.571E+05	.254E+05	272.8
.400	413.0	.205E+00	1.02	.428E+04	.533E+05	.239E+05	274.6
.400	423.0	.158E+00	1.02	.430E+04	.498E+05	.225E+05	276.1
.400	433.0	124E+00	1.01	432E+04	465E+05	212E+05	277.3
400	443 0	981E-01	1 00	435E+04	436E+05	201E+05	278 3
400	453 0	785E-01	99	4385+04	4098+05	1902+05	278 9
400	463 0	634F-01	98	441	3848+05	1802+05	270.2
400	473 0	517E-01	. 90	4458+04	361 - 405	1718+05	279.2
.400	402 0	125E-01	. 97	.44JE+04	220E+05	162E+05	279.5
.400	403.0	.425E-01	. 90	.4495+04	220000	1552+05	270.9
.400	493.0	.352E-UI	. 95	.4546+04	.3206+05	.155E+05	2/8.1
.400	503.0	.294E-01	. 94	.459E+04	.3016+05	.1486+05	277.2
.400	513.0	.246E-01	. 92	.465E+04	.284E+05	.142E+05	275.6
.400	523.0	.208E-01	.91	.471E+04	.269E+05	.136E+05	273.9
.400	533.0	.176E-01	. 89	.478E+04	.254E+05	.130E+05	271.9
.400	543.0	.150E-01	.88	.485E+04	.240E+05	.125E+05	269.2
.400	553.0	.129E-01	.86	.495E+04	.227E+05	.120E+05	266.3
.400	563.0	.110E-01	.84	.505E+04	.214E+05	.116E+05	262.8
.400	573.0	.951E-02	. 82	.517E+04	.202E+05	.112E+05	259.2
.400	583.0	.820E-02	.80	.532E+04	.191E+05	.108E+05	254.6
.400	593.0	.709E-02	.78	.550E+04	.180E+05	.105E+05	249.5
.400	603.0	.614E-02	.75	.573E+04	.169E+05	.102E+05	243.2
.400	613.0	.532E-02	.72	.599E+04	.160E+05	.999E+04	236.1
.400	623.0	.460E-02	. 69	.630E+04	.151E+05	.984E+04	227.6
.400	633.0	.397E-02	. 64	.663E+04	.145E+05	.979E+04	216.8
.400	643.0	.341E-02	. 59	.690E+04	.144E+05	.991E+04	203.9
. 600	273.0	.126E+03	1.09	.417E+04	.166E+06	.101E+06	286.7
. 600	283.0	.647E+02	1.09	.419E+04	.151E+06	924E+05	292.0
. 600	293.0	350E+02	1.09	419E+04	138E+06	844E+05	297.0
. 600	303.0	199E+02	1.09	419E+04	126E+06	772E+05	302.0
600	313 0	118E+02	1 09	418E+04	115E+06	708E+05	307 0
600	323 0	7275+01	1 00	118F±04	1062+06	651E+05	311 0
.000	333 0	163E+01	1 00	118E+04	072E+05	600E+05	316 6
. 000	313 0	201E+01	1 00	.410E+04	905TL05	554E+05	221 1
. 000	343.0	.304E+01	1 00	4100-04	.095E+05	534E+05	221.1
. 600	353.0	142006+01	1.09	.4195+04	.02/6+05	.3136+05	323.0
. 600	303.0	.143E+U1	1.09	.4206+04	.7656+05	.4/65+05	329.7
.600	3/3.0	.1016+01	1.09	.4226+04	.7096+05	.4436+05	333./
.600	383.0	./30E+00	1.09	.4236+04	.6596+05	.4126+05	337.2
.600	393.0	.538E+00	1.09	.425E+04	.613E+05	.385E+05	340.5
.600	403.0	.403E+00	1.09	.426E+04	.571E+05	.360E+05	343.5
.600	413.0	.307E+00	1.09	.428E+04	.533E+05	.337E+05	346.3
.600	423.0	.237E+00	1.08	.430E+04	.498E+05	.316E+05	348.7
.600	433.0	.185E+00	1.08	.432E+04	.465E+05	.296E+05	350.7
.600	443.0	.147E+00	1.08	.435E+04	.436E+05	.279E+05	352.6
.600	453.0	.117E+00	1.07	.438E+04	.409E+05	.263E+05	353.8
. 600	463.0	.945E-01	1.06	.441E+04	.384E+05	.248E+05	354.7
.600	473.0	.770E-01	1.06	.445E+04	.361E+05	.234E+05	355.3
.600	483.0	.632E-01	1.05	.449E+04	.339E+05	.222E+05	355.1
.600	493.0	.522E-01	1.04	.454E+04	.320E+05	.210E+05	354.5
. 600	503.0	.435E-01	1.03	.459E+04	.301E+05	.199E+05	353.6
.600	513.0	.363E-01	1.02	.465E+04	.284E+05	.189E+05	351.6

. 600	523.0	.306E-01	1.01	.471E+04	.269E+05	.180E+05	349.6
.600	533.0	.258E-01	. 99	.478E+04	.254E+05	.171E+05	346.9
.600	543.0	.219E-01	. 98	.485E+04	.240E+05	.163E+05	343.1
. 600	553.0	.186E-01	.96	.495E+04	.227E+05	.156E+05	339.0
. 600	563.0	.159E-01	. 94	.505E+04	.214E+05	.149E+05	333.7
. 600	573.0	.136E-01	. 93	.517E+04	.202E+05	.142E+05	328.3
. 600	583.0	.116E-01	. 90	.532E+04	.191E+05	.136E+05	320.9
. 600	593.0	.989E-02	.88	.550E+04	.180E+05	.130E+05	312.6
. 600	603.0	.842E-02	.85	.573E+04	.169E+05	.125E+05	302.3
. 600	613.0	.716E-02	.81	.599E+04	.160E+05	.120E+05	290.1
. 600	623.0	.603E-02	.76	.630E+04	.151E+05	.116E+05	274.8
. 600	633.0	.502E-02	.70	.663E+04	.145E+05	.114E+05	254.7
. 600	643.0	.411E-02	. 62	.690E+04	.144E+05	.114E+05	228.8
.800	273.0	.168E+03	1.10	.417E+04	.166E+06	.134E+06	332.8
.800	283.0	.863E+02	1.10	.419E+04	.151E+06	.122E+06	339.1
.800	293.0	.467E+02	1.10	.419E+04	.138E+06	.111E+06	345.1
.800	303.0	.265E+02	1.10	.419E+04	.126E+06	.102E+06	351.1
.800	313.0	.157E+02	1.11	.418E+04	.115E+06	.930E+05	357.1
. 800	323.0	.969E+01	1.11	.418E+04	.106E+06	.854E+05	363.0
. 800	333.0	.617E+01	1.11	.418E+04	.972E+05	.786E+05	368.8
. 800	343.0	.406E+01	1.11	.418E+04	.895E+05	.725E+05	374.3
. 800	353.0	.274E+01	1.12	.419E+04	.827E+05	.670E+05	379.8
.800	363.0	190E+01	1.12	420E+04	765E+05	621E+05	384.9
. 800	373.0	.135E+01	1.12	.422E+04	.709E+05	.576E+05	389.8
. 800	383.0	.974E+00	1.12	.423E+04	.659E+05	.536E+05	394.3
.800	393.0	.717E+00	1.12	425E+04	613E+05	499E+05	398.5
.800	403.0	.537E+00	1.12	426E+04	.571E+05	465E+05	402.3
.800	413.0	.409E+00	1.12	428E+04	.533E+05	435E+05	406.0
.800	423.0	.316E+00	1.12	.430E+04	.498E+05	.407E+05	409.2
.800	433.0	.247E+00	1.12	432E+04	465E+05	381E+05	411.9
.800	443.0	195E+00	1.12	435E+04	436E+05	358E+05	414.5
.800	453.0	156E+00	1.11	438E+04	409E+05	336E+05	416.3
.800	463.0	126E+00	1.11	441E+04	384E+05	316E+05	417.8
800	473 0	102E+00	1 11	445E+04	361E+05	298E+05	418 8
.800	483.0	.838E-01	1.10	449E+04	.339E+05	280E+05	418.9
.800	493.0	.692E-01	1.09	454E+04	320E+05	265E+05	418.5
.800	503.0	.575E-01	1.09	459E+04	301E+05	250E+05	417.7
.800	513.0	.480E-01	1.08	465E+04	284E+05	237E+05	415.6
.800	523.0	.403E-01	1.07	471E+04	269E+05	224E+05	413.3
.800	533.0	.340E-01	1.06	478E+04	254E+05	213E+05	410.1
800	543 0	287E-01	1 04	485E+04	240E+05	202E+05	405 7
800	553 0	244E-01	1 03	495E+04	227E+05	191E+05	400 6
.800	563.0	.207E-01	1.01	505E+04	214E+05	181E+05	394.2
.800	573.0	.176E-01	.99	517E+04	202E+05	172E+05	387.3
800	583 0	150E-01	97	532E+04	191E+05	163E+05	378 0
.800	593 0	.127E-01	. 95	.550E+04	.180E+05	.155E+05	367 3
.800	603 0	.107E-01	. 91	573E+04	.169E+05	.147E+05	353 8
.800	61.3 0	.900E-02	. 87	.599E+04	.160E+05	.140E+05	337 6
. 800	623 0	.746E-02	82	.630E+04	.151E+05	.134E+05	316 7
.800	633 0	.608E-02	. 74	.663E+04	.145E+05	.130E+05	288 8
.800	643 0	.481E-02	. 64	.690E+04	.144E+05	.129E+05	251 5
1 000	273 0	2102-02	1 11	417E+04	166E+06	166E+06	373 2
T .000	2,3.0	. 2100103	* • * *			. 1000100	5,5.2

1 000		100-00		44.004	1 - 1	4 - 4 - 4 - 4 - 4	
1.000	283.0	.108E+03	1.11	.419E+04	.151E+06	.151E+06	380.4
1.000	293.0	.584E+02	1.11	.419E+04	.138E+06	.138E+06	387.3
1.000	303.0	.332E+02	1.11	.419E+04	.126E+06	.126E+06	394.2
1.000	313.0	.197E+02	1.12	.418E+04	.115E+06	.115E+06	401.0
1.000	323.0	.121E+02	1.12	.418E+04	.106E+06	.106E+06	407.8
1.000	333.0	.772E+01	1.12	.418E+04	.972E+05	.972E+05	414.5
1.000	343.0	.507E+01	1.13	.418E+04	.895E+05	.895E+05	420.9
1.000	353.0	.343E+01	1.13	.419E+04	.827E+05	.827E+05	427.3
1.000	363.0	.237E+01	1.13	.420E+04	.765E+05	.765E+05	433.3
1.000	373.0	.168E+01	1.14	.422E+04	.709E+05	.709E+05	439.0
1.000	383.0	.122E+01	1.14	.423E+04	.659E+05	.659E+05	444.2
1.000	393.0	.897E+00	1.14	.425E+04	.613E+05	.613E+05	449.3
1.000	403.0	.671E+00	1.14	.426E+04	.571E+05	.571E+05	453.8
1.000	413.0	.511E+00	1.14	.428E+04	.533E+05	.533E+05	458.2
1.000	423.0	394E+00	1.14	430E+04	498E+05	498E+05	462.1
1 000	433 0	308E+00	1 14	432E+04	465E+05	465E+05	465 5
1 000	443 0	244E+00	1 14	435E+04	436E+05	4368+05	468 6
1 000	453 0	1945+00	1 1 1	4385+04	4092+05	4098+05	400.0
1 000	463 0	1578+00	1 1 1	1/1E+0/	204E+05	20/01/05	470.9
1 000	403.0	129E+00	1 1 1	.44IL+04	.364E+05	.304E+05	472.9
1 000	4/3.0	105E+00	1 1 2	.443E+04	.301E+03	.301E+05	4/4.4
1 000	403.0	.105E+00	1 1 2	4496704	.339E+03	22000-05	4/4./
1 000	493.0	.002E-01	1 10	4546+04	. 320E+03	.320E+05	4/4.4
1.000	503.0	./16E-01	1.12	.4596+04	.3016+05	.3016+05	4/3.8
1.000	513.0	.59/E-01	1.11	.4656+04	.2845+05	.2846+05	4/1.6
1.000	523.0	.501E-01	1.11	.4/16+04	.2695+05	.2696+05	469.2
1.000	533.0	.422E-01	1.10	.4/8E+04	.2545+05	.2546+05	465.7
1.000	543.0	.356E-01	1.09	.485E+04	.2406+05	.2406+05	460.7
1.000	553.0	.3016-01	1.07	.4958+04	.22/E+05	.22/E+05	454.9
1.000	563.0	.255E-01	1.06	.505E+04	.214E+05	.214E+05	447.5
1.000	573.0	.217E-01	1.04	.51/E+04	.202E+05	.202E+05	439.5
1.000	583.0	.183E-01	1.02	.532E+04	.1916+05	.191E+05	428.6
1.000	593.0	.155E-01	. 99	.550E+04	.180E+05	.180E+05	415.9
1.000	603.0	.130E-01	. 96	.573E+04	.169E+05	.169E+05	400.0
1.000	613.0	.108E-01	. 92	.599E+04	.160E+05	.160E+05	380.4
1.000	623.0	.890E-02	.86	.630E+04	.151E+05	.151E+05	354.8
1.000	633.0	.713E-02	.78	.663E+04	.145E+05	.145E+05	319.9
1.000	643.0	.551E-02	. 65	.690E+04	.144E+05	.144E+05	272.6
с -	- TT	FOR					
c	Прог	рамма для	опрел	еления Т.	\mathbf{p}_{i} ro', ro	''. h'. h''.	r. s ['] . s ^{''}
C		ид	ругих	теплофизич	еских свой	йств R134a	_, _, _
с	(См: Г.Я. І	Рувинс	кий, Г.К.	Лавренченк	о, С.В. Ил	ьюшенко
С	Тепло	физические	е свой	ства R134a	/ Холодиль	ная техник	a. №7, 1990.
с -							
D	IMENSION	B(3,6),C	(9,6),	K(6), DT(4)			
(COMMON/RV	$\mathbf{KT}/\mathbf{R}, \mathbf{TKR},$	NL,CV(), В, С, К, DТ/) с. вт (2)	KK/PKR, ROI	1K (H0 C0	
		мі/гі(3,0)	, FMO (3	о, о), вц (2),	, BMU (2) / HI /	/н0,50	
	rK=373						
TX TX	RITE(6.*)'DT.C.K'					
W	RITE (6,1) DT					
ī	WRITE(6,1	.2)					
	-						

377

WRITE(6,2)C

```
WRITE(6,12)
  WRITE(6,3)K
  WRITE(6,12)
  WRITE (6,11) FL
  WRITE(6,12)
  WRITE (6,11) FMU
  WRITE(6,12)
  WRITE(6,14)
  WRITE(6,12)
  P=PS(PKR,TKR,T,DPS)
  ROII=RHOVIR(T,P)
  ROI=ROG (ROKR, TKR, T)
  RT=T*(1./ROII-1./ROI)*DPS
  S1=0.
  s2=1.
  S3=0.
  S4=0.
  S5=1.
  S8=0.
  DO 5 I=1,NI
  OM=ROII/ROKR
  S1=S1+B(2,I)*OM**I/FLOAT(I)
  S8=S8+B(1,I)*OM**I/FLOAT(I)
  S2=S2+B(1,I)*OM**I
  S3=S3+B(3,I)*OM**I/FLOAT(I)
  S4=S4+B(2,I)*OM**I
  S5=S5+FLOAT(I+1)*B(1,I)*OM**I
  S6=S2+T*S4**2*R
  U = (CV0*T-R*T*T*S1)
  H=H0+CV0*T+R*T*(S2-T*S1)
  HII=H
  HI=HII-RT
  CV=CV0-R*T* (2.*S1+T*S3)
  S7=S5+S6/CV
  CP=CV+S6/S5
  z=s2
  DBDT=S4
  PAD=S7/S2
  ASB=SQRT (R*T*S7)
  TPI=FLMU(T,ROI,TKR,ROKR,BL,FL)
  TPII=FLMU(T, ROII, TKR, ROKR, BL, FL)
  BSI=FLMU (T, ROI, TKR, ROKR, BMU, FMU)
  BSII=FLMU (T, ROII, TKR, ROKR, BMU, FMU)
  HI=HI/1000.
  HII=HII/1000.
  RT=RT/1000.
  SII=S0+R*((-DT(1)*1000./T+DT(2)*ALOG(T)+DT(3)*T/1000.+
* 0.5*DT(4)*T**2/1000000.)-(S8+T*S1)-ALOG(ROII))
   SII=SII/1000.
   SI=SII-RT/T
   WRITE (6,8) T, P, DPS, ROI, ROII, HI, HII, RT, SI, SII
   WRITE (6,9) T, ROI, ROII, TPI, TPII, BSI, BSII
   T=T+5.
   IF(T.LE.TK) GO TO 6
   WRITE(6,12)
   FORMAT (4F9.4)
   FORMAT (9F8.4)
```

6

5

С

1

2

```
3
      FORMAT(612)
8
      FORMAT (F4.0, E10.4, E9.3, F7.1, F7.2, 3F7.1, 2F8.4)
9
      FORMAT (7E10.3)
11
      FORMAT (3E10.3)
12
      FORMAT (80(1H-))
      FORMAT (1X, 'T', 7X, 'P', 7X, 'DPS', 5X, 'ROI', 5X, 'ROII', 3X, 'HI', 5X,
14
      'HII', 5X, 'R', 6X, 'SI', 6X, 'SII')
      STOP
       END
С
                 _____
       BLOCK DATA R134A
С
       _____
       DIMENSION B(3,6), C(9,6), K(6), DT(4)
       COMMON/RVKT/R, TKR, NI, CV0, B, C, K, DT/KR/PKR, ROKR/XX/X(6)
       COMMON/FLM/FL(3,6), FMU(3,6), BL(2), BMU(2)/ROH/D(4), A/HY/H0, S0
       DATA TKR, PKR, ROKR, R/374.23, 4063200., 511.244, 81.48/, DT/-0.1348,
       2.4933,28.905,-14.877/,K/9,9,8,7,7,6/,NI/6/
       DATA C/-27.44145029,78.58896834,-67.91020038,-14.48135482,
    *
       70.31996022,-53.09217279,1.498045102,17.69001367,-6.521701320,
    *
       27.39193991,-28.91494474,-60.52787156,97.62008869,-13.84379838,
    *
       -50.31599539,43.03968667,-19.48457852,5.663320201,-13.55422832,
    *
       6.782983550,11.91388409,-1.426923650,-1.947370986,7.792311713,
       -6.864807999, -2.602714274, 0., 9.553337409, -2.339475985,
    *
       -4.705792080,-11.97501459,1.902494844,1.704473226,5.826994292,
    *
    *
       2*0., -3.466917850, 0.7310857860, 3.009940096, 3.506341672,
    *
       -0.4553309628, -2.707418797, -0.7533035164, 2*0., 0.06516377067,
       1.065177766, -1.692489241, -0.004766009146, 0.2772846850,
    *
       0.3501426841,3*0./H0,S0/0.390E6,3183.8/
    *
       DATA X/126.9674,-10.26281,-124.8586,325.2989,-351.7632,134.0362/
       DATA FL/3562.749,-5362.682,2017.55,10762.81,-28645.18,16983.12,
       -12037.26,29738.28,-13629.99,1985.713,-6861.525,102.705,
    *
    *
       1313.83, -1022.73, 1875.712, -423.2735, 453.323, -372.5201/
       DATA FMU/473.9781,-874.6968,397.2617,-5441.732,10304.54,
       -4727.879,11733.59,-21683.75,9613.33,-9375.12,16947.9,-7192.004,
    *
    *
       3353.395,-6007.317,2463.976,-433.7446,788.9111,-319.6486/
       DATA BL/-98.973,0.788917/,BMU/0.690114,0.0378359/
       DATA D/0.7858,6.082119,-9.565,6.043856/,A/3.1/
       END
С
    _____
                           _____
    FUNCTION ROG (ROKR, TKR, T)
С
     _____
С
              Определение плотности насыщенной жидкости
С
     _____
     COMMON/ROH/D(4), A
    TAY=T/TKR
    ROG=1.
     DO 1 I=1,4
1
     ROG=ROG+D(I)*(1.-TAY)**(I/A)
     ROG=ROKR*ROG
     RETURN
     END
С
     _____
     REAL FUNCTION PS (PKR, TKR, T, DPS)
С
С
             Определение давления насыщенных паров R134a
С
                 и его производной по температуре
С
            _____
```

```
COMMON/XX/X(6)
     TAY=T/TKR
     TY=1.-TAY
     PS=PKR*EXP((X(1)*TY+X(2)*TY**1.5+X(3)*TY**2.5+X(4)*TY**4+
     X(5) *TY**4.5+X(6) *TAY*ALOG(TAY))/TAY
      DPS=PS*(-ALOG(PS/PKR)-X(1)-1.5*X(2)*TY**0.5-2.5*X(3)*TY**1.5-
   *
     4.*X(4)*TY**3-4.5*X(5)*TY**3.5+X(6)*(ALOG(TAY)+1.))/T
      RETURN
      END
С
      _____
      SUBROUTINE RVK(T)
С
      _____
С
          Определение вириальных коэффициентов и их производных
С
       _____
      DIMENSION B(3,6),C(9,6),K(6),DT(4)
       COMMON/RVKT/R, TKR, NI, CV0, B, C, K, DT/KR/PKR, ROKR
      TAU=TKR/T
      D=1.
      DO 10 I=1,NI
С
      ----- Следить за размерностью вириальных коэффициентов -----
С
      D=0.001*D
      B(1,I) = C(1,I) * D
      B(2,I) = 0.
      B(3, I) = 0.
      M=K(I)
      IF(M) 5,100,5
5
      DO 10 J=2,M
      BI=C(J,I)*TAU**(J-1)*D
      B(1,I) = B(1,I) + BI
      BI=FLOAT (J-1) *BI/T
      B(2,I) = B(2,I) - BI
10
      B(3,I) = B(3,I) + FLOAT(J) * BI/T
100
      CV0=R* (DT (1) *1000./T+DT (2) +DT (3) *T/1000.+DT (4) *T*T/1000000.)
      RETURN
      END
С
      _____
      FUNCTION RHOVIR (T, P)
С
      _____
С
         Определение плотности по известным температуре и давлению
С
       _____
      DIMENSION B(3,6), K(6), C(9,6), DT(4)
      COMMON/RVKT/R, TKR, NI, CV0, B, C, K, DT/KR/PKR, ROKR
      DATA EM/1000./
      CALL RVK(T)
      E=EM
      RO=P/(R*T)
10
      RO0=RO
      E0=E
      Z1=P/(RO0*R*T)
      Z2=1.
      DO 20 I=1,NI
      DZ1=B(1,I)*(RO0/ROKR)**I
      DZ2=FLOAT(I)*DZ1
      Z1=Z1+DZ2
20
      Z2=Z2+DZ1+DZ2
      RO=RO0*Z1/Z2
      E=ABS (1.-RO0/RO)
```

30	IF (E-1 RHOVI) RETURI END	E0)10,30 R=RO0 N	,30							
С	FUNCTION	·	 RO TKR	POKB B						-
с		Г <u>Г Ш</u> ЧО (I ,								-
c c	Определо	ение к-та	а тепло	проводн	ности и	динам	ической	і вязкос	ти R134a	1
	DIMENSIC	N B(2),A	(3,6)							
	TAY=T/TK	R								
	D0=B(1)+	™. •B(2)*T								
	DK=0.	_ _ / _								
	DO 2 I=1	,6								
2	DO 2 J=1	.,3 (****)//m [*]	N 37 ± ± / Ŧ	1 \	s+ + T					
2	DK=DK+(A FI.MU=D0+1	(J,I)/(T	41×× ()-	1)))*01	N××T					
	RETURN									
	END									
С										-
		Результ	гаты ра	асчета	по про	ограмм	ie TTF	.FOR		
DT,C,	к									
	1348 2.4	1933 28.9	9050 -14	.8770						
-27 4	415 78 589	0-67 9103	2-14 481	4 70 32	00-53 0	922 1	4980 17	6900 -6	5217	
27.3	919-28.914	19-60.527	9 97.620	1-13.84	38-50.3	160 43.	0397-19	.4846 5	. 6633	
-13.5	542 6.783	30 11.913	9 -1.426	9 -1.94	74 7.7	923 -6.	8648 -2	.6027	.0000	
9.5	533 -2.339 669 731	95 - 4.7058	3-11.975 9 3 506	0 1.90	25 1.7	045 5. 074 -	8270 7533	.0000	.0000	
.0	652 1.065	52 -1.692	5004	8.27	73 .3	501 .	0000	.0000	.0000	
99	8776									
. 35	6E+0453	36E+04 .2	202E+04							
12	8E+0528 0E+05 .29	96E+05 97E+05:	L70E+05							
.19	9E+0468	36E+04 .3	L03E+03							
.13	1E+0410)2E+04 .1	L88E+04							
42	$\frac{3E+03}{4E+03} = 87$	55E+03	373E+03							
54	4E+04 .10)3E+054	473E+04							
.11	7E+0521		961E+04							
93 33	8E+04 .10 5E+04 - 60	9E+05 1E+04 2	/19E+04 246E+04							
43	4E+03 .78	39E+033	320E+03							
т	P	DPS	ROI	ROII	ні	HII	R	SI	SII	
238.	.6676E+05	.327E+04	1421.0	3.68	339.9	551.0	211.1	3.8314	4.7185	
243.	.8476E+05	.394E+04	1404.8	4.58	349.0	557.5	208.4	3.8594	4.7172	
248. 253.	.1064E+06	.4/2E+04	1388.5	5.65	357.8	564.0	206.2	3.8855	4.7169	
258.	.1626E+06	.661E+04	1355.4	8.38	374.8	577.1	202.4	3.9332	4.7176	
263.	.1985E+06	.776E+04	1338.6	10.09	383.1	583.7	200.6	3.9558	4.7184	
268. 273	.2404E+06	.904E+04	1321.6	12.09 14 40	391.5 400 0	590.2 596 5	198.7 196 5	3.9779	4.7192 4.7198	
278.	.3455E+06	.121E+05	1287.0	17.08	408.7	602.8	194.1	4.0222	4.7203	
283.	.4103E+06	.138E+05	1269.2	20.17	417.6	608.9	191.2	4.0448	4.7205	
288.	.4843E+06	.158E+05	1251.1	23.72	426.8	614.8	187.9	4.0678	4.7204	
					381					

293.	.5684E+06	.179E+05	1232.6	27.79	436.4	620.5	184.1	4.0915	4.7200	
298.	.6632E+06	.201E+05	1213.7	32.44	446.2	626.0	179.8	4.1158	4.7192	
303.	.7697E+06	.225E+05	1194.1	37.75	456.4	631.3	174.9	4.1407	4.7179	
308.	.8885E+06	.250E+05	1174.0	43.79	466.9	636.4	169.5	4.1660	4.7163	
313.	.1020E+07	.277E+05	1153.1	50.66	477.7	641.2	163.5	4.1917	4.7142	
318.	.1166E+07	.305E+05	1131.3	58.44	488.6	645.8	157.1	4.2175	4.7117	
323.	.1325E+07	.333E+05	1108.5	67.27	499.7	650.1	150.4	4.2433	4.7088	
328.	.1499E+07	.363E+05	1084.4	77.29	510.9	654.1	143.2	4.2688	4.7055	
333.	.1689E+07	.395E+05	1058.7	88.70	522.1	657.9	135.8	4.2937	4.7017	
338.	.1894E+07	.428E+05	1031.2	101.75	533.1	661.4	128.3	4.3179	4.6973	
343.	.2117E+07	.464E+05	1001.2	116.80	544.0	664.5	120.5	4.3412	4.6924	
348.	.2359E+07	.504E+05	968.1	134.40	554.8	667.2	112.4	4.3636	4.6866	
353.	.2622E+07	.549E+05	930.6	155.41	565.5	669.4	103.9	4.3853	4.6797	
358.	.2910E+07	.602E+05	887.1	181.32	576.3	670.9	94.6	4.4069	4.6711	
363.	.3226E+07	.665E+05	833.9	215.00	587.9	671.1	83.3	4.4302	4.6596	
368.	.3576E+07	.738E+05	762.6	263.02	601.6	669.3	67.7	4.4588	4.6427	
373.	.3964E+07	.807E+05	635.1	344.82	623.0	662.9	39.9	4.5074	4.6144	

Приложение 3

С	TF.FOR
С	ПРОГРАММА РАСЧЕТА ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ ВОДЫ И ВОДЯНОГО
С	ПАРА НА ЛИНИИ НАСЫЩЕНИЯ
С	См. (ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ТЕПЛОТЕХНИКИ. ТЕПЛОТЕХНИЧЕСКИЙ
С	ЭКСПЕРИМЕНТ. СПРАВОЧНИКМ.:ЭНЕРГОАТОМИЗДАТ,1988.С.124-125)
С	
	DIMENSION $A(4)$, $BI(6)$, $C(7,9)$
	COMMON/CF/C/TFS/A,BI
	COMMON/CFS/C1(9),C2(9),C3(9),C4(9),C5(9),C6(9),C7(9)
С	ИСХОДНЫЕ ДАННЫЕ
С	С-МАССИВ ДАННЫХ ДЛЯ РАСЧЕТА ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ ВДОЛЬ
С	НИЖНЕЙ И ВЕРХНЕЙ ПОГРАНИЧНЫХ КРИВЫХ
С	А – МАССИВ ДАННЫХ ДЛЯ РАСЧЕТА ДАВЛЕНИЯ НАСЬЩЕНИЯ
С	ВІ — МАССИВ ДАННЫХ ДЛЯ РАСЧЕТА ТЕМПЕРАТУРЫ НАСЫЩЕНИЯ
С	
	WRITE(*,*)' ВВЕДИТЕ Т, (К)'
	READ(*,*)T
	DO 10 J=1,9
	C1(J) = C(1, J)
	C2(J) = C(2, J)
	C3(J) = C(3, J)
	C4(J) = C(4, J)
	C5(J) = C(5, J)
	C6(J) = C(6, J)
10	C7(J) = C(7, J)
	WRITE(6,*)' MACCUB BI'
	WRITE(6,8)(BI(I),I=1,6)
	WRITE(6,*)' MACCUB A'
	WRITE(6,9)(A(I),I=1,4)
	WRITE(6,*)' MACCИB C'
	WRITE(6,11)(C1(J),C2(J),C3(J),C4(J),C5(J),C6(J),C7(J),J=1,9)
8	FORMAT (1X, 6E10.3)
9	FORMAT (1X, 4E10.3)
11	FORMAT (1X, 7E10.3)

```
CALL ROUR (T, ROI, ROII, HI, HII, RT, SI, SII, GMU, P)
       CALL DURT (T, DUI, DUII, DRI, DRII)
       PSR=PS(T,A)
       TSR=TS(P/1.E6,BI)
       WRITE (6, *) ' ПЕЧАТЬ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ '
       WRITE(6,1)
       WRITE (6,12) T, P, ROI, ROII, HI, HII, RT, SI, SII, GMU, DUI, DUII, DRI,
    * DRII, TSR, PSR
       WRITE(6, 2)
1
       FORMAT (5X, 'T', 10X, 'P', 8X, 'ROI', 7X, 'ROII', 6X, 'HI', 7X, 'HII',
    * 8X,'RT',8X,'SI')
2
       FORMAT(4X,'SII',8X,'GMU',7X,'DUI',7X,'DUII',6X,'DRI',
    * 6X,'DRII',7X,'TS',8X,'PS')
12
       FORMAT (16E10.3)
С
      ----- ВЫХОДНЫЕ ДАННЫЕ ------
       T, TS
С
                 - ТЕМПЕРАТУРА НАСЬЩЕНИЯ (К)
       P, PS
С
                 - ДАВЛЕНИЕ НАСЫЩЕНИЯ (ПА)
С
       ROI, ROII - ПЛОТНОСТЬ НАСЫЩЕННОЙ ЖИДКОСТИ И ПАРА (КГ/М^З)
С
       НІ, НІІ, RT – УДЕЛЬНАЯ ЭНТАЛЬПИЯ НАСЫЩЕННОЙ ЖИДКОСТИ И ПАРА,
С
                  А ТАКЖЕ ТЕПЛОТА ПАРООБРАЗОВАНИЯ (КДЖ/КГ)
С
   SI, SII-УДЕЛЬНАЯ ЭНТРОПИЯ НАСЫЩЕННОЙ ЖИДКОСТИ И ПАРА, КДЖ/ (КГ*К)
С
       GMU
             - ПРИВЕДЕННАЯ УДЕЛЬНАЯ ЭНЕРГИЯ ГИББСА (КДЖ/КГ)
С
       DUI, DUII – ПРОИЗВОДНЫЕ ПО ТЕМПЕРАТУРЕ УДЕЛЬНОЙ ВНУТРЕННЕЙ
С
                  ЭНЕРГИИ НАСЫЩЕННОЙ ЖИДКОСТИ И ПАРА, КДЖ/(КГ*К)
      DRI, DRII - ПРОИЗВОДНЫЕ ПО ТЕМПЕРАТУРЕ ПЛОТНОСТИ НАСЫЩЕННОЙ
С
                 жидкости и пара, кг/(м^3*к)
С
                  -----
С
       STOP
       END
С
       _____
       SUBROUTINE ROUR (T, ROI, ROII, HI, HII, RT, SI, SII, GMU, P)
С
       _____
С
        ОПРЕДЕЛЕНИЕ RO', RO", U', U", H', H", R, SI', SII", MU
       _____
С
       DIMENSION A(4), BI(6)
       COMMON/CFS/C1(9),C2(9),C3(9),C4(9),C5(9),C6(9),
    *
      C7(9)/TFS/A,BI
       ROI=1./YY(C1,9,T)
       P=PS(T,A)
       ROII = P/YY(C2, 9, T)/1.E5
       HI=YY(C3, 9, T) * 1000.
       UI=HI-P/ROI
       HII=YY(C4, 9, T) * 1000.
       UII=HII-P/ROII
       RT=HII-HI
       SI=YY(C5,9,T)
       SII=YY(C6,9,T)
       GMU=YY(C7,9,T)
       RETURN
       END
С
        SUBROUTINE DURT (T, DUI, DUII, DRI, DRII)
                                      С
```

(2) APA							
 АРА							
 APA							
 APA							
 APA							
 APA							
 APA							
 APA							
 APA							
 APA							
 APA							
 APA							
 APA							
ара Ара							
ара							
 APA							
ара Ара							
APA							
APA							
YY=A(1)							
))*1.E6							
-							

```
BLOCK DATA TF
```

ис	ХОДНЫЕ	ДАННЫЕ	по	ТЕРМОДИНАМИЧЕСКИМ	СВОЙСТВАМ	водяного	ПАРА
	DIMENSI		.9)	 .A(4).BI(6)			
	COMMON/	CF/C/TE	s/1	A,BI			
	DATA C/	0.10550	68'	7,-0.113877427E3,0	.2159186381	25 ,	
*	-0.2450	9085E5,	,			·	
k	0.99827	606E1,0).2'	71669973E2,-0.7811!	587E3,-0.13	33737977E	1,
r	0.14561	4699E4,	, -0	.294899186E6,0.343	L38528E6,-(0.2164090	52E3,
r	0.67221	2793E1,	0.4	43895532E4,0.74299 [.]	7633E1,-0.8	3022949121	E4,
*	0.16853	3091E7,	, -0	.191174351E7,0.1440)31447E4,		
*	-0.7475	10787E3	3,				
k	-0.8060	5739E4,	, -0	.234015993E2,0.2503	397989E5,-(0.5394689	66E7,
*	0.60537	3655E7,	, -0	.494997083E4,0.3582	212673E4,0	.596501311	E4,
k	0.45690	972E2,-	-0.4	48344913E5,0.106814	4779E8 ,-0.1	L18862216	5E8,
k	0.10281	5156E5,	, -0	.851820171E4,-0.292	255230E4,		
*	-0.5662	17816E2	2,				
k	0.59168	416E5,-	-0.3	13404054E8,0.148342	2520E8,-0.1	L3395892E	5,
ł	0.11915	1822E5,	,0.0	6445090E3,0.4349833	366E2,-0. 4 4	48590775E	5,
*	0.10416	8615E8,	, -0	.115037973E8,0.1074	466052E5,		
k	-0.9994	63182E4	1,0	.0,			
*	-0.1894	59451E2	2,0	.192719313E5,-0.458	36357E7,0.5	5071439211	Ε7,
*	-0.4866	08948E4	1,0	.467730830E4,0.0,0	.358401536	21,	
k	-0.3594	42541E4	1,				
*	0.87663	609E6,-	-0.9	973927618E6,0.9540	5 9921E3 ,		
*	-0.9433	13412E3	3,0	.0/			
	DATA BI	/2.2073	32,•	-2.117187E-1,-2.160	6605E-3,1.0	519692E-4	,
*	4.8998E	-5,3.69	917:	25E-6/,A/-7.821541	,82.86568,1	L0.28003,	
*	-11.487	76/					

```
С
```

Результаты расчета по программе TF.FOR

МАССИВ В	Г					
.221E+01	212E+00	217E-02	.162E-03	.490E-04	.369E-05	
МАССИВ А						
782E+01	.829E+02	.103E+02	115E+02			
МАССИВ С						
.106E+00	114E+03	.216E+05	245E+05	.998E+01	.272E+02	781E+03
134E+01	.146E+04	295E+06	.343E+06	216E+03	.672E+01	.439E+04
.743E+01	802E+04	.169E+07	191E+07	.144E+04	748E+03	806E+04
234E+02	.250E+05	539E+07	.605E+07	495E+04	.358E+04	.597E+04
.457E+02	483E+05	.107E+08	119E+08	.103E+05	852E+04	293E+04
566E+02	.592E+05	134E+08	.148E+08	134E+05	.119E+05	.645E+03
.435E+02	449E+05	.104E+08	115E+08	.107E+05	999E+04	.000E+00
189E+02	.193E+05	459E+07	.507E+07	487E+04	.468E+04	.000E+00

.358E+01 -.359E+04 .877E+06 -.974E+06 .954E+03 -.943E+03 .000E+00

ПЕЧАТЬ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

т	P	ROI	ROII	HI	HII	RT	SI
.333E+03	.198E+05	.983E+03	.130E+00	.251E+06	.261E+07	.236E+07	.829E+00
.791E+01	258E+02	.417E+04	.132E+04	505E+00	.562E-02	.333E+03	.198E+05
SII	GMU	DUI	DUII	DRI	DRII	TS	PS

Приложение 4

С		REGV.FOR
С		ПРОГРАММА РЕГРЕССИОННОГО АНАЛИЗА ЛАННЫХ ПО ВОЛЯНОМУ ПАРУ
C		ΗΑ ΠΡИΜΕΡΕ ЭΗΤΡΟΠИИ СУХОГО НАСЫШЕННОГО ПАРА
c	(теоі	
C	(СПРАВОЧНИК – М : ЭНЕРГОАТОМИЗЛАТ, 1988 С 124 – 125)
C		
U		DIMENSION $X(39) \cdot Y(39) \cdot XP(39,9)$
C		
C		DATE $X/273$ 16 283 15 293 15 303 15 313 15 323 15 333 15
	*	343 15,353 15,363 15,373 15,383 15,393 15,403 15,413 15,
	*	423 15,433 15,443 15,453 15,463 15,473 15,483 15,493 15,
	*	503 15.513 15.523 15.533 15.543 15.553 15.563 15.573 15.
	*	583 15.593 15.603 15.613 15.623 15.633 15.643 15.647 27/
С		ВОЛ МАССИВА ЗНАЧЕНИЙ ЭНТРОПИИ
U		DATA $Y/9.1562.8.9009.8.6674.8.4537.8.2576.8.0771.7.9106.$
	*	7 7565 7 6135 7 4805 7 3564 7 2402 7 1310 7 0281 6 9307
	*	6 8381 6 7498 6 6652 6 5838 6 5052 6 4289 6 3546 6 2819
	*	6 2104 6 1397 6 0693 5 9989 5 9278 5 8555 5 7811 5 7038
	*	5 6224 5 5356 5 4414 5 3363 5 2149 5 0603 4 8031 4 4237/
		DO 6 T=1 39
6		WRTTE $(6 \ 4) (X(.T) \ Y(.T) \ .T=1 \ 39)$
Ŭ		WRITE $(3, 4)$ ($n(3)$, $1(3)$, $3(3)$
		$\frac{1}{1} \frac{1}{1} \frac{1}$
C		
C		DO 2 T=1.39
		XP(T, 1) = Y(T)
		$x_{P}(T_{2}) = x(T)/647$ 2665
		XP(T,3) = XP(T,2) **2
		XP(T, 4) = XP(T, 2) **3
		XP(T, 5) = XP(T, 2) **4
		XP(T, 6) = XP(T, 2) * 5
		XP(T,7) = XP(T,2) **6
		XP(I, 8) = XP(I, 2) * *7
		XP(T, 9) = XP(T, 2) **8
2		CONTINUE
_		DO 3 I=1.39
3		WRITE $(6,5)$ (XP(I,J), J=1,9)
4		FORMAT $(1X, 2E10, 3)$
5		FORMAT (1X, 9F8.5)
-		CALL ARRAY (2,39,9,39,9,XP,XP)

CALL REGRE (R8N, 39, 9, NS1, XP) STOP
END
<pre>subroutine corre(n,m,io,x,xbar,std,rx,r,b,d,t)</pre>
нахождение средних, стандартных отклонений и
корреляционной матрицы
dimension x(1), xbar(1), std(1), rx(1), r(1), b(1), d(1), t(1)
double precision xbar, std, rx, r, b, t, d
do 100 j=1,m
b(j)=0.
t(j)=0.
k = (m + m) / 2
do 102 i=1,k
r(i) = 0.
fn=n
1=0
do 108 j=1,m
do 107 i=1,n
1=1+1
t(i) = t(i) + x(1)
xbar(i)=t(i)
t(i)=t(i)/fn
do 115 $i=1.N$
ik=0
l=i-n
do 110 $i=1.m$
1=1+n
d(i) = x(1) - t(i)
b(i) = b(i) + d(i)
do 115 $i=1,m$
do 115 k=1, i
ik=ik+1
r(ik) = r(ik) + d(i) * d(k)
ik=0
do 210 $i=1.m$
xbar(i)=xbar(i)/fn
do 210 k=1, J
ik=ik+1
r(ik) = r(ik) - b(i) * b(k) / fn
ik=0
$d_0 220 i=1.m$
ik=ik+i
std(i) = sgrt(abs(r(ik)))
do 230 $i=1.m$
do 230 k=i.M
ik=i+(k*k-k)/2
l = m * (j - 1) + k
rx(1) = r(jk)
$2 = m \times (k - 1) + j$
rx(1) = r(ik)
++ \+/ -+ \J*/
387

		if(std(j)*std(k))225,222,225
222		r(jk)=0.
		Go to 230
225		r(jk)=r(jk)/(std(j)*std(k))
230		continue
		fn=sgrt(fn-1.)
		do 240 $i=1.m$
240		$dd = 10^{\circ} \text{ J}^{\circ} = 3.0^{\circ} \text{ J}^{\circ}$
240		l = -m
		$d_{0} = 250 i = 1 m$
		1 - 1 + m + 1
250		
250		D(1) = r X(1)
		return
~		ena
C		
-		subroutine order(m,r,ndep,k,isave,rx,ry)
C		
C		выбор зависимых и подмножества независимых
С		переменных из всего множества переменных
С		·····
		dimension r(1),isave(1),rx(1),ry(1)
		double precision r,rx,ry
		mm=0
		do 130 j=1,k
		12=isave(j)
		if(ndep-12) 122,123,123
122		l=ndep+(12*12-12)/2
		go to 125
123		l=12+(ndep*ndep-ndep)/2
125		ry(j)=r(l)
		do 130 i=1,k
		ll=isave(i)
		if(11-12) 127,128,128
127		1=11+(12*12-12)/2
		go to 129
128		1=12+(11*11-11)/2
129		mm=mm+1
130		rx(mm) = r(1)
		isave(k+1)=ndep
		return
		end
С		
-		<pre>subroutine multr(n,k,xbar,std,d,rx,rv,isave,b,sb,t,ans)</pre>
с		
с		вычисление коэффициентов регрессии b0,b1,b2bm
С		и различных доверительных оценок
C		
		dimension xbar(1), std(1), d(1), rx(1), ry(1), isave(1), b(1),
	*	sb(1),t(1),ans(1)
		double precision xbar, std, d, rx, ry, b, sb, t, ans, rm, bo, ssar.
	*	<pre>ssdr,sy,fn,fk,ssarm,ssdrm,f</pre>
		mm=k+1

	do 100 j=1,k
100	b(j) = 0.
	Do 110 $i=1,k$
	11 = k * (j - 1)
	do 110 $i=1.k$
	l=11+i
110	h(i) = h(i) + rv(i) + rv(1)
110	
	bb=0.
	do $120 1=1, K$
	rm=rm+D(1) * ry(1)
	1=1save(1)
	b(i)=b(i)*(std(11)/std(1))
120	bo=bo+b(i)*xbar(l)
	bo=xbar(11)-bo
	ssar=rm*d(11)
122	rm=sqrt(abs(rm))
	ssdr=d(l1)-ssar
	fn=n-k-1
	sy=ssdr/fn
	do 130 j=1,k
	11 = k * (j - 1) + j
	l=isave(j)
125	sb(j) = sqrt(abs(rx(11)/d(1)*sy))
130	t(i) = b(i) / sb(i)
135	sv = sgrt(abs(sv))
	fk=k
	ssarm=ssar/fk
	ssdrm=ssdr/fn
	f=ssarm/ssdrm
	r = ssarm/ssarm
	ans(1) = bb
	ans(2) - m
	ans(3) = sy
	ans(4) = ssar
	ans(5) = ik
	ans(6)=ssarm
	ans(7)=ssdr
	ans(8)=in
	ans(9)=ssdrm
	ans(10)=f
	return
	end
С	
	<pre>subroutine array(mode,i,j,n,m,s,d)</pre>
С	
С	преобразование массива одномерного в двумерный или обратно
С	
	dimension s(1),d(1)
	ni=n-i
	if(mode-1)100,100,120
100	ij=i*j+1
	nm=n*j+1

	do 110 k=1,j					
	nm=nm-ni					
	do 110 l=1,i					
	ij=ij-1					
	nm=nm-1					
110	d(nm) = s(ij)					
	go to 140					
120	j = 0					
120	 nm=0					
	d_{0} 130 k-1 i					
	do 100 k = 1, j					
	1]=1]+1					
125	s(ij)=d(nm)					
130	nm=nm+ni					
140	return					
	end					
С						
	<pre>subroutine minv(a,n,d,l,m)</pre>					
с						
с	обращение корреляционной матрицы подмножества					
с	выбранного подпрограммой ORDER					
с						
с	real l,m					
	dimension $a(1), l(1), m(1)$					
	double precision a,d,biga,hold,1,m					
	d=1.					
	nk=-n					
	do 80 $k=1.n$					
	nk=nk+n					
	1 (k) = k					
	r(k) - k					
	m(x) - x					
	$d_1 = 0$					
	do 20 = k, n					
	1z=n*(j-1)					
	do 20 i=k,n					
	ij=iz+i					
10	if(dabs(biga)-dabs(a(ij))) 15,20,20					
c10	if(abs(biga)-abs(a(ij))) 15,20,20					
15	biga=a(ij)					
	l(k)=i					
	m(k)=j					
20	continue					
	j=1(k)					
	if(j-k) 35,35,25					
25	ki=k-n					
	do 30 i=1,n					
	ki=ki+n					
	hold=-a(ki)					
	hold=-a(ki)					
	hold=-a(ki) ji=ki-k+j					

30	a(ji)=hold
35	i=m(k)
	if(i-k)45,45,38
38	jp=n*(i-1)
	do 40 j=1,n
	jk=nk+j
	ji=jp+j
	hold=-a(ik)
	a(ik) = a(ii)
40	a(ji)=hold
45	if(biga) 48.46.48
46	d=0
	a-o.
48	do 55 $i=1$ n
	if(i-k) = 50 = 55 = 50
50	$ik = nk \pm i$
50	1K - 11K + 1 (ik) - 2(ik) / (-biga)
55	a(IK)-a(IK)/(-DIga)
55	
	$do \ 65 \ 1=1, n$
	1K = 11K + 1
	noid=a(ik)
	1 = 1 - n
	do b = 1, n
	1 - 1 + 1
60	11(1-k)00,05,00
60	II(J-K)02,05,02
02	$K_{j=1}^{-1+K}$
65	$a(1) = no10^{a}(k) + a(1)$
65	
	$k_{j} = k - n$
	do 75 = 1, m
	$K_{j} = K_{j} + 11$
70	II(j-k)/(0,75,70)
70	a(kj) = a(kj) / biga
15	
~~	a(KK)=1./biga
80	continue
100	k=n
100	$\mathbf{K} = (\mathbf{K} - \mathbf{I})$
105	if(k) 150, 150, 105
105	1=1(K)
100	if(i-k) = 120, 120, 108
108	$jq=n^{*}(k-1)$
	jr=n*(1-1)
	do 110 j=1,n
	Jk=Jq+J
	j1=jr+j
110	a(jk)=-a(jı)
100	a(j1) = nold
120	J=m(k)
	ıf(j-k)100,100,125

125		ki=k-n do 130 i=1,n
		ki=ki+n
		hold=a(ki)
		ji=ki-k+j
		a(ki)=-a(ji)
130		a(ji)=hold
		go to 100
150		return
		end
С		
С		Программа множественной регрессии
С		
		<pre>subroutine regre(r8name,n,m,ns,x)</pre>
		dimension rx(900),r(465),ans(10),x(n,m),sb(30),t(30),w(30)
		dimension xbar(30),std(30),d(30),ry(30),isave(30),b(30)
		<pre>double precision xbar,std,rx,r,ry,d,sb,ans,sum,resi,</pre>
	*	osp,ospi,b,t,det
		real *8 r8name
2		format(′ множественная регрессия…′,
	*	a8//6x,' выбор',i3/)
3		format(6h номер,13x,5hстан-,8x,
	*	6һкорре-, 6х, 7һкоэффи-, 7х, 5һстан-,
	*	8х,6hвычис-/6h пере-,3х,7hсреднее,
	*	Зх, 7hдартное, 6х, 5hляция, 7х, 5hциент,
	*	9х,7hдартная,6х,6hленное/7h ечен,
	*	12x, 6hoткло-, 7x, 6hx от у,
	*	6х,7hperpec-,7х,6hoшибка,7х,6hзначе-/19х,
	*	5hнение,20х,3hсии,11х,8hкоэффиц,
	*	5х,6hние T/58х,9hperpecсии/)
4		format(1x,i4,1p2g12.5,2x,1p2g12.5,2x,1p2g12.5)
5		format(/6h зави-/6h симая/)
6		format(//12h пересечение,16x,
	*	f16.5/26h множественная корреляция,
	*	5x,f13.5/28h стандартная ошибка оценки,3x,f13.5//)
7		format(22x,28hанализ дисперсий регрессии/
	*	//19h исходная дисперсия,
	*	9х, 7hстепени, 8х, 5hсумма, 8х, 7hсреднее,
	*	8х,6hзначе-/28х,7hсвободы,
	*	8х,7һквадра-,6х,7һквадра-,8х,
-	*	6hние F/42x,4h тов,9x,8hтическое/)
8		format(24h относящаяся к регрессии,2x,15,2x,3f15.5/
•	*	24h отклонение от регрессии, $2x, 15, 2x, 2f15.2$)
9		format(6h cymma, 19x, 16, 8x, f11.2)
11		format($1h1, 20x, 1/h$ таблица остатков//)
12		format(' ',16,2e15.5,f16.7,f9.3)
13	-	format (48 и число карт отбора не указано в карте управления/
14	~	тэн задание закончено) format///b warnawa wasii-waraa waraa
⊥4 21		tormat(4011) матрица коэффициентов корреляции вырожденная)
Z I	*	101mat(/1211) mepecereme, $10x$, $11v$, $5a15$, $5(7a15, 5))$
0	~	коэффициент регрессии , ттк, эдтэ.э, (/дтэ.э))
C		

С	nresi=1 - печать таблицы остатков			
c	nresi=0 - без печати таблицы остатков			
с	ndep – номер зависимой переменной			
с	k - число независимых переменных			
с	isave(j)- номера независимых переменных			
с	ns – число карт отбора			
с				
	io=1			
	call corre(n.m.io.x.xbar.std.rx.r.d.b.t)			
C	9 проверка числа отобранных ланных			
•	if (ns) 108, 108, 109			
108	WRTTE (6 13)			
100	$a_{0} = \frac{1}{2} (0, 13)$			
100	$d_{0} = 200 \text{ j} = 1 \text{ ps}$			
109	WDTWF(6.2) = 200 i			
~				
C	10 CUNTERATE RAPTE OTOOPA			
	WRITE $(,,)$ BBEAUTE Hrest, hep, k, isave (j)			
	READ(5,*)nres1,ndep,K,(lsave(j),j=1,K)			
	call order (m,r,ndep,k,1save,rx,ry)			
	call minv(rx,k,det,b,t)			
С	12 проверка вырожденности обращеннои матрицы			
	if (det) 112, 110, 112			
110	WRITE(6,14)			
	go to 200			
112	<pre>call multr(n,k,xbar,std,d,rx,ry,isave,b,sb,t,ans)</pre>			
с 13 печать результатов				
	mm=k+1			
	WRITE(6,3)			
	do 115 j=1,k			
	l=isave(j)			
115	WRITE(6,4)l,xbar(l),std(l),ry(j),b(j),sb(j),t(j)			
	WRITE(6,5)			
	l=isave(mm)			
	WRITE($6, 4$)1, xbar(1), std(1)			
	WRITE(6,6)ans(1),ans(2),ans(3)			
	WRITE(6,7)			
	l=ans(8)			
	WRITE(6,8)k,ans(4),ans(6),ans(10),1,ans(7),ans(9)			
	l=n-1			
	sum=ans(4)+ans(7)			
	WRITE(6,9)1, sum			
	if(nresi)210,210,120			
120	WRITE(6,2)r8name,i			
	WRITE (6,11)			
	WRITE (6,31)			
	WRITE (6,30)			
30	format $(5x, ' \text{ HOM}', 5x, ' \hat{0} \text{ VHKLURR}', 6x, ' \hat{0} \text{ VHK.perp.}', 7x,$			
*	'абс.ошибка', 3x, 'отн.ошибка')			
	WRITE (6,31)			
31	format(1x, 66(1h-))			
210	mm=isave(k+1)			
-	ospi=0.			
	do 140 $ii=1.n$			
	/			

<pre>sum=ans(1)</pre>
do 130 j=1,k
l=isave(j)
sum=sum+x(ii,1)*b(j)
resi=x(ii,mm)-sum
IF(x(ii,mm).eq.0.) go to 140
osp=abs(resi*100./x(ii,mm))
ospi=ospi+osp
IF(nresi.eq.0) go to 140
WRITE(6,12)ii,x(ii,mm),sum,resi,osp
CONTINUE
WRITE(6,31)
OSPI=OSPI/N
WRITE(6,32)OSPI
FORMAT(2X, 'СРЕДНЯЯ ОТНОСИТЕЛЬНАЯ ОШИБКА=', F6.1)
continue
return
end

Результаты расчета по программе REGV.FOR

.273E+03	.916E+01
.283E+03	.890E+01
.293E+03	.867E+01
.303E+03	.845E+01
.313E+03	.826E+01
.323E+03	.808E+01
.333E+03	.791E+01
.343E+03	.776E+01
.353E+03	.761E+01
.363E+03	.748E+01
.373E+03	.736E+01
.383E+03	.724E+01
.393E+03	.713E+01
.403E+03	.703E+01
.413E+03	.693E+01
.423E+03	.684E+01
.433E+03	.675E+01
.443E+03	.667E+01
.453E+03	.658E+01
.463E+03	.651E+01
.473E+03	.643E+01
.483E+03	.635E+01
.493E+03	.628E+01
.503E+03	.621E+01
.513E+03	.614E+01
.523E+03	.607E+01
.533E+03	.600E+01
.543E+03	.593E+01
.553E+03	.586E+01
.563E+03	.578E+01
.573E+03	.570E+01
.583E+03	.562E+01
.593E+03	.554E+01
.603E+03	.544E+01
.613E+03	.534E+01
.623E+03	.521E+01

.633E+(.5061	E+01						
.643E+0	03 .4801	E+01						
.647E+0	03 .4421	E+01						
9.15620	. 42202	.17810	.07516	.03172	.01339	.00565	.00238	.00101
8.90090	.43746	.19137	.08371	.03662	.01602	.00701	.00307	.00134
8.66740	.45290	.20512	.09290	.04208	.01906	.00863	.00391	.00177
8.45370	.46835	.21936	.10274	.04812	.02254	.01055	.00494	.00232
8.25760	.48380	.23407	.11324	.05479	.02651	.01282	.00620	.00300
8.07710	.49925	.24925	.12444	.06213	.03102	.01549	.00773	.00386
7.91060	.51470	.26492	.13635	.07018	.03612	.01859	.00957	.00493
7.75650	.53015	.28106	.14901	.07900	.04188	.02220	.01177	.00624
7.61350	.54560	.29768	.16242	.08861	.04835	.02638	.01439	.00785
7.48050	.56105	.31478	.17661	.09909	.05559	.03119	.01750	.00982
7.35640	.57650	. 33235	.19160	.11046	.06368	.03671	.02116	.01220
7.24020	.59195	.35041	.20742	.12278	.07268	.04302	.02547	.01508
7.13100	.60740	.36894	.22409	.13611	.08268	.05022	.03050	.01853
7.02810	. 62285	.38794	.24163	.15050	.09374	.05839	.03637	.02265
6.93070	. 63830	.40743	.26006	.16600	.10596	.06763	.04317	.02755
6.83810	.65375	. 42739	.27940	.18266	.11941	.07807	.05104	.03336
6.74980	.66920	.44783	.29969	.20055	.13421	.08981	.06010	.04022
6.66520	.68465	.46874	. 32092	.21972	.15043	.10299	.07051	.04828
6.58380	.70010	.49014	.34314	.24023	.16819	.11775	.08244	.05771
6.50520	.71555	.51201	.36637	.26215	.18758	.13422	.09604	.06872
6.42890	.73100	.53436	.39061	.28554	.20873	.15258	.11153	.08153
6.35460	.74645	.55718	.41591	.31045	.23174	.17298	.12912	.09638
6.28190	.76190	.58049	.44227	.33696	.25673	.19560	.14903	.11354
6.21040	.77735	.60427	.46972	.36514	.28384	.22064	.17151	.13333
6.13970	.79280	. 62852	.49829	.39504	.31319	.24829	.19685	.15606
6.06930	.80825	.65326	. 52799	.42675	.34492	.27878	.22532	.18211
5.99890	.82369	.67847	.55885	.46033	.37917	.31232	.25726	.21190
5.92780	.83914	.70416	.59089	.49585	.41609	.34916	.29299	.24586
5.85550	.85459	.73033	.62414	.53338	.45583	.38955	.33290	.28450
5.78110	.87004	.75698	.65860	.57301	.49855	.43376	.37739	.32834
5.70380	.88549	.78410	.69431	.61481	.54441	.48207	.42687	.37799
5.62240	.90094	.81170	.73129	.65885	.59359	.53479	.48182	.43409
5.53560	.91639	.83977	.76956	.70522	.64626	.59223	.54271	.49734
5.44140	.93184	.86833	.80915	.75400	.70260	.65472	.61009	.56851
5.33630	.94729	.89736	.85006	.80526	.76281	.72261	.68452	.64844
5.21490	.96274	.92687	.89234	.85909	.82708	.79626	.76660	.73803
5.06030	.97819	.95686	.93599	.91558	.89561	.87607	.85697	.83828
4.80310	.99364	.98732	.98104	.97480	.96860	.96244	.95632	.95024
4.42370	1.00001	1.00001	1.00002	1.00002	1.00003	1.00003	1.00004	1.00004

множественная регрессия...

выбор... 1

номер		стан-	eue-	коэффи-	стан-	вычис-
пере-	среднее	дартное	ляция	циент	дартная	ленное
ечен		откло-	х от у	ечении-	ошибка	значе-
		нение		СИИ	коэффиц,	ние Т
					регрессии	
2	.71531511	.17575894	98455823	14589.584	50250.091	.29033945
3	.54177483	.25268537	96771567	-81410.352	263415.54	30905675
4	.43056316	.28479939	94444662	255412.60	779546.60	.32764250
5	.35573268	.29636732	91779550	-493901.71	1424842.0	34663613
6	.30304566	.29844999	89016586	603418.95	1647589.3	.36624355
7	.26441557	.29618294	86312975	-455148.21	1177450.9	38655387
8	.23507968	.29199782	83755095	193882.65	475663.11	.40760498
9	.21212718	.28706526	81380443	-35726.949	83198.274	42941936

зави-

симая

1 6.6536436 1.1677937

пересечение	-1112.13537
множественная корреляция	1.01072
стандартная ошибка оценки	.19292

анализ дисперсий регрессии

исходная дисперсия	степени свободы	сумма квадра- тов	среднее квадра- тическое	значе- ние F
относящаяся к регрессии	8	52.93874	6.61734	-177.79986
отклонение от регрессии	30	-1.12	04	
сумма	38	51.82		

множественная регрессия...

выбор... 1

2 таблица остатков

ном	 функция	функ.регр.	абс.ошибка	отн.ошибка
1	.91562E+01	.91754E+01	0191628	.209
2	.89009E+01	.89271E+01	0262240	.295
3	.86674E+01	.86906E+01	0232224	.268
4	.84537E+01	.84731E+01	0193979	.229
5	.82576E+01	.82757E+01	0180893	.219
6	.80771E+01	.80969E+01	0198114	.245
7	.79106E+01	.79290E+01	0183836	.232
8	.77565E+01	.77804E+01	0238967	.308
9	.76135E+01	.76401E+01	0266448	.350
10	.74805E+01	.75084E+01	0279110	.373
11	.73564E+01	.73872E+01	0308132	.419
12	.72402E+01	.72646E+01	0243653	. 337
13	.71310E+01	.71585E+01	0275231	.386
14	.70281E+01	.70456E+01	0175040	.249
15	.69307E+01	.69495E+01	0187627	.271
16	.68381E+01	.68589E+01	0207880	.304
17	.67498E+01	.67552E+01	0053679	.080
18	.66652E+01	.66854E+01	0201890	.303
19	.65838E+01	.65954E+01	0116424	.177
20	.65052E+01	.65170E+01	0118227	.182
21	.64289E+01	.64484E+01	0194685	.303
22	.63546E+01	.63822E+01	0276155	. 435
23	.62819E+01	.62986E+01	0166579	.265
24	.62104E+01	.62299E+01	0195416	.315
25	.61397E+01	.61610E+01	0212906	.347
26	.60693E+01	.60601E+01	.0091697	.151
27	.59989E+01	.60104E+01	0114876	.191
28	.59278E+01	.59143E+01	.0134681	.227
29	.58555E+01	.58381E+01	.0174473	.298
30	.57811E+01	.57526E+01	.0284718	. 492
31	.57038E+01	.56737E+01	.0300778	. 527
32	.56224E+01	.55792E+01	.0432025	.768
33	.55356E+01	.54973E+01	.0382904	. 692
34	.54414E+01	.54415E+01	0001364	.003

396
35	.53363E+01	.53091E+01	.0272210	.510	
36	.52149E+01	.51793E+01	.0356105	. 683	
37	.50603E+01	.49588E+01	.1014741	2.005	
38	.48031E+01	.46148E+01	.1882663	3.920	
39	.44237E+01	.44287E+01	0049795	.113	

СРЕДНЯЯ ОТНОСИТЕЛЬНАЯ ОШИБКА= .5

Приложение 5

С	TD12.FOR
С	ПРОГРАММА ДЛЯ РАСЧЕТА ТЕРМОЛИНАМИЧЕСКИХ СВОЙСТВ РАБОЧИХ ВЕШЕСТВ
C	НА ЛИНИИ НАСЫЛЕНИЯ (В ЧАСТНОСТИ – В12)
c	
U	COMMON/RW/OM R THE DER ROER/WE/AT DIAT DAT B CVO
	WDTTE $(* *)'$ BEFINTE TEMPEDATVOV HACHNEHNG (T) K'
	WRITE (",") DEEDNE TEMMERATYRY MACDILEMINA (1), R
	$\mathbf{READ}\left(\mathbf{S}, \mathbf{A}\right) \mathbf{I}$
	P=FPNAS(1)
	ROI=FROI(T)
	ROII=RORKV(T, P)
	DPDT=FDPDT(T,P)
	TPO=T*(1./ROII-1./ROI)*DPDT/1000.
	HII=H(T,ROII)/1000.+497.5
	HI = (HII - TPO)
	SII=FSII(T,ROII)/1000.+4.04
	SI=SII-TPO/T
С	НАХОЖДЕНИЕ ROI И ROII ПО УРАВНЕНИЮ СОСТОЯНИЯ
	RR=-R*T/P
	S=-B*B+RR*(B-AT)
	TT=RR*AT*B
	CALL RKYB(RR,S,TT,V1,V2,V3)
	ROIU=1./V2
	ROIIU=1./V1
С	ВЫХОЛНЫЕ ЛАННЫЕ
С	Т – ТЕМПЕРАТУРА, К: Р – ЛАВЛЕНИЕ, ПА
C	ВОТ. ВОТТ - ПЛОТНОСТЬ НАСЫШЕННОЙ ЖИЛКОСТИ И ПАРА. КТ/М^З
c	НТ НТТ-УПЕЛЬНАЯ ЭНТАЛЬПИЯ НАСЫШЕННОЙ ЖИЛКОСТИ И ПАРА КЛЖ/КГ
c	
c	
c	
c	DIC, ROIIO - IMOINOCIB HACEMENNON MULKOCIN N HAPA, DACCUMMANNUE TO VDABHENNO COCHOGUNG DELLUXA-KBOULA
	РАССЧИТАННЫЕ ПО УРАВНЕНИЮ СОСТОЯНИЯ РЕДЛИХА-КВОНТА
C	
	WRITE (6, *)' T, P, ROI, ROII, HI, HII, TPO, SI, SII'
_	WRITE $(6, 1)$ T, P, ROI, ROII, HI, HII, TPO, SI, SII
1	FORMAT (F6.1, 3E10.4, 3F8.3, 2F7.4)
_	WRITE(6,2)ROIU,ROIIU
2	FORMAT(1X, 'ROIU, ROIIU', 2X, 2E10.4)
	STOP
	END
С	
	FUNCTION H(T,RO)
С	

C C	ПОДПРОГРАММА ДЛЯ РАСЧЕТА УДЕЛЬНОЙ ЭНТАЛЬПИИ РЕАЛЬНОГО РАБОЧЕГО ТЕЛА (Н, ДЖ/КГ)
C	common/rw/om,r,tkr,pkr,rokr/wk/at,d1at,d2at,b,cv0/adr/d(6) TAU=T/TKR
	Z1=1./(1B*RO)
	Z2=1.+B*RO
	Z3=Z1-RO*AT/Z2
	CH=0.
-	DO 1 $I=1,6$
1	CH=CH+D(I)*TAU**I/I
	CH=CH*1000.
	H=T*(CH+R*(Z3+T*DIAT*ALOG(Z2)/B))
	RETURN
C	
c	<pre>function rorkv(t,p)</pre>
C	ВЫЧИСЛЕНИЕ ПЛОТНОСТИ ПО ИЗВЕСТНЫМ Т. Р
c	
-	<pre>common/rw/om,r,tkr,pkr,rokr/wk/at,d1at,d2at,b,cv0 data em/1000.0/</pre>
	call rkt(t)
	e=em
10	ro=p/(r*t)
10	rou=ro
	$e_0=e_{-1}$
	$a_{1-1} = b_{100}$
	a_{2-1} ,
	$z_{1} = p_{1} (100 1 c)$ $z_{2} = 1 /a_{1} - a_{1} + r_{0} (a_{2})$
	$z_{3=1}/(a_{1}*a_{1}) - a_{1}*ro_{0}*(1+a_{2})/a_{2}/a_{2}$
	ro=ro0*(1, -(z2-z1)/z3)
	e=abs(1, -ro0/ro)
	if(e-e0)10,30,30
30	rorkv=ro0
	return
	end
С	
	subroutine rkt(t)
С	
	common/rw/om,r,tkr,pkr,rokr/wk/at,dlat,d2at,b,cv0/adr/d(6)
	b=0.08664*r*tkr/pkr
	ak=4.934*b
	fk=1.57+1.62*om
	at=ak*(1.+fk*(tkr/t-1.))
	dlat=-fk*ak*tkr/t/t
	d2at=-d1at*2./t
	tau=t/tkr
С	РАСЧЕТ ИДЕАЛЬНО-ГАЗОВОЙ ТЕПЛОЕМКОСТИ (ДЖ/(КГ*К) cv0=d(1)

1		<pre>do 1 i=2,6 cv0=cv0+d(i)*tau**(i-1) cv0=cv0*1000. return end</pre>
С		
C C		ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НА ЛИНИИ НАСЬЩЕНИЯ
		<pre>common/rw/om,r,tkr,pkr,rokr/osv/pri,ppal,plbet,plalf,plro TAU=T/TKR PSIT=4.*(11./TAU)+(TAU-1.)*(0.2*(TAU+1.)*(TAU+1.)+0.5) PSIT=PSIT-5.3*ALOG(TAU) FPNAS=EXP(ALOG(PKR)+PRI*ALOG(TAU)+(PRI-4.+PPAL)*PSIT) RETURN END</pre>
С		
~		REAL FUNCTION FROI(T)
C		ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ НАСЫЩЕННОЙ ЖИДКОСТИ
с	*0.	COMMON/RW/OM,R,TKR,PKR,ROKR/OSV/PRI,PPAL,PLBET,PLALF,PLRO TAU=T/TKR A1=1.4+0.03*(ALOG(PKR/1000./(R*TKR**1.5))+PRI)- 2*PPAL+PLBET+PLALF A2=0.68-0.07*PRI-0.5*PPAL+PLALF STAU=(TAU-1.)*(0.2*(TAU+1.)*(TAU+1.)+0.5) ALROKR=0.088*(PRI-PPAL)+ALOG(PKR/1000./(R*TKR))+0.728+PLRO FROI=EXP(ALROKR+A1*(1TAU)**0.3333+A2*STAU)*1000. RETURN END
-		REAL FUNCTION FDPDT(T,P)
C C C		ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ ДАВЛЕНИЯ НАСЫЩЕНИЯ ПО ТЕМПЕРАТУРЕ
	5.	FDPDT=P(PRI/TAU+(PRI-4.+PPAL)*(4./TAU**2- 3/TAU+0.6*TAU**2+0.4*TAU+0.3))/TKR RETURN END
c c		REAL FUNCTION FSII (T, RO)
C C		COMMON/RW/OM,R,TKR,PKR,ROKR/ADR/D(6)/WK/AT,D1AT,D2AT,B,CV0 TAU=T/TKR AC=0. DO 1 I=1,5 AC=AC+D(I+1)*TAU*T/T
-		

```
FSII = (D(1) * ALOG(T) + AC) * 1000 - R* (ALOG(RO/(1 - B*RO)) - R)
    * (AT+T*D1AT) *ALOG(1.+B*RO)/B)
      RETURN
      END
С
       ______
      BLOCK DATA R12
      _____
С
      common/rw/om,r,tkr,pkr,rokr/osv/pri,ppal,plbet,plalf,plro
      common/adr/d(6)
С
                       _____
С
              - ФАКТОР АЦЕНТРИЧНОСТИ (СМ. Р. РИД, ДЖ. ПРАУСНИЦ,
          OM
С
     Т. ШЕРВУД. СВОЙСТВА ГАЗОВ И ЖИДКОСТЕЙ: СПРАВОЧНОЕ ПОСОБИЕ.
С
                     - Л.: ХИМИЯ, 1982.-592 С.)
С
              - ГАЗОВАЯ ПОСТОЯННАЯ, ДЖ/(КГ*К)
          R
С
          ТКК - КРИТИЧЕСКАЯ ТЕМПЕРАТУРА, К
С
          РКК - КРИТИЧЕСКОЕ ДАВЛЕНИЕ, ПА
          ROKR - КРИТИЧЕСКАЯ ПЛОТНОСТЬ, КГ/М^З
С
     PRI, PPAL, PLBET, PLALF, PLRO - ПАРАМЕТРЫ ДЛЯ ОПРЕДЕЛЕНИЯ
С
         ДАВЛЕНИЯ НАСЫЩЕНИЯ И ПЛОТНОСТИ НАСЫЩЕННОЙ ЖИДКОСТИ
С
С
          D – МАССИВ ДЛЯ РАСЧЕТА ИДЕАЛЬНО-ГАЗОВОЙ ТЕПЛОЕМКОСТИ
С
                         ПО УРАВНЕНИЮ ВИДА:
С
       Сvид=d0+d1*tau+d2*tau**2+d3*tau*3+d4*tau**4+d5*tau**5
С
                      ГДЕ
                           tau=t/tkr.
С
      (СМ. ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ВАЖНЕЙШИХ РАБОЧИХ ВЕЩЕСТВ
      ХОЛОДИЛЬНЫХ МАШИН. СБОРНИК ТРУДОВ ВНИХИ, 1976 Г. С. 7-12)
С
      _____
С
      DATA OM/0.176/, R/68.76/, TKR/385.15/, PKR/4119000./,
    * ROKR/579.1/, PRI/6.5741/, PPAL/-0.0913/, PLBET/0./,
      PLALF/-0.0317/, PLRO/0./, D/0.07744, 0.70715, 0.09197,
    *
      -0.51322,0.30238,-0.05766/
      END
С
      _____
      subroutine rkyb(r,s,t,v1,v2,v3)
      _____
С
     ПОДПРОГРАММА РЕШЕНИЯ КУБИЧЕСКОГО УРАВНЕНИЯ МЕТОДОМ КАРДАНО
С
С
      _____
      real *8 p,q,rb,d,sh,a1,a2,fi
      parameter (pi=3.141592654)
      p=s-r*r/3.0
      q=2.0*r*r*r/27.0-r*s/3.0+t
      if (q.lt.0.0) rb=-sqrt(abs(p)/3.0)
      if(q.gt.0.0) rb=+sqrt(abs(p)/3.0)
      d=p*p*p/27.0+q*q/4.0
      sh=q/(2.0*rb*rb*rb)
      a1=-2.0*rb
      a2=r/3.0
      if(p.gt.0.0) go to 1
      go to 2
1
      fi=dlog(sh+sqrt(sh*sh+1.0))
      v1=a1*sinh(fi/3.0)-a2
      v2=v1
      v3=v1
```

C	
	return end
	v3=v1
	v2=v1
	v1=a1*cosh(fi/3.0)-a2
3	fi=dlog(sh+sqrt(sh*sh-1.0))
	return
	v3=a1*cos((fi+4.0*pi)/3.0)-a2
	v2=a1*cos((fi+2.0*pi)/3.0)-a2
	v1=a1*cos(fi/3.0)-a2
	fi=acos(sh)
2	if(d.gt.0.0) go to 3
	return

С

Результаты расчета по программе TD12.FOR

T, P, ROI, ROII, HI, HII, TPO, SI, SII

273.0 .3068E+06 .1396E+04 .1766E+02 418.683 572.736 154.053 4.1896 4.7539

ROIU, ROIIU .1307E+04 .1766E+02

Приложение 6

С		PRDBB.for
С		ГОЛОВНАЯ ПРОГРАММА РАСЧЕТА ТЕРМОДИНАМИЧЕСКИХ ПРОЦЕССОВ
С		В ПАРОЖИДКОСТНОМ ДВИГАТЕЛЕ С ВНЕШНИМ СГОРАНИЕМ
С		
		IMPLICIT REAL(K-M)
		EXTERNAL DYDB
		DIMENSION Y(10),YO(10),KL(4),A(4),BI(6),C(6,9)
		COMMON/MAS/MS, MP, PMR, PMS/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5
		COMMON/VIV/MD, MC, V, X, W, P, XS/FI/FIOH, FIOK, FIBH, FIBK
		COMMON/PARAM/SBX,SBIX/HY/TCT,PBX,PBIX,ROBX,XBX,HBX
		COMMON/CF/C/TFS/A,BI
		COMMON/CFS/C1(9),C2(9),C3(9),C4(9)/RAS/KL,LK1,LK2
		DATA AM, BB, DX, HMIN, DXP/1.E-7, 0.03,
	*	2*1.E-5,0.0005/,NPR/11/,NS/6/,ICPR/2/
С		ВВОД ИСХОДНЫХ ДАННЫХ
		OPEN(10,FILE='DBB.DAT')
		READ (10,*) L,D,S,DM,OMS,MS,MP,MR,FIOH,FIOK,FIBH,FIBK,
	*	TCT, PBX, PBIX, XBX, KL, LK1, LK2, W1
		CLOSE (10)
С		ИСХОДНЫЕ ДАННЫЕ
С		L, D, S — ДЛИНА ШАТУНА, ДИАМЕТР И ХОД ПОРШНЯ, М
С		DM – ДИАМЕТР МАХОВИКА, М
С		ОМЅ - СКОРОСТЬ ВРАЩЕНИЯ КОЛЕНЧАТОГО ВАЛА, РАД/С
С		MS, MP, MR - МАССА ШАТУНА, ПОРШНЯ, МАХОВИКА, КГ
С		FIOH, FIOK — УГЛЫ НАЧАЛА И ОКОНЧАНИЯ ВЫПУСКА, РАД
С		FIBH, FIBK — УГЛЫ НАЧАЛА И ОКОНЧАНИЯ ВПУСКА, РАД
С		ТСТ – ТЕМПЕРАТУРА СТЕНКИ ДВИГАТЕЛЯ, К

С		РВХ – ДАВЛЕНИЕ ПАРА НА ВХОДЕ В ДВИГАТЕЛЬ, ПА
С		ХВХ – СТЕПЕНЬ СУХОСТИ ПАРА НА ВХОДЕ В ДВИГАТЕЛЬ
С		РВІХ - ЛАВЛЕНИЕ СРЕЛЫ НА ВЫХОЛЕ, ПА
C		KI_{1} KI_ (2) – ПИЗМЕТР СЕППА И ХОП ВПУСКНОГО КПАПАНА М
c		KI(2) $KI(4)$ – MAMERD CELLA M VOL BURVCKHOLO KUNDALA M
	7.71	$\operatorname{KL}(3)$, $\operatorname{KL}(4) = \operatorname{MAMETP}$ CEDIA II AOD BEIISCHOTO KIAIANA, M
C	WT	- ОБЪЕМ ЦИЛИНДРА ДВИГАТЕЛЯ ПРИ ПОЛОЖЕНИИ ПОРШНЯ В ВМТ, МЗ
С		LK1, LK2 — ДЛИНА КАНАЛОВ НА ВПУСКЕ И ВЫПУСКЕ, М
С		
		DO 10 J=1,9
		C1(J) = C(1, J)
		C2(J) = C(2, J)
		(3, 1) = (3, 1)
10		CA(T) = C(A, T)
10		$\frac{C_4(0) - C(4, 0)}{C_4(1) - C(4, 0)} = \frac{C_4(1) - C_4(1)}{C_4(1) - C_4(1)} = \frac{C_4(1) - C_4(1)}{C_4(1) - $
		WRIIE(0, II)(CI(0), CZ(0), CS(0), C4(0), 0-I, 9)
11		FORMAT(1X, 4E10.3)
С		ВЫЧИСЛЕНИЕ КОНСТАНТ
		TBX=TPP(PBX/1.E6,BI)
		HBX=H (TBX, XBX)
		ROBX=1./YY (C1,9,TBX)
		LAM=0.5*S/L
		SP=0.787*D*D
		SX=W1/SP
		VH=9D*9
		$\sqrt{11-5} = \sqrt{5}$
		PMS=MS*L*L/12.
		S5=0.5*S
		VH5=0.5*VH
		LAM5=0.5*LAM
		SBX=PLO(KL(1),KL(2))
		SBIX=PLO(KL(3),KL(4))
		IC=0
С		УАДАНИЕ НАЧАЛЬНЫХ УСЛОВИЙ
70		ROII=PBX/YY(C2, 9, TBX)/1.E5
		Y(1) = BOTT * XBX + BOBX * (1 - XBX)
		Y(2) = TBY
		I(3) = OMS
		Y(4) = 0.
		Y(5)=0.
		Y(6)=0.
		DPR=6.283/Y(3)/NPR
		T=0.
		TP=0 .
		TN=T
		TPR=0
		WRTTE (6.8)
		WRITE $(0, 5)$
~		WKIIE (0,8)
C		ОПИСАНИЕ ВЫХОДНЫХ ПАРАМЕТРОВ
C		т, х, v – время, (C), путь, (M) и скорость поршня, (M/C)
C		W — ОБЬЕМ ЦИЛИНДРА ДВИГАТЕЛЯ, (МЗ)
С		Y(3) — УГЛОВАЯ СКОРОСТЬ ВРАЩЕНИЯ ВАЛА, (РАД/С)

```
С
        Y(4) - УГОЛ ПОВОРОТА КРИВОШИПА, (РАД)
С
        MC, MD - МОМЕНТЫ: СОПРОТИВЛЕНИЯ, ДВИЖУЩИЙ, (H*M)
С
        Р – ДАВЛЕНИЕ ПАРА В ЦИЛИНДРЕ, (ПА)
С
        Y(1),Y(2)-ПЛОТНОСТЬ, (КГ/МЗ)И ТЕМПЕРАТУРА ПАРОЖИДКОСТИ, (К)
        XS - СТЕПЕНЬ СУХОСТИ ПАРА В ЦИЛИНДРЕ ДВИГАТЕЛЯ
С
С
        PRD - РАСХОД ПАРОЖИДКОСТИ, (КГ/С)
С
        DVN - ИНДИКАТОРНАЯ МОЩНОСТЬ ДВИГАТЕЛЯ, (ВТ)
С
        IC - НОМЕР РАССЧИТЫВАЕМОГО ЦИКЛА
С
         _____
7
        CALL SOLDI (NS, AM, BB, T, Y, DYDB, DX, TO, YO, TP, HMIN, NMIN)
        IF(T.LT.TPR) GO TO 4
        WRITE (6,2)T,Y(4),X,V,W,MC,MD,Y(3),Y(1),Y(2),P,XS
        TPR=TPR+DPR
4
        TP=TP+DXP
        T=TO
        DO 6 I=1,NS
5
        Y(I) = YO(I)
        IF(Y(4).LT.6.283) GO TO 7
        IC=IC+1
        Y(4) = Y(4) - 6.283
        TK=T-TN
        PRD=Y(5)/TK
        DVN=Y(6)/TK
        WRITE(6,8)
        WRITE (6,3) PRD, DVN, IC
        IF(IC.LE.ICPR) GO TO 70
2
        FORMAT (F7.4,2F6.3,F5.1,E10.3,3F6.1,F7.1,F5.0,E10.3,F5.2)
3
        FORMAT (15X, 'PRD=', E10.3, 2X, 'DVN=', E10.3, 2X, 'IC=', I3)
        FORMAT (3X, 'T', 5X, 'FI', 5X, 'X', 5X, 'V', 6X, 'W', 7X, 'MC',
5
       * 4X, 'MD', 3X, 'OM', 5X, 'RO', 3X, 'TT', 7X, 'P', 6X, 'XS')
8
        FORMAT(1X, 79(1H-))
        STOP
        END
С
         _____
        SUBROUTINE DYDB(XT,Y,DY,NS)
         _____
С
С
         ВЫЧИСЛЕНИЕ ПРАВЫХ ЧАСТЕЙ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ
С
             УРАВНЕНИЙ ПРОЦЕССОВ В ПАРОЖИДКОСТНОМ ДВИГАТЕЛЕ
         _____
С
        IMPLICIT REAL(K-M)
        DIMENSION Y(NS), DY(NS), A(4), BI(6), KL(4)
        COMMON/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5/TFS/A, BI
        COMMON/FI/FIOH, FIOK, FIBH, FIBK/VIV/MD, MC, V, X, W, P, XS
        COMMON/PARAM/SBX, SBIX/HY/TCT, PBX, PBIX, ROBX, XBX, HBX
        COMMON/CFS/C1(9),C2(9),C3(9),C4(9)/RAS/KL,LK1,LK2
        ROI=1./YY(C1,9,Y(2))
        P=PT(Y(2),A)
        ROII = P/YY(C2, 9, Y(2))/1.E5
        XS = (Y(1) - ROI) / (ROII - ROI)
        CALL WDW(Y(4), Y(3), W, DW, X, V, MIN, ST)
        IF(XS.GT.0.) GO TO 5
        XS=0.
        W=IV
```

	GO TO 6
5	VI=W*(ROII-Y(1))/(ROII-ROI)
6	CONTINUE
	IF(FIBH.LT.Y(4).AND.Y(4).LT.FIBK) GO TO 1
	G1=0.
1	C1 = CDC(DRY D DORY IK1 KI(1) KI(2)) + SRY
T	u1 - upv
0	$\mathbf{H} = \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H}$
Z	IF(FIOH, LT, I(4), AND, I(4), LT, FIOK) GO TO 5
_	GO TO 4
3	G2=GPG(P,PBIX,ROI,LK2,KL(3),KL(4))*SBIX
	H2=H(Y(2),XS)
4	CONTINUE
	CALL ALFA(Y(2),TCT,P,W,VI,ST,ALB)
	QB=ALB*ST*(TCT-Y(2))
	DY(1) = (G1-G2-Y(1)*DW)/W
	CALL PARH(Y(2),G1,G2,H1,H2,QB,DW,W,VI,DY(2))
	CALL MCMD (P, PBIX, Y(4), MD, MC)
	DY(3) = (MD - MC) / MTN
	DY(4) = Y(3)
	$DY(5) = C^2$
	$D_{1}(3) = 32$
~	END
C	
0	REAL FUNCTION GPG(P1,P2,RO,DK,DS,H)
С	REAL FUNCTION GPG(P1,P2,R0,DK,DS,H)
C C	REAL FUNCTION GPG(P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ
с с с	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ
с с с	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ – ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА
с с с с	REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С
с с с с с	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ
с с с с с с	 REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ – ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО – ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ Р1, P2, RO – ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С
с с с с с с	 REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ Р1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ
с с с с с с	 REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ – ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО – ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ Р1, P2, RO – ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H – ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА
с с с с с с с с	 REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ – ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО – ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO – ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H – ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА
с с с с с с с	 REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5
с с с с с с с	 REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS
с с с с с с с	 REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМL, РМО - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1
с с с с с с с с	 REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A1.GE.1.) PM=0.8
с с с с с с с	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A1.GE.1.) PM=0.8 A=DK/DS
с с с с с с с	 REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ РМ - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА РМ - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A1.GE.1.) PM=0.8 A=DK/DS IF (A.LE.1.6) GO TO 1
с с с с с с с	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С парооБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С плотноСть DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A1.GE.1.) PM=0.8 A=DK/DS IF (A.LE.1.6) GO TO 1 PML: PME = 1 1*A**(-0.25)
с с с с с с с	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A1.GE.1.) PM=0.8 A=DK/DS IF (A.LE.1.6) GO TO 1 PML=1.1*A**(-0.25) CO TO 3
	REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА
	REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A1.GE.1.) PM=0.8 A=DK/DS IF (A.LE.1.6) GO TO 1 PML=1.1*A**(-0.25) GO TO 3 PML=1. EVALUATE: PMENDE PACKOR P
C C C C C C C C C C C C C C C C C C C	REAL FUNCTION GPG (P1, P2, RO, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С парооБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С плотность DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A1.GE.1.) PM=0.8 A=DK/DS IF (A.LE.1.6) GO TO 1 PML=1.1*A**(-0.25) GO TO 3 PML=1. IF (A.LE.0.6) GO TO 2 DX0=1.0.2016(1.002)
C C C C C C C 1 3	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С парооБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С плотность DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A.LE.1.6) GO TO 1 PML=1.1*A**(-0.25) GO TO 3 PML=1. IF (A.LE.0.6) GO TO 2 PMO=10.39*(1P2/P1)**0.63
C C C C C C C C C C C C C C C C C C C	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С пАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С плотность DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A.LE.1.6) GO TO 1 PML=1.1*A** (-0.25) GO TO 3 PML=1. IF (A.LE.0.6) GO TO 2 PMO=10.39* (1P2/P1)**0.63 GO TO 4
C C C C C C C C C C C C C C C C C C C	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА IF (P2.GE.P1) GO TO 5 A1=H/DS PM=0.8-0.6*A1 IF (A.LE.1.6) GO TO 1 PML=1.1*A**(-0.25) GO TO 3 PML=1. IF (A.LE.0.6) GO TO 2 PMO=10.39*(1P2/P1)**0.63 GO TO 4 PMO=1.
C C C C C C C C C C C C C C C C C C C	REAL FUNCTION GPG (P1, P2, R0, DK, DS, H) ОПРЕДЕЛЕНИЕ РАСХОДА ПАРОЖИДКОСТИ PM - ГИДРАВЛИЧЕСКИЙ КОЭФФИЦИЕНТ РАСХОДА PML, PMO - ПОПРАВКИ УЧИТЫВАЮЩИЕ ДЛИНУ КАНАЛА И С ПАРООБРАЗОВАНИЕ P1, P2, RO - ДАВЛЕНИЕ ПАРОЖИДКОСТИ НА ВХОДЕ И ВЫХОДЕ, С ПЛОТНОСТЬ DK, DS, H - ДЛИНА КАНАЛА, ДИАМЕТР СЕДЛА, ХОД КЛАПАНА

5	GPG=0.
6	RETURN
	END
С	
	REAL FUNCTION PLO(A,B)
С	
С	ОПРЕДЕЛЕНИЕ ПЛОЩАДЕИ ПРОХОДНЫХ СЕЧЕНИИ КЛАПАНОВ
С	
	S1=3.1415*A
	S2=S1*A/4
	S3=S1*B
	OT=S2/S3
	IF(OT.GT.I.) GO TO I
1	
2 T	PLO=55
Z	REIORN END
C	
C	SUBPOUTTINE MOMD (D DT ET MD MC)
C	
C	РАСЧЕТ МОМЕНТОВ: ЛВИЖУШЕТО (МД) И СОПРОТИВЛЕНИЯ (МС), Н*М
C	
•	IMPLICIT REAL(L-M)
	COMMON/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5
	ALFA=ASIN(LAM*SIN(FI))
	MD=SP*(P-PI)*S5*SIN(FI+ALFA)/COS(ALFA)
	MC=MD
	RETURN
	END
С	
	SUBROUTINE WDW(FI,OM,W,DW,X,V,MIN,ST)
С	
С	ПОДПРОГРАММА РАСЧЕТА ТЕКУЩЕГО ОБЪЕМА (W, M3) ЦИЛИНДРА
С	ДВИГАТЕЛЯ И СКОРОСТИ ЕГО ИЗМЕНЕНИЯ (DW, M3/C); ПУТИ X,M),
С	СКОРОСТИ (V, M/C) ПОРШНЯ,ПЛОЩАДИ ТЕПЛООТДАЮЩЕЙ ПОВЕРХНОСТИ
С	(ST, M2), МОМЕНТА ИНЕРЦИИ ДВИЖУЩИХСЯ МАСС (MIN, КГ*M2).
С	
	IMPLICIT REAL (L-M)
	COMMON/MAS/MS, MP, PMR, PMS/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5
	W=W1+VH5*(1COS(FI)+LAM5*SIN(FI)*SIN(FI))
	DW=VH5*OM*(SIN(FI)+LAM5*SIN(2.*FI))
	X = (W - W1) / SP
	V=DW/SP
	ST= (SX+X) *PD+2.*SP
	VCX=S5*OM*(SIN(FI)+LAM*SIN(2.*FI)/4.)
	VCY=S5*OM*COS(FI)/2.
	VC=SQRT (VCX*VCX+VCY*VCY)
	OMS=OM*LAM*COS(FI)
	MIN=PMK+ (MS*VC*VC+PMS*OMS*OMS+MP*V*V) / (OM*OM)
	KETUKN
C	
<u> </u>	

0	<pre>subroutine soldi(jm,a,b,xi,yi,rp,hio,xo,yo,xp,hmin,min)</pre>
C	<pre>real k,max dimension y(50),d1(50),d2(50),yi(50),yo(50) h=hio hc=h x=xi min=0</pre>
	$\frac{1}{10}$
10	$v_0(i) = v_1(i)$
20	$\max = 0$
	do 25 $i=1$, im
25	$\mathbf{v}(\mathbf{j}) = \mathbf{v}\mathbf{o}(\mathbf{j})$
	call rp(x,y,d1,jm)
	do 30 j=1,jm
	d1(j) = h * d1(j)
30	y(j) = y(j) + d1(j)
	call rp(x+h,y,d2,jm)
	do 40 j=1,jm
	d2(j)=0.5*(d1(j)+h*d2(j))
40	y(j)=y(j)-d1(j)+0.5*d2(j)
	call $rp(x+0.5*h,y,d1,jm)$
	do 60 j=1,jm
	d1(j) = (2.*h*d1(j)+d2(j))/3.
	Y(j) = y(j) - 0.5 + d2(j)
	k=abs(d1(j)-d2(j))/(a+b*abs(d1(j)))
	if(k-max) 60, 50, 50
50	max=k
60	Continue
CF	11 (max-1.25) 80, 80, 65
65 70	11 (mm) / 0, / 0, 100
/0	n=n/sqrt(max)
75	11(n-mm(n)/5,20,20)
75	11-1111111 mm-1
	$\frac{1111-1}{111-1}$
	m = 1
80	if(max=0.5)85.100.100
85	if(max=0.0001)90.90.95
90	max=0.0001
95	hc=h/sgrt(sgrt(max))
100	do 110 $i=1$ im
110	v(i) = v(i) + d1(i)
	mm=0
	x=x+h
	h=hc
	do 115 j=1,jm
115	yo(j)=y(j)
	if(x-xp)120,140,140

h=xp-x+1.E-25 go to 20 140 xo=x return end c FUNCTION H(T,X) C COMMON/CFS/C1(9),C2(9),C3(9),C4(9) H=(YY(C4,9,T)*X+(1X)*YY(C3,9,T))*1.E3 RETURN END C 	120 130	if(x+h-xp)20,20,130 hio=h
<pre>140</pre>		h=xp-x+1.E-25
return end 	140	xo=x
end 		return
C		end
C OIPERENTENT A(1,7) C ALL ROUR(T,ROI,ROII,UI,UI,RT,P) A1=ROI+ROII+RT/A1 C ALL ROUR(T,ROI,ROII,UI,DRI,DRII) A2=(ROI+RUI+RT/A1 C ALL DUR(T,DU,DUI,DRI,DRII) A3=ROI+ROII+RT/A1 C ALL DUR(T,DU,DUI,DRI,DRII) A4=DRI*(A2+UI)+ROI+TDUI A5=DRII*(A2+UI)+ROI+TDUI DY=(G1*(H1+A2)-G2*(H2+A2)+QB+DW*A3)/(VI*A4+(W-VI)*A5) RETURN C	С	
C ONFEQERENCE YQERLENG ЭНТАЛЬПИИ C	с	
COMMON/CFS/C1(9),C2(9),C3(9),C4(9) H=(YY(C4,9,T)*X+(1X)*YY(C3,9,T))*1.E3 RETURN END C 	C C	ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ ЭНТАЛЬПИИ
C		COMMON/CFS/C1(9),C2(9),C3(9),C4(9) H=(YY(C4,9,T)*X+(1X)*YY(C3,9,T))*1.E3 RETURN END
C	С	SUBROUTINE PARH(T,G1,G2,H1,H2,QB,DW,W,VI,DY)
C CALL ROUR (T, ROI, ROII, UI, UII, RT, P) A1=ROII-ROI A2= (ROI*UI-ROII*UII)/A1 A3=ROI*ROII*RT/A1 CALL DURT (T, DUI, DUI, DRI, DRII) A4=DRI* (A2+UI) +ROI*DUI A5=DRII* (A2+UI) +ROI*DUI DY= (G1* (H1+A2) -G2* (H2+A2) +QB+DW*A3) / (VI*A4+ (W-VI)*A5) RETURN END C	C C	ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ dT/dt
A5=DRII* (A2+UII) +ROII*DUII DY= (G1* (H1+A2) -G2* (H2+A2) +QB+DW*A3) / (VI*A4+ (W-VI)*A5) RETURN END C SUBROUTINE ROUR (T,ROI,ROII,UI,UII,RT,P) C OIIPEДЕЛЕНИЕ RO', RO", U',U",R C DIMENSION A(4),BI(6) COMMON/CFS/C1(9),C2(9),C3(9),C4(9)/TFS/A,BI ROI=1./YY(C1,9,T) P=PT(T,A) ROII=P/YY(C2,9,T)/1.E5 HI=YY(C3,9,T)*1.E3 UI=HI-P/ROI HII=YY(C4,9,T)*1.E3 UI=HII-P/ROII RT=HII-HI RETURN END C 		CALL ROUR(T,ROI,ROII,UI,UII,RT,P) A1=ROII-ROI A2=(ROI*UI-ROII*UII)/A1 A3=ROI*ROII*RT/A1 CALL DURT(T,DUI,DUII,DRI,DRII) A4=DRI*(A2+UI)+ROI*DUI
SUBROUTINE ROUR (T, ROI, ROII, UI, UII, RT, P) C OIIPEZEJEHNE RO', RO", U', U", R C DIMENSION A (4), BI (6) COMMON/CFS/C1 (9), C2 (9), C3 (9), C4 (9) /TFS/A, BI ROI=1./YY (C1,9,T) P=PT (T,A) ROII=P/YY (C2,9,T) /1.E5 HI=YY (C3,9,T)*1.E3 UI=HI-P/ROI HI=YY (C4,9,T)*1.E3 UII=HII-P/ROII RT=HII-HI RETURN END C OIIPEZEJEHNE UPON3BOZHHAX RO', RO", U', U" IIO TEMILEPATYPE	C	A5=DRII*(A2+UII)+ROII*DUII DY=(G1*(H1+A2)-G2*(H2+A2)+QB+DW*A3)/(VI*A4+(W-VI)*A5) RETURN END
С ОПРЕДЕЛЕНИЕ RO', RO", U', U", R C DIMENSION A (4), BI (6) COMMON/CFS/C1 (9), C2 (9), C3 (9), C4 (9)/TFS/A, BI ROI=1./YY (C1,9,T) P=PT (T,A) ROII=P/YY (C2,9,T)/1.E5 HI=YY (C3,9,T)*1.E3 UI=HI-P/ROI HII=YY (C4,9,T)*1.E3 UII=HII-P/ROII RT=HII-HI RETURN END C	c	SUBROUTINE ROUR (T, ROI, ROII, UI, UII, RT, P)
DIMENSION A(4), BI(6) COMMON/CFS/C1(9),C2(9),C3(9),C4(9)/TFS/A,BI ROI=1./YY(C1,9,T) P=PT(T,A) ROII=P/YY(C2,9,T)/1.E5 HI=YY(C3,9,T)*1.E3 UI=HI-P/ROI HII=YY(C4,9,T)*1.E3 UII=HII-P/ROII RT=HII-HI RETURN END C 	c c	ОПРЕДЕЛЕНИЕ RO', RO",U',U",R
C SUBROUTINE DURT (T, DUI, DUII, DRI, DRII) C	2	DIMENSION A(4), BI(6) COMMON/CFS/C1(9),C2(9),C3(9),C4(9)/TFS/A,BI ROI=1./YY(C1,9,T) P=PT(T,A) ROII=P/YY(C2,9,T)/1.E5 HI=YY(C3,9,T)*1.E3 UI=HI-P/ROI HII=YY(C4,9,T)*1.E3 UII=HII-P/ROII RT=HII-HI RETURN END
СС ОПРЕДЕЛЕНИЕ ПРОИЗВОДНЫХ RO', RO", U', U" ПО ТЕМПЕРАТУРЕ С	C	SUBROUTINE DURT(T,DUI,DUII,DRI,DRII)
С ОПРЕДЕЛЕНИЕ ПРОИЗВОДНЫХ КО', КО'', U'', U'' ПО ТЕМПЕРАТУРЕ С	C	
	C	ONFERENTIE NEONSBORING RO., RO., O., O. NO. TEMILEPATYPE

	DIMENSION TP(2),A(4),BI(6),ROI(2),ROII(2),UI(2),UII(2) COMMON/CFS/C1(9),C2(9),C3(9),C4(9)/TFS/A,BI
	TP(1) = T - 1.
	P(2) = 1 + 1. DO 1 T=1 2
	BOT $(T) = 1 / YY (C1, 9, TP(T))$
	P=PT(TP(I), A)
	ROII(I) = P/YY(C2, 9, TP(I))/1.E5
	UI(I) = YY(C3, 9, TP(I)) * 1.E3 - P/ROI(I)
1	UII(I) = YY(C4, 9, TP(I)) * 1.E3 - P/ROII(I)
	DRI = (ROI(2) - ROI(1))/2.
	DRII=(ROII(2)-ROII(1))/2.
	DUI=(UI(2)-UI(1))/2.
	DUII = (UII(2) - UII(1))/2.
	RETURN
	END
С	
~	FUNCTION YY (A, N, T)
c	ПОДПРОГРАММА РАСЧЕТА ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ ВОДЯНОГО ПАРА
С	
	DIMENSION A(N)
	YY=A(1)
	DO 1 I=2,N
1	YY=YY+A(I)*(T/647.2665)**(I-1)
	RETURN
~	END
C	
с	
C	ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НАСЫЩЕНИЯ р(Ts)
С	
	DIMENSION A(4)
	PT=(EXP(A(1)*1000./T+A(2)+A(3)*T/1000.+A(4)*ALOG(T)))*1.E6
	RETURN
	END
С	
~	FUNCTION TPP(P,BI)
C	
C	ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ НАСЫЩЕНИЯ Т(ps)
C	DIMENSION BI(6)
	B=BT(1)
	D = D = (1)
1	B = B + BT (T) * ATOG (P) * * (T - 1)
-	TPP=1000 /B
	BETURN
	END
С	
	SUBROUTINE ALFA(T,TC,P,W,VI,ST,ALB)
С	
С	ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТЕПЛООТДАЧИ ПРИ ТЕПЛООБМЕНЕ

2		
	PS	=P/1.E5
2		КОНВЕКТИВНЫЙ ТЕПЛООБМЕН
	DT	=T-TC
	AL	B=39.3*PS**0.54*DT**2/(10.0045*PS)**3
	IF	(T.LT.TC.OR.VI.EQ.W) GO TO 1
2		ЛУЧЕВОЙ ТЕПЛООБМЕН (СМ. ОСНОВЫ ТЕПЛОПЕРЕДАЧИ
3		ИСАЧЕНКО, ОСИПОВА, М.: 1981Г.)
	т1	T /100.
	т2	=TC/100.
	DL	=3.6*(W-VI)/ST
	AL	L=4.07*PS**0.8*DL**0.6*(T1**3-T2**3)/DT
	GO	то 2
	AL	L=0.
	AL	B=ALB+ALL
	RE	TURN
	EN	D
		BLOCK DATA TF
	ИС	ХОДНЫЕ ДАННЫЕ ПО ТЕРМОДИНАМИЧЕСКИМ СВОЙСТВАМ РАБОЧЕГО ТЕЛА
		DIMENSION $C(6,9), A(4), BI(6)$
		COMMON/CF/C/TFS/A,BI
		DATA C/0.10550687,-0.113877427E3,0.215918638E5,
	*	-0.24509085E5,
	*	0.99827606E1,0.271669973E2,-0.133737977E1,0.145614699E4,
	*	-0.294899186E6,0.343138528E6,-0.216409052E3,0.672212793E1,
	*	0.742997633E1,-0.802294912E4,0.168533091E7,-0.191174351E7,
	*	0.144031447E4,-0.747510787E3,-0.234015993E2,0.250397989E5,
	*	-0.539468966E7,0.605373655E7,-0.494997083E4,0.358212673E4,
	*	0.45690972E2,-0.48344913E5,0.106814779E8,-0.1188622165E8,
	*	0.102815156E5,-0.851820171E4,-0.566217816E2,0.59168416E5,
	*	-0.13404054E8,0.148342520E8,-0.13395892E5,0.119151822E5,
	*	0.434983366E2,-0.448590775E5,0.104168615E8,-0.115037973E8,
	*	0.107466052E5,-0.999463182E4,-0.189459451E2,0.192719313E5,
	*	-0.4586357E7,0.507143921E7,-0.486608948E4,0.46773083E4,
	*	0.358401536E1,-0.359442541E4,0.87663609E6,-0.973927618E6,
	*	0.954059921E3,-0.943313412E3/
		DATA BI/2.20732,-2.117187E-1,-2.166605E-3,1.619692E-4,
	*	4.8998E-5,3.691725E-6/
		DATA A/-7.821541,82.86568,10.28003,-11.48776/
		END

Исходные данные

					409						
L	D	S	DM	OMS	MS	MP	MR	FIOH	FIOK	FIBH	FIBK
400.	40E+5	8.E+5	0.2	0.015	0.01	0.0	10.	005 0	.01	0.01	3.E-5
0.092	0.068	0.054	0.1	314.	0.5	0.2	2.0	3.14	5.8	0.25	1.25

Результаты расчета по программе PRDBB.for

	.106E-	+00	11	4E+03	.216E+	05	245E+	·05				
	134E-	+01 .	14	6E+04	295E+	•06 .	343E+	06				
	743E-	+01 -	80	2E+04	169E+	07 -	191E+	.07				
		.0 <u>.</u> .	25		- 52021	07.		07				
	2346-	-UZ .	25		539ET		110-	.07				
	.45/E-	+02	48.	3E+05	.10/些+	-08	TTAE+	.08				
	566E-	+02 .	592	2E+05	134E+	·08 .	148E+	·08				
	.435E-	+02	44	9E+05	.104E+	-08	115E+	·08				
	189E-	+02 .	19	3E+05	459E+	•07 .	507E+	·07				
	.358E-	+01	35	9E+04	.877E+	06	974E+	·06				
_												
	T F	I X	C	v	W	MC	MD	OM	RO	тт	P	XS
-												
	.0000 .		000	.0	.300E-04	. 6	. 6	314.0	643.2	523.	.39/E+0/	.20
	.0020 .		109	7.0	.025E-04	89.8 75 5	89.8 75 5	314.0	425.7	484.	1548+07	. 50
	.0040 1.	250 .(707 (20	0.0 7 4	.125E-03	15.5	15.5	314.0	200.0 102 E	4/8.	.134E+07	. /4
	.0055 1.	121 .U	120	/.4	.1/UE-U3	32.4	32.4	314.0	120.0	403.	.1186+07	.81
	.0076 2.	017 .U	150	4.0	.211E-03	/.Z	1.2	314.0	100 7	452.	.9556+06	.85
	.0093 2.	91/ .(154	1.0	.226E-03	. /	. /	314.0	128.7	447.	.864E+06	.86
	.0110 3.	454 .0	152	-2.7	.220E-03	.5	.5	314.0	129.1	443.	.784E+06	.86
	.0130 4.		143	-6.3	.18/E-03	2.2	2.2	314.0	14/.3	442.	.//UE+06	.83
	.0146 4.	5/1 .0	133	-8.3	.148E-03	1.9	1.9	314.0	184.3	442.	. /81E+06	. /9
	.0165 5.	181 .(-8.1	.809E-04	3	3	314.0	301.8	444.	.803E+06	.61
_	.0185 5.	809 .0)02 	-3.5	.366E-04	2	2	314.0	652.3	444. 	.804E+06	.13
]	PRD	= .1	52E-01	DVN=	. 689	9E+04	IC=	1		
_												
	T F	I 3	C C	v	W	MC	MD	OM	RO	TT	P	XS
-					3008-04	 2 1	2 1	314 0	613 2		 300F±07	20
	.0000 .	628 (000	7 1	636E-04	Q0 5	Q0 5	314.0	125 6	181	190E+07	.20
	0040 1	256 (126	88	124E-03	76 6	76 6	314 0	260 7	404.	1558+07	. 30
	0055 1	230 .(727 (128	75	1698-03	32 9	32 9	314 0	183 4	463	118E+07	. / 1 81
	0076 2	370 (50	1 1	2108-03	52.5	52.5	314 0	140 2	452	9618+06	85
	0092 2	973 (54	1 2	2258-03	1 0	1 0	314 0	120.2	432.	870E+06	.05
	0110 3	454 (152	-2.8	219F-03	1.0	1.0	314 0	129.0	440.	783E+06	.00
	0130 4	191 .(082 (144	-6.2	1905-03	2 1	2 1	314 0	147 2	442	771E+06	.00
	0147 4	601 (132	-8 4	145E-03	1 7	1 7	314 0	187 6	442.	782E+06	.05
	0165 5	181 (114	-8 1	805E-04	- 3	- 3	314 0	301 6	442.	803E+06	61
	.0185 5.	809 .0	002	-3.5	.367E-04	2	- 2	314.0	651.9	444	.805E+06	.13
_												
		E	RD	= .1	56E-01	DVN=	.689	E+04	IC=	2		
-	 T F	I 2	ς	v	 W	MC	MD	ОМ	RO	TT	 Р	xs
-				 1	 300 <u>₽</u> _04		۰ د د	314 0	643 2	 523	 386 <u>5</u> ±07	20
	.0000 .	629 (000	7 0	632E-04	00 3	00 3	314.0	125 6	525. 191	.300E+07	.20
	0020 .	256 (126	7.U Q Q	1258-04	76 5	76 5	31/ 0	260 0	404. 170	.190570/ 1558107	. 50
	.0040 I.	200 .(707 <i>(</i>	120	0.0 7 /	170E-03	22 2	22 2	314.0	102 /	4/0.	.133670/ 1198±07	./4 01
	0035 I.	727 .(202 /	000	7.4 / 2	200E-03	د. ∠د	د. ∠د	314 0	1/2 /	-10J. 152	. I I O D T U / Q 6 Q T 1 O 6	. O I
	00013 2.	230 .l	/43) E /	1 0	2055-03	0.4	0.4	214.0	100 0		. 2005TU0	.03
	0110 2). ככל ۱۵۸ (154	1.U	.223E-U3	.8	.ð F	314.U	120.3	44/.	.0035+U6 70/5+06	.00. 06
	.0120 4	434 .(201	-2.1	1007 02	.5	.5	314.U	147 0	443.	./845+U6	. 80
	.0150 4.	00∠ .(721 /	143	-0.3	.100E-U3	∠.⊥ 1 ?	∠.⊥ 1 ?	314.U	14/.Z	442.	.//15+06	.03 76
	.0151 4.	101 .(7∠8 \1 4	-0./	.1336-03	1.3	1.3	314.U	204.5	443.	./0/E+U6	. / 6
	.0102 2.	TOT '(114	-0.1	.0205-04	3	3	J14.U	201.1	444.	.0035+06	. 01

.0185 5.809 .002 -3.6 .373E-04 -.2 -.2 314.0 652.0 444. .804E+06 .15

PRD= .154E-01 DVN= .689E+04 IC= 3

Приложение 7

С С ГОЛОВНАЯ ПРОГРАММА РАСЧЕТА ТЕРМОДИНАМИЧЕСКИХ ПРОЦЕССОВ С В ПОРШНЕВОМ ДЕТАНДЕРЕ С IMPLICIT REAL (K-M) EXTERNAL DYDET DIMENSION ADR(4), Y(10), YO(10)COMMON/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5/OTL/AL0, SB, SH, DFI COMMON/VIV/MD, V, X, W, P, G1, G2/HY/TBX, PBX, ROBX, PBIX, TCT COMMON/FI/FIBH, FIBK, FIHH, FIHK/MAS/MS, MP, PMR, PMS/RW/R/PAD/PAD COMMON/PTX/PX(4), TX(4), GX(4), IG1, IG2DATA AM, BB, DX, HMIN, DXP/1.E-7, 0.03, 2*1.E-5, 0.0005/, NPR/20/, NEQS/8/, ICPR/2/ С ----- ВВОД ИСХОДНЫХ ДАННЫХ ------OPEN (10, FILE=' PRDET.DAT') READ(10,*)L,D,S,DM,FIBH,FIHH,FIHK,SB,SH,DFI,OMS,MS,MP,MR,ALFA, * DEL2, TBX, PBX, PBIX, TCT, AL0 CLOSE(10) WRITE(6,*)' L, D, S, DM, FIBH, FIHH, FIHK, SB, SH, DFI' WRITE(6,*)L,D,S,DM,FIBH,FIHH,FIHK,SB,SH,DFI WRITE (6,*) ' OMS, MS, MP, MR, ALFA, DEL2, TBX, PBX, PBIX, TCT, AL0' WRITE (6, *) OMS, MS, MP, MR, ALFA, DEL2, TBX, PBX, PBIX, TCT, ALO С ----- ИСХОДНЫЕ ДАННЫЕ -----С L – ДЛИНА ШАТУНА, D, S – ДИАМЕТР, МАКСИМАЛЬНЫЙ ХОД ПОРШНЯ, М С DM - ДИАМЕТР МАХОВИКА, M; OMS - УГЛОВАЯ СКОРОСТЬ ВАЛА, РАД/С С ALFA - ОТНОСИТЕЛЬНАЯ ВЕЛИЧИНА ВРЕДНОГО ПРОСТРАНСТВА С DEL2 - СТЕПЕНЬ НАПОЛНЕНИЯ, W2/(VH+W1) С FIBH, FIHH - УГЛЫ ПОВОРОТА КОЛЕНЧАТОГО ВАЛА, СООТВЕТСТВУЮЩИЕ С ОТКРЫТИЮ КЛАПАНОВ ВПУСКА И ВЫПУСКА, ОТСЧИТЫВАЕМЫЕ ОТ ВМТ, РАД С **FIBK, FIHK - УГЛЫ ПОВОРОТА КОЛЕНЧАТОГО ВАЛА, СООТВЕТСТВУЮЩИЕ** С ЗАКРЫТИЮ КЛАПАНОВ ВПУСКА И ВЫПУСКА, РАД С SB, SH - ПЛОЩАДИ ПРОХОДНЫХ СЕЧЕНИЙ ПРИ ВПУСКЕ И ВЫПУСКЕ, M2 С DFI – УГОЛ П.К.В. В ТЕЧЕНИЕ КОТОРОГО SB, SH = VAR, РАД С MS, MP, MR - МАССА ШАТУНА, ПОРШНЯ, МАХОВИКА, КГ С ТВХ, РВХ – ТЕМПЕРАТУРА (К) И ДАВЛЕНИЕ (ПА) НА ВХОДЕ В ДЕТАНДЕР С РВІХ - ДАВЛЕНИЕ НА ВЫХОДЕ ДЕТАНДЕРА, ПА ТСТ – ТЕМПЕРАТУРА СТЕНКИ ЦИЛИНДРА ДЕТАНДЕРА, К С С _____ LAM=0.5*S/LSP=0.785*D*D VH=SP*S PD=3.1415*D PMR=MR*DM*DM/8. PMS=MS*L*L/12. S5=0.5*S VH5=0.5*VH LAM5=0.5*LAM W1=VH*ALFA SX=4.*W1/D W2 = (VH + W1) * DEL2

С	ОПРЕДЕЛЕНИЕ УГЛА П.К.В. СООТВЕТСТВУЮЩЕМУ ОКОНЧАНИЮ ВПУСКА
	FIBK=FFI(VH5,W1,W2,LAM5)
	WRITE(6,15)FIBK
15	<pre>FORMAT(10X,'FIBK=',F6.3)</pre>
	IC=0
	IG1=1
	IG2=1
С	ЗАДАНИЕ НАЧАЛЬНЫХ УСЛОВИЙ
	ROBX=PBX/(R*TBX)
	PRKT=ROBX*VH*OMS/6.283
	P=PBX
	Y (1) =ROBX
	Y (2) =TBX
	Y (3) =OMS
	Y(4)=0.
70	Y(5)=0.
	Y(6)=0.
	Y(7)=0.
	Y(8)=0.
	DPR=6.283/Y(3)/NPR
	т=0.
	TP=0 .
	TN=T
	TPR=0.
	IF(IC.LT.ICPR) GO TO 12
	WRITE(6,8)
	WRITE(6,5)
	WRITE(6,8)
12	CONTINUE
С	ОПИСАНИЕ ВЫХОДНЫХ ПАРАМЕТРОВ
С	Т — ВРЕМЯ (C); Y(4) — ТЕКУЩИЙ УГОЛ ПОВОРОТА ВАЛА (РАД)
С	Х, V — ПУТЬ (М) И СКОРОСТЬ ПОРШНЯ (М/С)
С	W – ОБЪЕМ ЦИЛИНДРА ДЕТАНДЕРА (M3); MD – ДВИЖУЩИИ МОМЕНТ (H*M)
С	G1, G2 – РАСХОД НА ВПУСКЕ И ВЫПУСКЕ (КГ/С)
С	Y(1), Y(2), P - СООТВЕТСТВЕННО ПЛОТНОСТЬ (КГ/МЗ), ТЕМПЕРАТУРА
С	(К) И ДАВЛЕНИЕ (ПА) РАБОЧЕГО ТЕЛА В ЦИЛИНДРЕ ДЕТАНДЕРА
С	РХ, ТХ, GХ – ДАВЛЕНИЕ (ПА), ТЕМПЕРАТУРА (К), МАССА (КГ)
С	РАБОЧЕГО ТЕЛА В ХАРАКТЕРНЫХ ТОЧКАХ ЦИКЛА (J)
C	LAM – КОЭФФИЦИЕНТ НАПОЛНЕНИЯ ЦИЛИНДРА ДЕТАНДЕРА
C	ЕАD, EIS – АДИАБАТНЫИ И ИЗОТЕРМИЧЕСКИИ КПД ДЕТАНДЕРА
C	Т2 — СРЕДНЯЯ ТЕМПЕРАТУРА ПРИ ВЫПУСКЕ (К)
C	
7	CALL SOLDI (NEQS, AM, BB, T, Y, DYDET, DX, TO, YO, TP, HMIN, NMIN)
/	CALL EILER (NEQS, T, I, DIDET, DX, TO, IO)
	IF(IC, IT, ICDD) = CO TO 4
	$\operatorname{Herm}_{\mathcal{F}}(\mathcal{F}, \mathcal{L}) = \mathcal{F}(\mathcal{F}, \mathcal{L}) = \mathcal$
10	
10	
7	
	$D \in T-1$ NFOS
6	V(T) = VO(T)
5	T = (Y = 4) TF (Y = 4) TT = 6 283) GO TO 7
	TC=TC+1
	Y(4) = Y(4) - 6.283
	TK=T-TN
	PRK=V (5) /TK

```
DVN=Y(6)/TK
С
     ----- МИНИМИЗИРУЕМАЯ ФУНКЦИЯ КАЧЕСТВА 'КRIT' --------
     LAM=PRK/PRKT
     KRIT=ABS(PBX-PX(1))/PBX+TBX/(TBX-TX(3))+1./LAM
С
     -РАСЧЕТ АДИАБАТНОГО (ЕАД) И ИЗОТЕРМИЧЕСКОГО (ЕІS) КПД ДЕТАНДЕРА-
     T2=Y(7)/Y(8)
     Z=(PAD-1.)/PAD
     TT=1.-T2/TBX
     EAD=TT/(1.-(PBIX/PBX)**Z)
     EIS=TT/(Z*ALOG(PBX/PBIX))
     IF(IC.LE.ICPR) GO TO 11
     WRITE(6, 8)
     WRITE (6,3) PRK, DVN, LAM, KRIT, IC, T2, EAD, EIS
     WRITE(6, 8)
     WRITE(6, *)' J
                       Р
                                т
                                        G'
     WRITE(6, 8)
       WRITE(6,14)(J,PX(J),TX(J),GX(J),J=1,4)
       WRITE(6,8)
11
       CONTINUE
       IF(IC.LE.ICPR) GO TO 70
2
       FORMAT (F6.4, 2F6.3, F5.1, E9.3, F6.1, 2E9.3, F6.2, F7.1, E9.3)
3
       FORMAT (1X, 'G=', E10.3, 1X, 'KF/C;', 2X, 'DVN=', F7.1, 1X, 'BT;', 2X,
     *
       'LAM=', F6.3,2X,'KRIT=',E10.3,2X,'IC=',I2/
     * 1X, 'T2=', F6.1, 1X, 'K; ', 2X, 'EAD=', F5.3, '; '1X, 'EIS=', F5.3)
       FORMAT (5X,'T',4X,'FI',4X,'X',4X,'V',6X,'W',6X,'MD',5X,'G1',
5
       7X, 'G2', 6X, 'RO', 4X, 'TT', 7X, 'P')
8
       FORMAT (1X, 79(1H-))
14
       FORMAT (1X, I2, E10.3, F7.1, E10.3)
       STOP
       END
       _____
С
       SUBROUTINE DYDET (XT, Y, DY, NEQS)
С
        _____
С
         ПРАВЫЕ ЧАСТИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ РАСЧЕТА
С
            ТЕРМОДИНАМИЧЕСКИХ ПРОЦЕССОВ В ПОРШНЕВОМ ДЕТАНДЕРЕ
С
       _____
       IMPLICIT REAL (L-M)
       DIMENSION Y (NEQS), DY (NEQS)
       COMMON/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5/FI/FIBH, FIBK, FIHH, FIHK
       COMMON/VIV/MD, V, X, W, P, G1, G2/HY/TBX, PBX, ROBX, PBIX, TCT
       COMMON/RW/R/OTL/AL0, SB, SH, DFI/PTX/PX(4), TX(4), GX(4), IG1, IG2
       P=R*Y(2)*Y(1)
       U=CV(Y(2))*Y(2)
       CALL WDW(Y(4), Y(3), W, DW, X, V, MIN, ST)
       IF(Y(4).GT.FIBH.AND.Y(4).LT.FIBK) GO TO 2
       G1=0.
     IF(IG1.EQ.0) THEN
     PX(2) = P
     TX(2) = Y(2)
     GX(2) = Y(1) * W
     ENDIF
     IG1=1
     GO TO 4
2
     H1 = (CV(TBX) + R) * TBX
     SBK=SS(Y(4),FIBH,FIBK,DFI,SB)
     G1=G(TBX,PBX,P)*SBK
     IF(IG1.EQ.1) THEN
```

```
PX(1) = P
    TX(1) = Y(2)
    GX(1) = Y(1) * W
    ENDIF
     IG1=0
4
     IF(Y(4).GT.FIHH.AND.Y(4).LT.FIHK) GO TO 5
     G2=0.
    DY(7) = 0.
    DY(8) = 0.
    IF(IG2.EQ.0) THEN
    PX(4) = P
    TX(4) = Y(2)
    GX(4) = Y(1) * W
    ENDIF
    IG2=1
     GO TO 6
5
     SHK=SS(Y(4), FIHH, FIHK, DFI, SH)
     G2=G(Y(2), P, PBIX) * SHK
     ----- ОПРЕДЕЛЕНИЕ СРЕДНЕЙ ТЕМПЕРАТУРЫ ПРИ ВЫПУСКЕ ------
С
    DY(7) = Y(2)
    DY(8) = 1.
     IF(IG2.EQ.1) THEN
    PX(3) = P
    TX(3) = Y(2)
    GX(3) = Y(1) * W
    ENDIF
    IG2=0
6
     ALB=AL0*Y(1)*Y(2)/TCT
       QB=ALB*ST*(Y(2)-TCT)
       DY(1) = (G1 - G2 - Y(1) * DW) / W
       DY(2) = ((H1-U) *G1-QB-R*Y(2) * (G2+Y(1) *DW)) / (CV(Y(2)) *Y(1) *W)
       CALL MCMD (P, PI, Y(4), MD, MC)
       DY(3) = (MD - MC) / MIN
       DY(4) = Y(3)
       DY(5)=G1
       DY(6) = MD * Y(3)
       RETURN
       END
С
       _____
       SUBROUTINE MCMD (P, PI, FI, MD, MC)
С
       _____
С
          РАСЧЕТ МОМЕНТОВ: ДВИЖУЩЕГО (МД) И СОПРОТИВЛЕНИЯ (МС), Н*М
С
       _____
       IMPLICIT REAL (L-M)
       COMMON/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5
       BETA=ASIN(LAM*SIN(FI))
       MD=SP*(P-PI)*S5*SIN(FI+BETA)/COS(BETA)
       MC=MD
       RETURN
       END
С
       _____
       SUBROUTINE WDW (FI, OM, W, DW, X, V, MIN, ST)
С
       -----
С
       ПОДПРОГРАММА РАСЧЕТА ТЕКУЩЕГО ОБЪЕМА (W, M3) ЦИЛИНДРА ДЕТАНДЕРА
С
       И СКОРОСТИ ЕГО ИЗМЕНЕНИЯ (DW,M3/C); ПУТИ (X,M), СКОРОСТИ (V,M/C)
С
            ПОРШНЯ, ПЛОЩАДИ ТЕПЛООТДАЮЩЕЙ ПОВЕРХНОСТИ (ST, M2),
С
               МОМЕНТА ИНЕРЦИИ ДВИЖУЩИХСЯ МАСС (MIN, KГ*M2).
```

C	
C	TMDLTCTT DEAL (L-M)
	CONNON /WAG /WG WD DWG /GW /WWE GD DD IAW IAWE W1 GY GE
	COMMON/MAS/MS, MP, PMR, PMS/GM/VH5, SP, PD, LAM, LAM5, WI, SX, S5
	$W=WI+VH5^{(1COS(FI)+LAM5^{SIN(FI)}^{SIN(FI)})$
	$DW = VH5 \times OM \times (SIN(FI) + LAM5 \times SIN(2. \times FI))$
	X=(W-W1)/SP
	V=DW/SP
	ST = (SX + X) * PD + 2 . * SP
	VCX=S5*OM*(SIN(FI)+LAM*SIN(2.*FI)/4.)
	VCY=S5*OM*COS(FI)/2.
	VC=SQRT (VCX*VCX+VCY*VCY)
	OMS=OM*LAM*COS(FI)
	MIN=PMR+(MS*VC*VC+PMS*OMS*OMS+MP*V*V)/(OM*OM)
	RETURN
	END
С	
	FUNCTION CV(T)
С	
	COMMON/CDR/ADR(4)
	TC=T-273.15
	CV=ADR(1)+ADR(2)*TC+ADR(3)*TC*TC+ADR(4)*TC*TC*TC
	RETURN
	END
с	
•	subroutine soldi (im.a.b.xi.vi.rp.hio.xo.vo.xp.hmin.min)
С	
C	real k.max
	dimension $x(50) d1(50) d2(50) xi(50) xo(50)$
	h-hio
	$m_{1}=0$
10	do 10 j=1, jm
10	yo(j)=yi(j)
20	max=0
	do 25 j=1,jm
25	y (j)=yo (j)
	call rp(x,y,dl,jm)
	do 30 j=1,jm
	d1(j)=h*d1(j)
30	y(j)=y(j)+d1(j)
	call $rp(x+h,y,d2,jm)$
	do 40 j=1,jm
	d2(j)=0.5*(d1(j)+h*d2(j))
40	y(j)=y(j)-d1(j)+0.5*d2(j)
	call $rp(x+0.5*h,y,d1,jm)$
	do 60 j=1,jm
	d1(j) = (2.*h*d1(j)+d2(j))/3.
	Y(j) = y(j) - 0.5 * d2(j)
	k = abs(d1(j) - d2(j))/(a+b*abs(d1(j)))
	if (k-max) 60,50,50
50	max=k
60	continue
	if(max-1.25)80.80.65
65	if (mm) 70, 70, 100
70	h=h/sgrt(max)
	if (h-hmin) 75, 20, 20
	· ····································

75	h=hmin
	mm=1
	min=1
	go to 20
80	if(max-0.5)85,100,100
85	if(max-0.0001)90,90,95
90	max=0.0001
95	hc=h/sqrt(sqrt(max))
100	do 110 j=1,jm
110	y(j) = y(j) + d1(j)
	mm=0
	x=x+h
	h=hc
	do 115 j=1,jm
115	vo(i) = v(i)
	if(x-xp)120,140,140
120	if(x+h-xp)20,20,130
130	hio=h
	h = xp - x + 1. E-25
	$r_{\rm rec} = r_{\rm rec} = r_{\rm rec}$
140	yo uu 10
140	return
~	end
C	
C	
C	REAT. T TO
	TU- (CIU+B) +mU
	$10 = (CV0+R) \times 10$
	RC=R/(CV0+R)
	PR = P0 * (2.*CV0/(CV0+CV0+R)) ** (1./RC)
	IF(PC.LE.PK) GO TO I
	T=TU*(PC/PU)**(RC)
	RO=PC/(R*T)
	GO TO 2
1	T=T0*(PK/P0)**(RC)
	RO=PK/(R*T)
2	I = (CV0+R) *T
	IF(IO.LE.I) I=IO
	G=RO*SQRT(2.*(IO-I))
	RETURN
	END
С	
	BLOCK DATA
С	воздухвоздух
	COMMON/CDR/ADR(4)/RW/R/PAD/PAD
	DATA R/287./,PAD/1.4/,ADR/717.0,0.2223,-4.978E-5,2.469E-9/
	END
С	
	FUNCTION SS(FI,FI1,FI2,DFI,S)
С	
С	РАСЧЕТ ПЛОЩАДЕИ ПРОХОДНЫХ СЕЧЕНИИ КЛАПАНОВ
С	
	IF(DFI.EQ.0.) GO TO 4
	IF(FI.GT.FI1.AND.FI.LT.FI1+DFI) GO TO 1
	GO TO 2

1	SS=S*(FI-FI1)/DFI
2	GO IO S IF (FI GT FI2-DFI AND FI LT FI2) GO TO 3
2	GO TO 4
3	SS=S*(FI2-FI)/DFI
	GO TO 5
4	SS=S
5	RETURN
	END
С	
	FUNCTION FFI (VH5,W1,W2,LAM5)
С	
С	РАСЧЕТ УГЛА П.К.В. ДЕТАНДЕРА ПО ЗАДАННОМУ ОБЪЕМУ В КОНЦЕ ВПУСКА
С	(ИСПОЛЬЗУЕТСЯ ИТЕРАЦИОННЫИ МЕТОД НЬЮТОНА)
С	
	REAL LAMS
	DATA EM/1000./
	E=EM FT-1 571
20	
20	FII-FI F0=F
	EV = E FX=W2-W1-VH5*(1 -COS(FT1)+LAM5*STN(FT1)*STN(FT1))
	FXT = -VH5*(STN(FT1) + LAM5*STN(2 *FT1))
	FI=FI1*(1FX/FXI)
	E = ABS(1, -FI1/FI)
	IF(E-E0) 20,40,40
40	FFI=FI1
	RETURN
	END
С	
~	SUBROUTINE EILER (NEQS, X, Y, RP, DX, XO, YO)
C	DIMENSION $Y(50)$, $YO(50)$, $DYDX(50)$
	CALL $BP(X, Y, DYDX, NEOS)$
	DO 1 $I=1$.NEOS
1	YO(I) = Y(I) + DYDX(I) * DX
	XO=X+DX
	RETURN
	END
С	
	Результаты расчета
	L,D,S,DM,FIBH,FIHH,FIHK,SB,SH,DFI
	3.1410000 5.2830000 3.140000E-004 3.140000E-004 .0000000
	OMS, MS, MP, MR, ALFA, DEL2, TBX, PBX, PBIX, TCT, ALO
	314.0000000 9.000000E-001 9.000000E-001 2.0000000
	5.000000E-002 4.400000E-001 293.0000000 2000000.0000000
	100000.000000 273.000000 90.000000
	FTBK- 1 257

Т	FI	х	v	W	MD	G1	G2	RO	TT	P
.0000	. 000	.000	. 0	.980E-05	.0	.446E+00	.000E+00	22.10	308.5	.196E+07
.0010	.317	.002	3.4	.161E-04	83.3	.287E+00	.000E+00	22.96	300.8	.198E+07
.0020	.631	.007	6.2	.337E-04	148.9	.509E+00	.000E+00	22.97	294.8	.194E+07
.0030	.945	.014	8.1	.599E-04	188.0	.648E+00	.000E+00	22.70	292.4	.191E+07
.0040	1.259	.022	8.8	.908E-04	198.6	.000E+00	.000E+00	22.52	291.7	.189E+07
.0050	1.573	.031	8.5	.122E-03	121.3	.000E+00	.000E+00	16.69	258.7	.124E+07
.0060	1.887	.039	7.3	.151E-03	74.5	.000E+00	.000E+00	13.49	237.8	.921E+06
.0070	2.201	.046	5.7	.175E-03	45.1	.000E+00	.000E+00	11.66	224.6	.752E+06
.0080	2.515	.050	3.8	.192E-03	25.6	.000E+00	.000E+00	10.62	216.7	.660E+06
.0090	2.829	.053	1.9	.202E-03	11.6	.000E+00	.000E+00	10.08	212.7	.615E+06
.0100	3.143	.054	.0	.206E-03	1	.000E+00	.526E+00	9.91	211.8	.602E+06
.0110	3.457	.053	-1.9	.202E-03	-8.2	.000E+00	.396E+00	7.82	192.8	.433E+06
.0120	3.771	.050	-3.8	. 192E- 03	-12.8	.000E+00	.313E+00	6.41	178.3	.328E+06
.0130	4.085	.045	-5.7	.175E-03	-15.6	.000E+00	.256E+00	5.42	167.2	.260E+06
.0140	4.399	.039	-7.3	.151E-03	-17.4	.000E+00	.217E+00	4.71	158.6	.214E+06
.0150	4.713	.031	-8.5	.122E-03	-17.8	.000E+00	.188E+00	4.17	151.7	.182E+06
.0160	5.027	.022	-8.8	.905E-04	-16.3	.000E+00	.159E+00	3.71	145.6	.155E+06
.0170	5.341	.014	-8.0	.596E-04	-15.0	.000E+00	.000E+00	3.65	145.9	.153E+06
.0180	5.655	.007	-6.2	.335E-04	-26.5	.000E+00	.000E+00	6.48	187.1	.348E+06
.0190	5.969	.002	-3.3	.160E-04	-41.2	.000E+00	.000E+00	13.53	254.9	.990E+06
G= .	 912E-01	кг/с	DVI		вт; :	LAM= .391	 1 KRIT=	.618E+		= 3
T2= 1	67.7 K;	EAD=	= .744	1; EIS= .!	500					-
J	P	т		G						
· · ·	1905-U/	201	· · · ·	21/E-03						
2 .	2095707 6027106	291.	o 1							
4	135E+06	140	5.2	217E-02						

Приложение 8

Главные центральные (относительно центра тяжести) моменты инерции некоторых однородных тел простейшей формы (m – масса тела)

	Момент инерции
1. Прямолинейный тон-	$I = I = \frac{1}{2}mI^2$ $I = 0$
кий стержень длиной L,	$J_{X} = J_{y} = \frac{12}{12}$ mL , $J_{Z} = 0$
расположенный вдоль оси	
Oz	
Тонкий стержень относи-	$1 2 (L)^2 L^2$
тельно оси, перпендику-	$J = \frac{1}{12}mL^2 + m(\frac{2}{2}) = m\frac{2}{3}$
лярной стержню и прохо-	
дящей через его конец	
2. Прямоугольный парал-	m 2 2 m 2 2 m 2 2
лелепипед со сторонами	$J_{X} = \frac{1}{12}(b^{2} + c^{2}), J_{Y} = \frac{1}{12}(a^{2} + c^{2}), J_{Z} = \frac{1}{12}(a^{2} + b^{2})$
a, b, c параллельными со-	12 12 12
ответственно осям Ох,	
Oy, Oz	

3. Полый прямой круглый	
цилиндр высотой Н и ра-	
диусами внешней и внут-	$J_x = J_y = \frac{m}{(3R_1^2 + 3R_2^2 + H^2)}, J_z = \frac{m}{(R_1^2 + R_2^2)}$
ренней поверхностей,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
равными R ₁ , R ₂ ; Oz – ось	
цилиндра	
Для сплошного цилиндра	$I = I = \frac{m}{(2R^2 + H^2)} = I = \frac{1}{mR^2}$
$(R_2=0; R_1=R)$	$J_{X} = J_{y} = \frac{1}{12} (3K + H), J_{Z} = \frac{1}{2} MK$
Для боковой поверхности	$I = I = \frac{m}{m}(6R^2 + H^2)$ $I = mR^2$
тонкостенного полого	$J_{X} - J_{y} - \frac{1}{12}(0K + H), J_{z} - HK$
цилиндра (R ₁ =R ₂ =R)	
4. Полый шар с радиуса-	$2 R_{1}^{5} - R_{2}^{5}$
ми внешней и внутренней	$J_{X} = J_{V} = J_{Z} = \frac{2}{5}m\frac{n_{1}^{2}}{2}$
поверхностей, равными	5 $R_{1}^{5} - R_{2}^{5}$
R ₁ и R ₂	
Для сплошного шара	$I = I = I = \frac{2}{2}mR^{2}$
$(R_2=0; R_1=R)$	$J_X = J_y = J_Z = \frac{1}{5}$ mix
Для тонкостенной сферы	$I = I = I = \frac{2}{2}mR^{2}$
$(R_1 = R_2 = R)$	$J_X - J_y - J_z - \frac{1}{3}$ mix
Для шарового сектора (Oz	
– ось симметрии, R – ра-	
диус шаровой поверхно-	$I_{\pi} = \frac{mh}{m}(3R - h)$
сти, h – высота шарового	52 - 5 (SR II)
сегмента, принадлежаще-	
го шаровому сектору)	
Для шарового сегмента	mh $20R^2 - 15Rh + 3h^2$
(Oz – ось симметрии)	$J_{Z} = \frac{1}{20} \frac{1}{3R - h}$
5. Прямой круглый конус	$2m\left(2, \mu^2\right)$ $3, 2$
радиусом основания R и	$J_{X} = J_{Y} = \frac{3m}{20} R^{2} + \frac{1}{4} , J_{Z} = \frac{3}{10} mR^{2}$
высотой Н (Оz – ось ко-	
нуса).	
Относительно диаметра	
основания (Не централь-	$3m(p_2, 2\mu_2) = 3\mu_2$
ный момент т.к. имеется	$J_{X} = J_{y} = \frac{1}{20} \begin{pmatrix} R + \frac{1}{3} H \end{pmatrix}, J_{Z} = \frac{1}{10} H K$
смещение по оси Оz на	
расстояние Н/4)	
Для боковой поверхности	$I = -\frac{1}{mR^2}$
тонкостенного полого ко-	$J_Z = \frac{1}{2}$ m
нуса	
6. Усечённый прямой	$3m R_1^5 - R_2^5$
круглый конус высотой Н	$J_Z = \frac{3\pi}{10} \frac{1}{-3} \frac{2}{-3}$
и радиусами оснований	$R_1^3 - R_2^3$
R ₁ и R ₂ (Oz – ось конуса)	

$I_{\pi} = \frac{m}{m}(R_{1}^{2} + R_{2}^{2})$
32 - 2(11 + 12)
$I = \frac{m}{m} \left(b^2 + \frac{3}{2} H^2 \right) I = \frac{m}{m} \left(a^2 + \frac{3}{2} H^2 \right) I = \frac{m}{m} \left(a^2 + b^2 \right)$
$\int J_{X}^{y} = \frac{1}{20} \left(\begin{array}{c} 0 & +\frac{1}{4} \\ -\frac{1}{4} \end{array} \right), J_{Y}^{y} = \frac{1}{20} \left(\begin{array}{c} a & +\frac{1}{4} \\ -\frac{1}{4} \end{array} \right), J_{Z}^{z} = \frac{1}{20} \left(\begin{array}{c} a & +0 \end{array} \right)$
$I_{x} = \frac{m}{m}(b^{2} + c^{2})$ $I_{y} = \frac{m}{m}(a^{2} + c^{2})$ $I_{z} = \frac{m}{m}(a^{2} + b^{2})$
$5^{(a)}$ $5^{(a)}$ $5^{(a)}$ $5^{(a)}$ $5^{(a)}$ $5^{(a)}$ $5^{(a)}$ $5^{(a)}$ $5^{(a)}$
$I = I = \frac{m}{m}(4R^2 + 5r^2)$ $I = m\left(R^2 + \frac{3}{2}r^2\right)$
$J_X = J_Y = \frac{3}{8} (4K + 5F), J_Z = III(K + 4)$
mR^2
$J_x = mR^2$, $J_y = J_z =2$
_
$m_2 mR^2$
$J_{X} = \frac{1}{2}R^{2}$, $J_{y} = J_{z} = \frac{1}{4}$
$I_{rr} = \frac{m}{m}(a^2 + b^2)$ $I_{rr} = \frac{m}{m}b^2$ $I_{rr} = \frac{m}{m}a^2$
$x = \frac{12}{12}$ $y = \frac{12}{12}$ $y = \frac{12}{12}$ $y = \frac{12}{12}$
$I_{x} = \frac{m}{m}(R^{2} + r^{2})$ $I_{x} = I_{z} = \frac{m}{m}(R^{2} + r^{2})$
$2^{(1)} + 2^{($

Теорема Штейнера: момент инерции тела относительно произвольной оси *a* равен сумме момента инерции J_a этого тела относительно оси *a*, параллельной оси *a* и проходящей через центр инерции (тяжести) тела, и произведения массы *m* тела на квадрат расстояния *d* между осями *a* и *a*.

$$J_a = J_a' + md^2$$

Таким образом, момент инерции тела относительно оси, проходящей через его центр инерции (тяжести), меньше момента инерции относительно любой параллельной ей оси.

Аппроксимационные зависимости производных параметров на линии насыщения R134a от температуры

$$\begin{aligned} \frac{d\rho'}{dT_{H}} &= \left(A_{25} + B_{25}T + C_{25}T^{2} + D_{25}\frac{1}{T}\right)^{-1}, \\ \frac{d\rho''}{dT_{H}} &= \left(A_{26} + B_{26}T + C_{26}T^{2} + D_{26}\frac{1}{T}\right)^{-1}, \\ \frac{du'}{dT_{H}} &= A_{27} + B_{27}T + C_{27}T^{3} + D_{27}T^{4}, \\ \frac{du''}{dT_{H}} &= A_{28} + B_{28}T + C_{28}T^{3} + D_{28}T^{4}. \end{aligned}$$

Значения аппроксимационных коэффициентов приводятся в следующей таблице.

i	A _i	B _i	C _i	D _i
25	-6,73482	$1,45694 \cdot 10^{-2}$	$-6,73662 \cdot 10^{-6}$	808,85
26	-225,78905	0,62612	-5,85936·10 ⁻⁴	27541,0
27	-10,79244	8,77586·10 ⁻⁴	-3,98068·10 ⁻⁶	5,03694·10 ⁻⁹
28	9,54369	$-6,28847 \cdot 10^{-4}$	$2,90833 \cdot 10^{-6}$	-3,81109·10 ⁻⁹

Средняя относительная погрешность производных по сравнению с данными приведенными в [68] составляет $\leq 5\%$. Производные $\frac{du'}{dT_{H}}$, $\frac{du''}{dT_{H}}$ имеют размерность кДж/(кг·К). Программа DRM.FOR позволяет осуществить расчет массового расхода и всех параметров потока на выходе капиллярной трубки (КТ) заданной геометрии или проектировочный расчет геометрии трубки под заданный расход и условия эксплуатации. Результаты таких расчетов представлены ниже.

С С Модернизированная программа расчета течения холодильного агента С по капиллярной трубке (КТ). Расчет LkT = f(GkT) или GkT = f(LkT) С _____ PARAMETER (NT=40) DIMENSION C(101), PSI(101) COMMON/R/P(NT), T(NT), VI(NT), VII(NT), HI(NT), HII(NT), TKR С ----- Входные параметры ------С PBX, PB - давление на входе и выходе КТ (бар) С DP - падение давления на участке переохлажденного х/а С DP=f(Tr, Tno) (Gap) С XN - начальная степень сухости х/а на входе КТ С DP и XN - взаимоисключающие параметры !! С DK – диаметр КТ (м); G – начальный расход через КТ (кг/ч) С - число шагов по длине КТ (Не более 100 !!) Ν С IDPR - признак печати таблицы насыщенного пара x/a С (IDPR.EQ.1 - без печати, IDPR.NE.1 - печать) С DKLS - заданная длина капиллярной трубки (м) С - Признак режима работы программы IR С IR= 1 для расчета Lкт= f(Gкт), IR= 2 для расчета Gкт= f(Lкт) С _____ OPEN(10, FILE='DRM.DAT') READ (10, *) PBX, PB, DP, XN, DK, G, N, IDPR, DKLS, IR CLOSE(10) WRITE(6,*)' PBX, PB, DP, XN, DK, G, N, IDPR, DKLS, IR' WRITE(6,*)PBX,PB,DP,XN,DK,G,N,IDPR,DKLS,IR IF(IDPR.EQ.1) GO TO 8 WRITE(6,6) DO 7 I=1,NT 7 WRITE(6,15)P(I),T(I),VI(I),VII(I),HI(I),HII(I) 8 PIN=PBX-DP CALL INTER(P,VI,PIN,V1,NT) CALL INTER(P,VII,PIN,V11,NT) v1=v1/1000. CALL INTER (P, HI, PIN, H1, NT) CALL INTER(P,HII,PIN,H11,NT) H1=H1*1000. H11=H11*1000. V1=V1+XN* (V11-V1) H1=H1+XN*(H11-H1) CALL INTER (P,T,PIN,TN,NT) HP=(PIN-PB)/N G=G/3600. SS=0.785*DK*DK/G 12

```
PIN=PBX-DP
C(1) = V1/SS
CALL FI(PSI(1), C(1), DK, V1, TKR, TN, 0.)
DLN=1.234*DK**5*DP*1.E+5/(PSI(1)*G*G*V1)
DKL=DLN
 IF(IR.EQ.1) THEN
WRITE(6,9)
WRITE(6,17)
WRITE(6,9)
ENDIF
DO 1 I=2,N
CALL INTER(P,T,PIN,TAUT,NT)
CALL INTER(P,VI,PIN,VAUT,NT)
VAUT=VAUT/1000.
CALL INTER (P, VII, PIN, VIAUT, NT)
CALL INTER (P, HI, PIN, HAUT, NT)
HAUT=HAUT*1000.
CALL INTER (P, HII, PIN, HIAUT, NT)
HIAUT=HIAUT*1000.
CALL XX (V1, H1, VAUT, VIAUT, HAUT, HIAUT, SS, X)
V=VAUT+X* (VIAUT-VAUT)
H=(HAUT+X*(HIAUT-HAUT))/1000.
C(I) = V/SS
CALL FI(PSI(I), C(I), DK, V, TKR, TAUT, X)
CSR = (C(I) + C(I-1))/2.
PSR=(PSI(I)+PSI(I-1))/2.
DV=C(I)-C(I-1)
FUS=DV/SS/1.E+5
FTR=HP-FUS
IF(FTR.LT.0.) GO TO 3
DL=2.*FTR*DK*SS*1.E+5/CSR/PSR
 IF (IR.EQ.1) WRITE (6,2) PIN, TAUT, V, H, C(I), FUS, FTR, DKL, X, PSI(I)
DKL=DKL+DL
----- Выходные параметры -----
PIN - давление по участкам (бар); ТАИТ - температура x/a (К)
     - удельный объем х/а (м3/кг)
v
C(I) - величина скорости потока x/a (м/с)
FUS, FTR - падение давления за счет ускорения потока и трения
DKL - текущая длина КТ (м); FLAM - относительная длина КТ
X - степень сухости; PSI(I) - текущий коэффициент трения
_____
PIN=PIN-HP
FLAM=DKL/DK
IF(IR.EQ.1) THEN
WRITE(6, 9)
WRITE (6,14) DKL, FLAM
ENDIF
GO TO 5
FLAM=DKL/DK
IF(IR.EQ.1) THEN
WRITE(6, 9)
WRITE(6,4)DKL,FLAM
ENDIF
CONTINUE
IF(IR.EQ.1) GO TO 11
OTH=DKLS/DKL
G=G/OTH
```

С

С

С

С

С

С

С

С

1

3

5

```
423
```

 $GR = G \times 3600$. IF (OTH.LT.1.015.AND.OTH.GT.0.985) GO TO 16 GO TO 12 IR=1 16 WRITE (6,18) GR GO TO 12 11 STOP 2 FORMAT (F8.4, F7.2, F7.5, F6.1, F7.2, 2F5.3, F7.3, F6.4, F7.5) 4 FORMAT(1X, 'Kputuyeckoe teyehue: DKL=', F6.3, ', FLAM=', F7.1) FORMAT(6X, 'P', 6X, 'T', 6X, 'VI', 5X, 'VII', 6X, 'HI', 6X, 'HII') 6 9 FORMAT (1X, 79 (1H-)) FORMAT (1X, 'Длина капиллярной трубки DKL=', F6.3, ', FLAM=', F7.1) 14 FORMAT (2X, F8.4, F7.2, F7.4, F8.5, 2F8.2) 15 FORMAT(4X,'P',6X,'T',7X,'V',5X,'H',7X,'C',3X,'FUS',2X,'FTR', 17 * 3X, 'DKL', 4X, 'X', 5X, 'PSI') FORMAT(' Скорректированный расход=', F6.3, ' кг/ч') 18 END С _____ BLOCK DATA R12 С _____ С Приведены данные по термодинамическим свойствам R12 С _____ REAL MKR PARAMETER (NT=40) COMMON/R/P(NT), T(NT), VI(NT), VII(NT), HI(NT), HII(NT), TKR COMMON/BSK/MKR, PMI, PMII, QMI, QMII DATA MKR, PMI, PMII, QMI, QMII/39.6E-6, -1.8, -0.02, -1.74, 1.74/ DATA P/1.5098,1.6306,1.7593,1.8947,2.0391,2.191,2.352,2.5215, 2.6999,2.887,3.0857,3.2934,3.5112,3.7398,3.9797,4.2301,4.4354, * * 4.7681,5.0553,5.3549,5.6669,5.993,6.3335,6.6857,7.0542,7.4344, 7.8352,8.2461,8.4596,9.5818,10.81,12.147,13.6,15.182,16.883, * 18.727,20.717,22.84,25.125,27.564/ * DATA T/253.,255.,257.,259.,261.,263.,265.,267.,269.,271.,273., 275., 277., 279., 281., 283., 285., 287., 289., 291., 293., 295., 297., * 299., 301., 303., 305., 307., 308., 313., 318., 323., 328., 333., 338., * * 343.,348.,353.,358.,363./ DATA VI/0.6868,0.6897,0.6925,0.6954,0.6988,0.7018,0.7047, * 0.7077,0.7107,0.7143,0.7173,0.7205,0.7241,0.7273,0.731,0.7342, * 0.738, 0.7413, 0.7452, 0.7491, 0.7524, 0.757, 0.7605, 0.7645, 0.7692,0.7734,0.7782,0.7825,0.7849,0.7968,0.8104,0.8244,0.841,0.8568, * 0.8741,0.8936,0.9149,0.9498,0.968,1.0009/ * DATA VII/0.1107,0.103,0.09597,0.08952,0.08361,0.07813,0.07313, 0.06852,0.06427,0.06028,0.05667,0.0533,0.05012,0.04721,0.0445, * * 0.04204, 0.0397, 0.03751, 0.03547, 0.03354, 0.03175, 0.03005, 0.02848,* 0.027, 0.0256, 0.02433, 0.02309, 0.02192, 0.02136, 0.01882, 0.01656,* 0.01459, 0.01316, 0.01167, 0.01036, 0.00919, 0.00814, 0.00724, 0.00649,* 0.00564/ DATA HI/400.47,402.27,404.03,406.04,407.63,409.47,411.27, * 413.11,414.95,416.84,418.68,420.56,422.45,424.33,426.22,428.14, 430.07,431.99,433.96,435.93,437.90,439.87,441.83,443.84,445.85, * 447.86,449.87,451.92,452.93,458.08,463.31,468.54,474.16,479.68, * 485.33,491.07,496.93,502.96,509.16,515.48/ DATA HII/564.,565.01,565.93,566.89,567.86,568.86,569.78,570.74, 571.67,572.63,573.55,574.47,575.39,576.31,577.19,578.11,578.99, * * 579.83,580.71,581.59,582.47,583.26,584.06,584.9,585.69,586.49, * 587.2,587.95,588.29,590.09,591.72,593.1,595.07,596.58,597.96, * 599.09,600.01,600.64,600.85,600.43/,TKR/385./

~	END
С	SUBROUTINE INTER (X,Y,XIN,YAUT,NT)
С	DIMENSION X(NT),Y(NT) DO 1 I=1,NT IF(XIN-X(I)) 2,4,1
2	YAUT=Y (I-1) + (XIN-X (I-1)) * (Y (I) - Y (I-1)) / (X (I) - X (I-1)) GO TO 3
1	CONTINUE
4	YAUT=Y(I)
3	RETURN END
c	SUBROUTINE XX(V1,H1,VI,VII,HI,HII,SS,X)
•	VV=VI/(VII-VI)+SS**2*(HII-HI)/((VII-VI)**2)
	VVV=(VI**2-V1**2+2.*SS**2*(HI-H1))/((VII-VI)**2)
	X=-VV+SQRT (VV**2-VVV)
	RETURN
c	END
c	SUBROUTINE FI(PSI,C,DK,V,TKR,TAUT,X)
-	REAL MUI,MUII
	TAU=TAUT/TKR
	T1=(TAU-1.)/TAU
	CALL BS (TAU, T1, MUI, MUII)
	RE=C*DK/V/(MUI*(1X)+X*MUII)
	PS1=0.32/(RE^0.23)
	END
с	
с	SUBROUTINE BS(TAU,T1,MI,MII)
с	Расчет вязкости и теплопроводности холодильных агентов
С	на линии насыщения. См: Теплофизические основы получения
С	искусственного холода. Справочник М., стр. 79-82.
С	REAL MKR, MI, MII COMMON/BSK/MKR, PMI, PMII, QMI, QMII TETA=ALOG (TAU) +0.5*T1*T1* (T1-ALOG (TAU)) * (10.1*T1**4) IF (TETA, LT, 0,) THEN
	P=-1.
	ELSE
	P=1.
	ENDIF
	MI=EXP (ALOG (MKR) +PMI*TETA+P*QMI*ABS (TETA) **0.33333)
	MII=EXP(ALOG(MKR)+PMII*TETA+P*QMII*ABS(TETA)**0.33333)
	KETUKN FND
с	
-	

Результаты расчета

Входные параметры: PBX, PB - давление на входе и выходе КТ (бар); DP - падение давления на участке переохлажденного холодильного агента DP=f(T_{κ} , T_{no}) бар; XN - начальная степень сухости холодильного агента на входе КТ; DP и XN - взаимоисключающие параметры; DK - диаметр КТ (м); G - начальный расход через КТ (кг/ч); N - число шагов по длине КТ (Не более 100); IDPR - признак печати таблицы насыщенного пара холодильного агента IDPR.EQ.1 без печати, IDPR.NE.1 - печать); DKLS - заданная длина капиллярной трубки (м); IR - Признак режима работы программы IR = 1 для расчета Lкт = f(G_{kT}), IR = 2 для расчета Gкт = f(L_{kT}).

Выходные параметры: PIN - давление по участкам КТ (бар); TAUT - температура холодильного агента (К); V - удельный объем холодильного агента (м³/кг); C(I) - величина скорости потока (м/с); FUS, FTR - падение давления за счет ускорения потока и сил трения; DKL - текущая длина КТ (м); FLAM - относительная длина КТ; X степень сухости; PSI(I) - текущий коэффициент трения; GR - скорректированный расход (кг/ч).

1). Расчет массового расхода и всех параметров потока на выходе капиллярной трубки (КТ) заданной геометрии.

PBX, PB, DP, XN, DK, 12.0000000 8.000000E-004 2			G,N,IDP 2.00 4.00000	IR 1.0000000 30			1	.0000000 2.8000000	
Скоррек	тирован	нный ра	асход =	5.202	кг/ч 	I 			
P	Т	v	Н	с	FUS	FTR	DKL	x	PSI
11.0000	318.71	.00081	464.1	2.34	.000	.300	. 827	.0000	.02881
10.7000	317.55	.00096	464.1	2.76	.012	.288	1.075	.0094	.02885
10.4000	316.33	.00112	464.1	3.23	.014	.286	1.293	.0192	.02888
10.1000	315.11	.00129	464.0	3.72	.014	.286	1.478	.0288	.02891
9.8000	313.89	.00147	464.0	4.24	.015	.285	1.636	.0383	.02895
9.5000	312.64	.00167	464.0	4.80	.016	.284	1.773	.0479	.02898
9.2000	311.30	.00189	464.0	5.43	.018	.282	1.894	.0579	.02902
8.9000	309.96	.00212	464.0	6.09	.019	.281	2.000	.0678	.02906
8.6000	308.63	.00236	464.0	6.78	.020	.280	2.093	.0775	.02910
8.3000	307.25	.00261	464.0	7.52	.021	.279	2.177	.0872	.02914
8.0000	305.80	.00291	464.0	8.36	.024	.276	2.251	.0974	.02918
7.7000	304.33	.00322	464.0	9.27	.026	.274	2.317	.1076	.02922

7.4000	302.82	.00356	464.0	10.24 .	028	.272	2.377	.1177	.02926	
7.1000	301.24	.00393	464.0	11.31 .	031	.269	2.430	.1281	.02931	
6.8000	299.62	.00434	464.0	12.50 .	034	.266	2.477	.1387	.02936	
6.5000	297.95	.00480	464.0	13.81 .	038	.262	2.519	.1495	.02941	
6.2000	296.22	.00530	463.9	15.25 .	041	.259	2.557	.1603	.02946	
5.9000	294.43	.00585	463.9	16.84 .	046	.254	2.591	.1712	.02952	
5.6000	292.57	.00647	463.9	18.62 .	051	.249	2.621	.1824	.02957	
5.3000	290.63	.00717	463.8	20.63 .	058	.242	2.647	.1938	.02963	
5.0000	288.61	.00796	463.8	22.91 .	065	.235	2.670	.2056	.02970	
4.7000	286.59	.00882	463.7	25.37 .	071	.229	2.691	.2171	.02976	
4.4000	284.66	.00970	463.7	27.89 .	073	.227	2.708	.2276	.02983	
4.1000	281.96	.01104	463.6	31.74 .	111	.189	2.724	.2419	.02992	
3.8000	279.50	.01239	463.4	35.62 .	112	.188	2.736	.2545	.03001	
3.5000	276.90	.01397	463.2	40.19 .	131	.169	2.746	.2673	.03011	
3.2000	274.10	.01589	463.0	45.72 .	159	.141	2.755	.2805	.03022	
2.9000	271.13	.01814	462.7	52.17 .	186	.114	2.761	.2937	.03034	
2.6000	267.88	.02097	462.2	60.32 .	234	.066	2.765	.3073	.03049	

Длина капиллярной трубки DKL = 2.767, FLAM= 3459.0

2). Проектировочный расчет геометрии трубки под заданный расход и условия эксплуатации.

PBX,PB,DP,XN,DK,0 12.0000000 8.000000E-004 2.8000000 1				;,N,IDPR,DKLS,IR 2.0000000 4.0000000			1.0000000 30			1	.0000000
	P	т	v	н	С	FUS	FTR	DKL	x	PSI	
	11.0000	318.71	.00081	464.1	1.80	.000	.300	1.310	.0000	.03077	
	10.7000	317.55	.00096	464.1	2.12	.007	.293	1.703	.0094	.03080	
	10.4000	316.33	.00112	464.1	2.48	.008	.292	2.054	.0192	.03084	
	10.1000	315.11	.00129	464.0	2.86	.008	.292	2.352	.0288	.03088	
	9.8000	313.89	.00148	464.0	3.26	.009	.291	2.608	.0384	.03091	
	9.5000	312.64	.00167	464.0	3.69	.009	.291	2.830	.0480	.03095	
	9.2000	311.30	.00189	464.0	4.18	.011	.289	3.026	.0580	.03099	
	8.9000	309.96	.00212	464.0	4.68	.011	.289	3.197	.0678	.03103	
	8.6000	308.63	.00236	464.0	5.21	.012	.288	3.349	.0776	.03107	
	8.3000	307.25	.00262	464.0	5.79	.013	.287	3.485	.0873	.03111	
	8.0000	305.80	.00291	464.0	6.44	.014	.286	3.607	.0975	.03116	
	7.7000	304.33	.00322	464.0	7.13	.015	.285	3.715	.1077	.03120	
	7.4000	302.82	.00356	464.0	7.88	.016	.284	3.813	.1178	.03125	
	7.1000	301.24	.00394	464.0	8.71	.018	.282	3.900	.1283	.03130	
	6.8000	299.62	.00435	464.0	9.62	.020	.280	3.979	.1389	.03135	
	6.5000	297.95	.00481	464.0	10.64	.022	.278	4.049	.1498	.03140	
	6.2000	296.22	.00531	464.0	11.75	.025	.275	4.113	.1607	.03146	
	5.9000	294.43	.00587	464.0	12.97	.027	.273	4.169	.1716	.03152	
	5.6000	292.57	.00649	464.0	14.35	.031	.269	4.220	.1828	.03158	
	5.3000	290.63	.00719	463.9	15.91	.034	.266	4.265	.1944	.03164	
	5.0000	288.61	.00799	463.9	17.67	.039	.261	4.305	.2063	.03171	
	4.7000	286.59	.00885	463.9	19.58	.042	.258	4.341	.2179	.03178	
	4.4000	284.66	.00974	463.8	21.53	.043	.257	4.372	.2286	.03184	
	4.1000	281.96	.01109	463.8	24.53	.066	.234	4.401	.2433	.03194	

3.8000 279.50 .01246 463.7 27.56 .067 .233 4.424 .2562 .03203 3.5000 276.90 .01408 463.6 31.13 .079 .221 4.444 .2694 .03213 3.2000 274.10 .01604 463.4 35.47 .096 .204 4.461 .2832 .03224 2.9000 271.13 .01834 463.2 40.57 .113 .187 4.475 .2971 .03237 2.6000 267.88 .02127 462.9 47.04 .143 .157 4.486 .3118 .03251 Длина капиллярной трубки DKL= 4.494, FLAM= 5617.2

3). Проектировочный расчет геометрии трубки под заданный расход и условия эксплуатации с выходом на критический режим истечения.

1	PBX 8.0000	, PB, DP, X 12.00000 00E-004	N, DK, G, N 00	1,IDPR,E 2.00 8.00000	OKLS,IR 000000 000	1.0000000 30			1	.0000000 2.8000000
_	P	т	v	н	с	FUS	FTR	DKL	x	PSI
1	1.0000	318.71	.00081	464.1	3.59	.000	.300	.390	.0000	.02587
1	0.7000	317.55	.00096	464.1	4.24	.029	.271	.506	.0094	.02590
1	0.4000	316.33	.00112	464.0	4.96	.032	.268	.603	.0192	.02593
1	0.1000	315.11	.00129	464.0	5.72	.034	.266	.684	.0288	.02596
	9.8000	313.89	.00147	464.0	6.52	.035	.265	.754	.0383	.02599
	9.5000	312.64	.00167	464.0	7.37	.038	.262	.814	.0478	.02603
	9.2000	311.30	.00188	464.0	8.34	.043	.257	.867	.0578	.02606
	8.9000	309.96	.00211	464.0	9.35	.045	.255	.912	.0676	.02609
	8.6000	308.63	.00235	464.0	10.40	.047	.253	. 952	.0773	.02613
	8.3000	307.25	.00261	464.0	11.54	.050	.250	.988	.0870	.02616
	8.0000	305.80	.00290	464.0	12.83	.057	.243	1.019	.0971	.02620
	7.7000	304.33	.00321	464.0	14.21	.061	.239	1.047	.1072	.02624
	7.4000	302.82	.00355	463.9	15.69	.065	.235	1.071	.1172	.02628
	7.1000	301.24	.00392	463.9	17.33	.072	.228	1.093	.1275	.02632
	6.8000	299.62	.00433	463.9	19.14	.080	.220	1.112	.1380	.02637
	6.5000	297.95	.00478	463.8	21.13	.088	.212	1.128	.1486	.02641
	6.2000	296.22	.00527	463.8	23.32	.097	.203	1.143	.1593	.02646
	5.9000	294.43	.00582	463.7	25.72	.106	.194	1.155	.1699	.02651
	5.6000	292.57	.00643	463.7	28.42	.119	.181	1.166	.1808	.02657
	5.3000	290.63	.00711	463.6	31.45	.134	.166	1.175	.1919	.02663
	5.0000	288.61	.00788	463.5	34.87	.151	.149	1.183	.2033	.02669
	4.7000	286.59	.00871	463.3	38.54	.163	.137	1.189	.2142	.02675
	4.4000	284.66	.00956	463.2	42.30	.166	.134	1.194	.2242	.02681
	4.1000	281.96	.01085	462.9	48.01	.252	.048	1.198	.2377	.02690
	3.8000	279.50	.01214	462.6	53.71	.252	.048	1.200	.2492	.02699
	3.5000	276.90	.01364	462.2	60.35	.294	.006	1.201	.2607	.02709
-										

Критическое течение: DKL= 1.201, FLAM= 1501.2

```
С
        ----- PRDVM.FOR -------
С
             Головная программа расчета процессов в пневматическом
С
                           ротационном двигателе
С
         Дифференцированный расчет механических потерь и протечек.
С
         _____
        IMPLICIT REAL(K-M)
        PARAMETER (PI=3.141593)
        EXTERNAL DYBYPL
        DIMENSION Y(36), YO(36), A(10), P(15), W(15), S1(15), S2(15), G1(15),
     *
        G2(15),GUR(15),GUP(15),VIV1(10,20),VIV2(10,20),VIV3(9,20),
     *
        DHH (15), S (15), DR (15), QB (15), FTR (15), FCB (15), VP (15), GRC (15)
        COMMON/VIV/MD, MC, MIN, P, W, S1, S2, SR, WR, PR, FR, G1, G2, GUR, GUP, QB, GRC
        COMMON/RASX/RC, NZ, E, BET, BT2, W0/RSX1/A1, B1, A2, B2/GRAD/D1, D2, D3, D4
        COMMON/HY/A, DPBX, PBIX, ALB, TCT/RW/R/ISX/L, MINC, MPL, HI
        COMMON/YT1/DLL, LRC, MTR/YT3/DHH, FTR, FCB, VP/FDR/RR, TMU, MS, DEL, DEPL
С
        ----- ВВОД - ВЫВОД ИСХОДНЫХ ДАННЫХ ------
        DATA AM, BB, DX, HMIN, DXP/1.E-7, 0.03, 2*1.E-5, 0.001/
       OPEN(10, FILE='PRDVM.DAT')
       READ (10,*) P0, PBIX, T0, TBIX, TCT, DLL, DEPL, ICPR, DK, RR, E, L, DEL, HI, H,
       NZ, NPR, OMS, ALB, WR, ROR, ROPL, W0, D3, D2, D1, D4, DZETA, POC, TOC, LCP, DCP,
     *
        DELCP
        CLOSE(10)
                                   P0, PBIX, T0, TBIX, TCT, DLL, DEPL, ICPR, DK'
        WRITE(6,*)'
        WRITE (6, *) P0, PBIX, T0, TBIX, TCT, DLL, DEPL, ICPR, DK
                                       RR, E, L, DEL, HI, H, NZ, NPR, OMS, ALB, WR'
        WRITE(6,*)'
        WRITE (6, *) RR, E, L, DEL, HI, H, NZ, NPR, OMS, ALB, WR
        WRITE(6,*)'
                                  ROR, ROPL, W0, D3, D2, D1, D4, DZETA, POC, TOC'
        WRITE (6,*) ROR, ROPL, W0, D3, D2, D1, D4, DZETA, POC, TOC
        WRITE(6,*)'
                                 LCP, DCP, DELCP'
        WRITE(6,*)LCP,DCP,DELCP
С
        ----- Описание входных параметров ------
С
            РО, РВІХ - НАЧАЛЬНОЕ ДАВЛЕНИЕ В РЕСИВЕРЕ И ПРОТИВОДАВЛЕНИЕ
С
                       НА ВЫХОДЕ ДВИГАТЕЛЯ,
                                              Па
С
                 - НАЧАЛЬНАЯ ТЕМПЕРАТУРА ВОЗДУХА В РЕСИВЕРЕ,
            тО
                                                              K
С
            ТСТ - ТЕМПЕРАТУРА СТЕНКИ ДВИГАТЕЛЯ,
                                                    к
С
            ТВІХ - ТЕМПЕРАТУРА ВОЗДУХА НА ВЫХОДЕ ДВИГАТЕЛЯ,
                                                              к
С
            DLL - ОДНОСТОРОННИЙ ЗАЗОР РОТОР - КРЫШКА ЦИЛИНДРА,
                                                                   м
С
            DEPL - ВЕЛИЧИНА ЗАЗОРА ПЛАСТИНА - ПАЗ РОТОРА,
                                                             м
С
            ICPR - КОЛИЧЕСТВО РАССЧИТЫВАЕМЫХ ЦИКЛОВ
С
                 - ДИАМЕТР ПОДВОДЯЩЕГО КАНАЛА,
            DK
                                                  м
С
            RR - РАДИУС РОТОРА ДВИГАТЕЛЯ, м; Е - ЭКСЦЕНТРИСИТЕТ,
                                                                     м
С
                - ДЛИНА РОТОРА, м, DEL - ТОЛЩИНА ПЛАСТИНЫ,
            L
                                                                 м
                                 м; НІ – ВЫСОТА ПЛАСТИНЫ,
                - ВЫСОТА ПАЗА,
С
            н
                                                               м (H>HI)
С
            NZ - ЧИСЛО ПЛАСТИН (В ДАННОМ СЛУЧАЕ NZ НЕ БОЛЕЕ 15 !!! )
С
            NPR - ЧАСТОТА ВЫХОДНОЙ ПЕЧАТИ, W0 - РАЗГРУЗОЧНЫЙ ОБЪЕМ, M3
С
            OMS - ЧАСТОТА ВРАЩЕНИЯ РОТОРА,
                                             об/мин
С
            ALB - УДЕЛЬНЫЙ КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ,
                                                       (BT/M2)/(KT/M3)
С
            DZETA - КОЭФИЦИЕНТ, ХАРАКТЕРИЗУЮЩИЙ ПОЛНОЕ СОПРОТИВЛЕНИЕ
С
                 ВОЗДУХОПОДВОДЯЩИХ КАНАЛОВ ДВИГАТЕЛЯ, ОПРЕДЕЛЯЕМЫЙ
С
               ЭКСПЕРИМЕНТАЛЬНЫМ ПУТЕМ
С
         РОС, ТОС - ДАВЛЕНИЕ (Па) И ТЕМПЕРАТУРА (К) ВОЗДУХА В ОКРУЖАЮЩЕЙ
С
              СРЕДЕ; WR - ОБЪЕМ РЕСИВЕРА,
                                              мЗ
С
          ROR, ROPL - ПЛОТНОСТЬ МАТЕРИАЛА РОТОРА И ПЛАСТИН,
                                                               кг/м3
С
          Фазовые углы задаются относительно оси статора по часовой
```

```
С
         стрелке от вертикальной оси: D3, D2 - начало, конец впуска;
С
         D1, D4 - начало, конец выпуска
С
         LCP, DCP - ДЛИНА И ДИАМЕТР ВАЛА В СОПРЯЖЕНИИ, М
С
         DELCP - ЗАЗОР В СОПРЯЖЕНИИ ВАЛ-КРЫШКА ДВИГАТЕЛЯ, M
С
         ----- Вычисление констант ------
     IC=0
     ROOC=POC/(R*TOC)
     OMS=OMS*PI/30.
     RC=RR+E
        NEQS=2*NZ+7
        RO0=PO/(R*T0)
     ROBIX=PBIX/(R*TBIX)
     LRC=2.*PI*RR/NZ
        BET=2.*PI/NZ
     FS=RR*BET*2.*DLL
        BT2=BET/2.
        RP=(3.*WR/(4.*PI))**0.333
        FR=3.*WR/RP
        SR=PI*DOR*DOR/4.
        A(1) = RC*L*E
        A(2) = 2.*SIN(BT2)
        A(3) = E \times SIN(BET)/2./RC
        A(4) = BET * (1. - E/2./RC)
        A(5) = L * E * D E L / 2.
        A(6) = 2.*COS(BT2)
        A(7) = E/RC/2.
        A(8) = A(7) * COS(BET)
        A(9) = 2. *RC*E
        A(10) = L * E
С
        -- ДИНАМИЧЕСКАЯ ВЯЗКОСТЬ ТРАНСФОРМАТОРНОГО МАСЛА ПО ДАННЫМ МЭИ -
        X = (TCT - 273.) / 10. + 1
        TNU=(0.0004*X**6-0.0198*X**5+0.4017*X**4-4.2738*X**3+25.526*X**2
       -84.435*X+135.25)*1.E-6
     *
        ROM = 880.3*(1.-0.693E - 3*(TCT - 293.))
        TMU=TNU*ROM
С
        --- МОМЕНТ СИЛ ТРЕНИЯ МЕЖДУ ЦАПФОЙ И СТУПИЦЕЙ, А ТАКЖЕ МЕЖДУ ---
       ----- РОТОРОМ И КРЫШКАМИ СТАТОРА ------
С
       MCP=2.*PI*TMU*LCP*OMS*DCP**3/DELCP
       MRKS=TMU*PI*OMS*RR**4/(2.*DLL)
       MTR=MCP+MRKS
        MR=ROR*PI*RR**2*L
       MPR=ROR*L*DEL*H
       MPL=ROPL*L*DEL*HI
       A2=(D2-D3)*RC/2.
        B2=A2
        A1 = (D4 - D1) * RC/2.
        B1=A1/2.
        DPR=2.*PI/OMS/NPR
       MINC=0.5*MR*RR**2-NZ*MPR*(RR-H/2.)**2
С
        ----- ПЕРЕСЧЕТ ФАЗОВЫХ УГЛОВ ------
       D2=DFI(D2,RC,E)
        D3=DFI(D3,RC,E)
        D1=DFI(D1,RC,E)
        D4=DFI(D4, RC, E)
        WRITE(6,5)D3,D2,D1,D4
        FORMAT('D3,D2,D1,D4',4E9.3)
5
С
        ----- ВВОД НАЧАЛЬНЫХ УСЛОВИЙ ------
```

	DPBX=100000.								
	DO 1 I=1,NZ								
	DHH(I)=5.E-6								
	Y(I)=ROBIX								
1	Y(NZ+I)=TBIX								
	Y(NZ*2+1) = OMS								
	Y(NZ*2+2)=0.								
	Y (NZ*2+5) =RO0								
_	Y (NZ*2+6) = TO								
70	Y(NZ*2+3)=0.								
	Y(NZ*2+4)=0.								
	Y(NZ*2+7) = 0.								
	T=0 .								
	TP=0.								
	TN=T								
	TPR=0.								
_	IP=0								
7	CALL SOLDI (NEQS, AM, BB, T, Y, DYBYPL, DX, TO, YO, TP, HMIN, NMIN)								
	IF (T.LT.TPR) GO TO 4								
	IP=IP+1								
	VIV1(1,IP)=T								
	VIV1(2, IP) = P(1)								
	VIVI(3, IP) = Y(1)								
	VIVI(4, IP) = Y(NZ+I)								
	VIVI(5, IP) = MD								
	VIVI(6, IP) = MC								
	VIVI(7, 1P) = W(1)								
	$VIVI(0, IP) = I(NZ^2+4)$ $VIVI(0, IP) = V(NZ^2+4)$								
	$VIVI(9, 1P) = I(NZ^2+1)$ $VIVI(10, TD) = V(NZ^2+2+2)$								
	$VIVI(IU, IP) = I(NZ^2 + Z)$ VIVI(2/1 TD) = m								
	VIV2(1, IP) = 1 VIV2(2, ID) = C1(1)								
	VIV2(2, IP) = SI(I) VIV2(3, IP) = S2(1)								
	VIV2(3, IP) = S2(I) VIV2(4, IP) = C1(1)								
	VIV2(4, IP) = GI(1) VIV2(5, ID) = G2(1)								
	VIV2(5, IP) = GIR(1)								
	VIV2(0, IP) = GOR(1) VIV2(7, IP) = GIP(1)								
	VIV2(7, II) = OF(1)								
	VIV2(0, IP) = Y(NZ*2+5)								
	VIV2(3, II) = I(NZ + 2+3) VIV2(10 IP) = Y(NZ + 2+6)								
	VIV2(10) II = T								
	VIV3(2, IP) = MS								
	VIV3(3, IP) = DHH(1)								
	VIV3(4, IP) = FTR(1)								
	VIV3(5, IP) = FCB(1)								
	VIV3(6, IP) = VP(1)								
	VIV3(7, IP) = OB(1)								
	VIV3(8, IP) = Y(NZ*2+7)								
	VIV3(9, IP) = GRC(1)								
	TPR=TPR+DPR								
4	TP=TP+DXP								
	 Т=ТО								
	DO 6 I=1,NEQS								
6	Y(I)=YO(I)								
c	ОПИСАНИЕ ВЫХОДНЫХ ПАРАМЕТРОВ								
С	Р(1), Ү(1) - ДАВЛЕНИЕ (Па); ПЛОТНОСТЬ Р.Т. (кг/м3) в 1-ой ЯЧЕЙКЕ								
С	Y (NZ+1) – ТЕМПЕРАТУРА РАБОЧЕГО ТЕЛА В ЯЧЕЙКЕ, К								

MD, MC – МОМЕНТЫ: ДВИЖУЩИЙ, СОПРОТИВЛЕНИЯ, С Н*м С Т- ВРЕМЯ, с*;* W(1) - ТЕКУЩИЙ ОБЪЕМ ЯЧЕЙКИ, мЗ С Y (NZ*2+4) - ТЕКУЩЕЕ КОЛИЧЕСТВО РАБОЧЕГО ТЕЛА ПОСТУПАЮЩЕЕ ЧЕРЕЗ С ВПУСКНОЕ ОТВЕРСТИЕ ИЗ РЕСИВЕРА (МРТ), кг Y (NZ*2+1) - УГЛОВАЯ СКОРОСТЬ РОТОРА, С рад/с С Y(NZ*2+2) – УГОЛ ПОВОРОТА РОТОРА, рад С S1(1), S2(1) - ТЕКУЩАЯ ПЛОЩАДЬ ПРИ ВПУСКЕ И ВЫПУСКЕ, м2 G1(1), G2(1) - РАСХОДЫ ПРИ ВПУСКЕ И ВЫПУСКЕ, С кг/с С GUR(1) - РАСХОД ПРИ ПРОТЕЧКЕ ИЗ ЯЧЕЙКИ, КГ/С С GUP(1) - РАСХОД ПРИ ПРОТЕЧКЕ В ЯЧЕЙКУ, КГ/С С - ДАВЛЕНИЕ В РЕСИВЕРЕ, PR Па С Y (NZ*2+5) - ПЛОТНОСТЬ РАБОЧЕГО ТЕЛА В РЕСИВЕРЕ, кг/м3 С Y (NZ*2+6) - ТЕМПЕРАТУРА РАБОЧЕГО ТЕЛА В РЕСИВЕРЕ, к С РКК - РАСХОД ВОЗДУХА, КГ/С; ІС - НОМЕР РАССЧИТЫВАЕМОГО ЦИКЛА С DVN - ИНДИКАТОРНАЯ МОЩНОСТЬ ДВИГАТЕЛЯ, Вт С DVM - КРУТЯЩИЙ МОМЕНТ ДВИГАТЕЛЯ, Н*м С MS = MCP+MRKS+MPLC+MPLK - СУММАРНЫЙ МОМЕНТ ТРЕНИЯ, ГДЕ МСР, MRKS - СООТВЕТСТВЕННО МОМЕНТ ТРЕНИЯ ЦАПФА - СТУПИЦА И С С РОТОР - КРЫШКИ СТАТОРА, Н*м С MPLC - МОМЕНТ ТРЕНИЯ ПЛАСТИНА - СТЕНКА СТАТОРА, Н*м С МРЬК - МОМЕНТ ТРЕНИЯ ПЛАСТИНА - КРЫШКИ СТАТОРА, Н*м С DHH (1) - ВЕЛИЧИНА ЗАЗОРА В СОПРЯЖЕНИИ ПЛАСТИНА - СТАТОР, M FTR(1), FCB(1) - СИЛЫ: ТРЕНИЯ И ЦЕНТРОБЕЖНАЯ ЛОПАТКИ В ПАЗЕ, Н С VP(1) - СКОРОСТЬ ПЛАСТИНЫ В ПАЗЕ, м/с С С QB(1) – ТЕПЛОВОЙ ПОТОК МЕЖДУ РАБОЧИМ ТЕЛОМ И СТЕНКАМИ, Вт С Y (NZ*2+7) - ТЕКУЩАЯ МАССА УТЕЧЕК ИЗ 1-ОЙ ЯЧЕЙКИ ЗА ЦИКЛ (МҮТ), кг С GRC(1) - ПРОТЕЧКИ МЕЖДУ РОТОРОМ И КРЫШКАМИ СТАТОРА, кг/с _____ С IF(Y(NZ*2+2).LT.2.*PI) GO TO 7 IC=IC+1 Y(NZ*2+2) = Y(NZ*2+2) - 2.*PITK=T-TN PRK=Y(NZ*2+4)/TKDVN=Y(NZ*2+3)/TKDVM=DVN/OMS VBX=PRK/(Y(NZ*2+5)*PI*DK*DK/4.)DPBX=DZETA*0.5*(P0/POC)*ROOC*VBX*VBX IF(IC.LE.ICPR) GO TO 70 CALL PRVIV(IP,VIV1,VIV2,VIV3,PRK,DVN,DVM,IC) WRITE (6,8) VBX, DPBX 8 FORMAT(' VBX=', F6.1,' м/с',' DPBX=', E9.3,' Па') STOP END С _____ SUBROUTINE PRVIV(IP,VIV1,VIV2,VIV3,PRK,DVN,DVM,IC) С _____ С Подпрограмма печати выходных данных С _____ DIMENSION VIV1(10, IP), VIV2(10, IP), VIV3(9, IP) WRITE(6,1)WRITE(6, 2)WRITE(6, 1)WRITE(6,3)((VIV1(I,J),I=1,10),J=1,IP) WRITE(6,1)WRITE(6,4) WRITE(6,1)WRITE(6,5)((VIV2(I,J),I=1,10),J=1,IP)
```
WRITE(6,1)
     WRITE(6,7)
     WRITE(6,1)
     WRITE(6,8)((VIV3(I,J),I=1,9),J=1,IP)
     WRITE(6,1)
     WRITE(6,6)PRK, DVN, DVM, IC
1
     FORMAT (80 (1H-))
2
     FORMAT (2X, 'T', 6X, 'P', 7X, 'RO', 3X, 'TG', 6X, 'MD', 7X, 'MC', 7X, 'W', 7X,
       'MPT', 6X, 'OM', 5X, 'FI')
3
       FORMAT (F5.3, E9.3, F6.2, F6.1, 4E9.3, F7.1, F6.2)
     FORMAT (2X, 'T', 6X, 'S1', 7X, 'S2', 6X, 'G1', 7X, 'G2', 7X, 'GUR', 6X,
4
       'GUP', 6X, 'PR', 5X, 'ROR', 3X, 'TR')
     FORMAT (F5.3, 7E9.3, F5.2, F6.1)
5
6
       FORMAT (5X, 'PRK=', E9.3, 2X, 'DVN=', E9.3, 2X, 'DVM=', E9.3, 2X, 'IC=', I2)
       FORMAT (3X, 'T', 4X, 'MS', 7X, 'DHH', 7X, 'FTR', 6X, 'FCB', 8X, 'VP', 7X,
7
    *
       'QB',7X,'MYT',6X,'GRC')
8
     FORMAT (F5.3, 2E9.3, E10.3, E9.3, 2E10.3, 2E9.3)
       RETURN
       END
С
     _____
       FUNCTION DFI(D2,R,E)
С
       _____
С
           Пересчет фазовых углов относительно оси вращения ротора
С
       _____
     PARAMETER (PI=3.141593)
       IF(D2.LT.PI) DFI=PI-D2
       IF(D2.GT.PI) DFI=D2-PI
       RO=SQRT (E*E+R*R-2.*E*R*COS (DFI))
       DEL=ASIN(E*SIN(DFI)/RO)
       IF(D2.LT.PI) DFI=D2-DEL
       IF(D2.GT.PI) DFI=D2+DEL
       RETURN
       END
С
       _____
       SUBROUTINE DYBYPL (XT, Y, DY, NEQS)
С
       _____
                                          С
         Расчет правых частей обыкновенных дифференциальных уравнений
       _____
С
       IMPLICIT REAL(L-M)
     PARAMETER (PI=3.141593)
       DIMENSION Y(NEQS), DY(NEQS), U(15), H(15), P(15), QB(15), G1(15),
       G2(15), DW(15), W(15), A(10), S1(15), S2(15), GUR(15), GUP(15), S(15),
    *
       DP(15), DR(15), GRC(15), DHH(15), FTR(15), FCB(15), VP(15)
       COMMON/RASX/RC, NZ, E, BET, BT2, W0/RSX1/A1, B1, A2, B2
     COMMON/YT3/DHH, FTR, FCB, VP
       COMMON/HY/A, DPBX, PBIX, ALB, TCT/RW/R/GRAD/D1, D2, D3, D4
       COMMON/VIV/MD, MC, MIN, P, W, S1, S2, SR, WR, PR, FR, G1, G2, GUR, GUP, QB, GRC
     COMMON/ISX/L, MINC, MPL, HI/FDR/RR, TMU, MS, DEL, DEPL/YT1/DLL, LRC, MTR
     DO 2 I=1,NZ
     U(I) = CV0(Y(NZ+I)) * Y(NZ+I)
     H(I) = U(I) + R * Y(NZ+I)
2
     P(I) = Y(I) * R * Y(NZ+I)
     GRS=0.
     PR=Y (NZ*2+5) *R*Y (NZ*2+6)
     CVR=CV0 (Y (NZ*2+6))
     PGR=(CVR+R) *Y (NZ*2+6)
       DO 1 I=1,NZ
```

```
FI=Y(NZ*2+2)+BET*(I-1)
         IF(FI.GT.2.*PI) FI=FI-2.*PI
         CALL WS(A,W(I),DW(I),S(I),FI,Y(NZ*2+1),DP(I),DR(I))
      CV=CV0(Y(NZ+I))
         CALL FIPL(FI,S2(I),D1,D4,B1,A1)
         IF(S2(I).EQ.0.) GO TO 4
         G2(I) = G(Y(NZ+I), P(I), PBIX) * S2(I)
         GO TO 5
4
         G2(I) = 0.
5
         CALL FIPL(FI,S1(I),D3,D2,B2,A2)
         IF(S1(I).EQ.0.) GO TO 6
         G1(I) = G(Y(NZ*2+6), PR-DPBX, P(I))*S1(I)
         GO TO 7
6
         G1(I) = 0.
7
      GRS=GRS+G1(I)
      GRC(I) = 2.18 \times RGYT(P(I), PBIX, Y(NZ+I), DLL, LRC, RR)
С
      ----- РАСЧЕТ ПРОТЕЧЕК МЕЖДУ ЯЧЕЙКАМИ ДВИГАТЕЛЯ -------
           IF(I.EQ.NZ) GO TO 40
              IF(P(I).GT.P(I+1)) GO TO 41
              GUP(I) = -RGYT(P(I+1), P(I), Y(NZ+I+1), DHH(I), L, DEL) -
     *
        RGYT(P(I+1), P(I), Y(NZ+I+1), DLL, DR(I), DEL)
              GUR(I)=0.
              GO TO 43
41
              GUR(I) = RGYT(P(I), P(I+1), Y(NZ+I), DHH(I), L, DEL) +
     *
        RGYT(P(I), P(I+1), Y(NZ+I), DLL, DR(I), DEL)
              GUP(I)=0.
           GO TO 43
40
           IF(P(I).GT.P(1)) GO TO 44
              GUP(I) = -RGYT(P(1), P(I), Y(NZ+1), DHH(I), L, DEL) -
        RGYT(P(1), P(I), Y(NZ+1), DLL, DR(I), DEL)
     *
              GUR(I)=0.
           GO TO 43
44
              GUR(I) = RGYT(P(I), P(1), Y(NZ+I), DHH(I), L, DEL) +
     *
        RGYT(P(I), P(1), Y(NZ+I), DLL, DR(I), DEL)
              GUP(I)=0.
43
           IF(I.EQ.1) GO TO 46
           IF(P(I-1).GT.P(I)) GO TO 47
              GUP(I-1) = - RGYT(P(I), P(I-1), Y(NZ+I), DHH(I), L, DEL) -
     *
        RGYT(P(I), P(I-1), Y(NZ+I), DLL, DP(I), DEL)
              GUR(I-1)=0.
           GO TO 49
47
           GUR (I-1) = RGYT (P(I-1), P(I), Y(NZ+I-1), DHH(I), L, DEL) +
     *
        RGYT(P(I-1), P(I), Y(NZ+I-1), DLL, DP(I), DEL)
              GUP(I-1)=0.
           GO TO 49
46
           IF(P(NZ).GT.P(I)) GO TO 50
              GUP(NZ) = -RGYT(P(I), P(NZ), Y(NZ+I), DHH(I), L, DEL) -
        RGYT(P(I), P(NZ), Y(NZ+I), DLL, DP(I), DEL)
     *
              GUR(NZ)=0.
              GO TO 49
50
              GUR(NZ) = RGYT(P(NZ), P(I), Y(NZ+NZ), DHH(I), L, DEL) +
     *
        RGYT (P(NZ), P(I), Y(NZ+NZ), DLL, DP(I), DEL)
              GUP(NZ) = 0.
49
           IF(I.EQ.1) GO TO 22
           SGUT = -GUR(I) - GUP(I) + GUR(I-1) + GUP(I-1)
           SPGUT=-GUR(I)*(H(I)-U(I))-GUP(I)*(H(I+1)-U(I))+
     *
              GUR(I-1)*(H(I-1)-U(I))+GUP(I-1)*(H(I)-U(I))
```

22	*	GO TO 33 SGUT=-GUR(I)-GUP(I)+GUR(NZ)+GUP(NZ) SPGUT=-GUR(I)*(H(I)-U(I))-GUP(I)*(H(I+1)-U(I))+ GUR(NZ)*(H(NZ)-U(I))+GUP(NZ)*(H(I)-U(I))
33	*	DY (I) = (G1 (I) -G2 (I) -GRC (I) +SGUT-Y (I) *DW (I)) /W (I) QB (I) =ALB*Y (I) *S (I) * (Y (NZ+I) -TCT) DY (NZ+I) = ((PGR-U (I)) *G1 (I) +SPGUT-R*Y (NZ+I) * (G2 (I) +GRC (I) +Y (I) *DW (I)) -QB (I)) / (CV*Y (I) *W (I)) DY (NZ+2) - GUD (1) - GUD (1)
1		DY (NZ*2+7) = GOR (1) - GOP (NZ) CONTINUE CALL REDPL (P, A (7), MD, MC, MIN, Y (NZ*2+2), Y (NZ*2+1)) $DY (NZ*2+1) = (MD-MC) / MIN$ $DY (NZ*2+2) = Y (NZ*2+1)$ $DY (NZ*2+3) = MD*Y (NZ*2+1)$ $DY (NZ*2+4) = GRS$
C		DY (NZ*2+5) =-GRS/WR QBR=ALB*Y (NZ*2+5) *FR* (Y (NZ*2+6) -TCT) DY (NZ*2+6) = (-R*Y (NZ*2+6) *GRS-QBR) / (CVR*Y (NZ*2+5) *WR) RETURN END
С		SUBROUTINE WS(A,W,DW,S,FI,OM,DP,DR)
с с с		Вычисление объемов, их скоростей изменения, а также площадей поверхностей теплообмена ячеек двигателя
	*	DIMENSION A(10) COMMON/RASX/RC,NZ,E,BET,BT2,W0 B1=A(4)+A(2)*COS(FI)+A(3)*COS(2.*FI) B2=2.+A(6)*COS(FI)-A(7)+A(8)*COS(2.*FI) DP=E*((COS(FI-BT2)+1.)-A(7)*SIN(FI-BT2)**2) DR=E*((COS(FI+BT2)+1.)-A(7)*SIN(FI+BT2)**2) WFI=A(1)*B1 DWFI=-OM*A(1)*(A(2)*SIN(FI)+2.*A(3)*SIN(2.*FI)) WPL=A(5)*B2 DWPL=-OM*A(5)*(2.*A(6)*SIN(FI)+2.*A(8)*SIN(2.*FI)) W=WFI-WPL+W0 DW=DWFI-DWPL S=A(9)*B1+A(10)*B2+A(10)*(BET*(2.*RC-E-0.5*A(7)*E)+ E*A(2)*COS(FI)+0.5*E*A(3)*COS(2.*FI))/E RETURN END
C C C		SUBROUTINE FIPL (FI,S,B1,B2,B,A) Расчет площадей проходных сечений на впуске и выпуске
С		PARAMETER (PI=3.141593) COMMON/RASX/RC,NZ,E,BET,BT2,W0 IF(FI+BT2.LT.B1) GO TO 1 IF(FI-BT2.GT.B1) GO TO 2 IF(FI+BT2.GT.B2.AND.FI-BT2.LT.B1)GO TO 4 IVAR=1 CALL OPRS(IVAR,FI,B1,B2,S,B,A) GO TO 9

```
2
       CONTINUE
       IF(FI+BT2.GT.B2) GO TO 3
       IVAR=2
       CALL OPRS (IVAR, FI, B1, B2, S, B, A)
       GO TO 9
3
       CONTINUE
       IF(FI-BT2.GT.B2) GO TO 1
       IVAR=3
       CALL OPRS (IVAR, FI, B1, B2, S, B, A)
       GO TO 9
1
       S=0.
       GO TO 9
4
       S=A*B*PI
9
       RETURN
       END
С
       _____
       SUBROUTINE REDPL(P,A,MD,MC,MIN,FI,OM)
С
       _____
С
       Вычисление моментов: движущего, трения, сопротивления и инерции
С
       _____
       IMPLICIT REAL (K-M)
       DIMENSION P(15), DHH(15), FTR(15), FCB(15), VP(15)
       COMMON/ISX/L,MINC,MPL,HI/RASX/RC,NZ,E,BET,BT2,W0
     COMMON/FDR/RR, TMU, MS, DEL, DEPL/YT3/DHH, FTR, FCB, VP/YT1/DLL, LRC, MTR
       MD=0.
       MIN=0.
       MPLC=0.
     MPLK=0.
       DO 1 I=1,NZ
       RFI=FI+BET*(I-1)+BT2
     RO=RC+E*COS(RFI)-A*E*SIN(RFI)**2
7
     PSI=ASIN(SIN(RFI)*E/RC)
       DL2=RO-RR
С
       ----- ОПРЕДЕЛЕНИЕ СКОРОСТИ ПЛАСТИН В ПАЗАХ РОТОРА ------
       VP(I) = -OM*SIN(RFI)*(E+E*E*COS(RFI)/RC)
     FTR(I) = -2. *TMU*VP(I) * (HI-DL2) *L/DEPL
     FCB(I) = (RO-HI/2.) *MPL*OM**2
       FSUM=FTR(I)+FCB(I)
С
       ----- ОПРЕДЕЛЕНИЕ ЗАЗОРА МЕЖДУ ПЛАСТИНОЙ И СТАТОРОМ ------
       DHH(I)=SQRT(0.16*TMU*OM*RO*DEL*DEL*L/FSUM)
       ----- МОМЕНТ СИЛЫ ТРЕНИЯ МЕЖДУ ПЛАСТИНОЙ И СТАТОРОМ ------
С
       PMPLC=TMU*OM*RO*DEL*L*RO/DHH(I)
       MPLC=MPLC+PMPLC
       ---- МОМЕНТ СИЛ ТРЕНИЯ МЕЖДУ ПЛАСТИНОЙ И КРЫШКАМИ СТАТОРА ----
С
       ROCPL=RR+DL2/2.
       PMPLK=2.*TMU*OM*ROCPL*DEL*DL2*ROCPL/DLL
     MPLK=MPLK+PMPLK
       IF(I.EQ.NZ) GO TO 2
       MD=MD+(P(I)-P(I+1))*L*DL2*ROCPL
       GO TO 1
       MD=MD+(P(NZ)-P(1))*L*DL2*ROCPL
2
1
       MIN=MIN+(RO-HI/2.)**2
       MIN=MINC+MPL*MIN
     MS=MTR+MPLC+MPLK
     MD=MD-MS
     MC=MD
       RETURN
```

C	END
C	<pre>subroutine soldi(jm,a,b,xi,yi,rp,hio,xo,yo,xp,hmin,min)</pre>
С	
	real k,max
	dimension $y(50)$, d1(50), d2(50), y1(50), y0(50)
	n=n10
	nc=n
	x=x1
10	do 10 j=1,jm
10	yo(j)=y1(j)
20	
05	do 25 j=1,jm
25	y(j) = yo(j)
	$\begin{array}{c} \text{call } rp(x,y,\text{dl},\text{jm}) \\ \text{de } 20, \frac{1}{2} - 1, \frac{1}{2} \end{array}$
	do 30 = 1, m
20	$dI(j) = n \wedge dI(j)$
30	y(j) = y(j) + dI(j)
	da = 10 + 1 + m
	$d0 \ 40 \ J=1, Jm$ $d2(i)=0 \ 5+(d1(i)+b+d2(i))$
40	$dz(j) = 0.5^{\circ} (dz(j) + 11^{\circ} dz(j))$
40	$y(j) - y(j) - \alpha (j) + 0.5^{\alpha} \alpha (j)$
	$d_{0} = 60 \dot{z} = 1 \dot{z}_{m}$
	d1 (i) = (2 + b + d1 (i) + d2 (i)) / 3
	v(i) = v(i) - 0.5 + d2(i)
	y(j) = y(j) = 0.5 d2(j) k=abs(d1(i)-d2(i))/(a+b*abs(d1(i)))
	if(k-max) = 60.50.50
50	max=k
60	continue
00	if(max-1, 25) 80, 80, 65
65	if(mm) 70.70.100
70	h=h/sgrt(max)
	if (h-hmin) 75, 20, 20
75	h=hmin
	mm=1
	min=1
	go to 20
80	if(max-0.5)85,100,100
85	if(max-0.0001)90,90,95
90	max=0.0001
95	hc=h/sgrt(sgrt(max))
100	do 110 j=1, jm
110	y(j) = y(j) + d1(j)
	mm=0
	x=x+h
	h=hc
	do 115 j=1,jm
115	yo(j)=y(j)
	if(x-xp)120,140,140
120	if(x+h-xp)20,20,130
130	hio=h
	h=xp-x+1.E-25
	go to 20
140	xo=x
	return

en	nd
SU	UBROUTINE OPRS(IVAR, FI, D2, D3, S, B, A)
	Вычисление площадей сечений при впуске и выпуске
ARAI	METER (PI=3.141593)
CC	MMON/RASX/RC, NZ, E, BET, BT2, W0
GC	D TO(1,2,3),IVAR
F1	=FI+BT2-D2
X=	F1*RC
IF	T(X.GT.2.*A) X=2.*A
Y=	B*SQRT(2.*X/A-X*X/A/A)
S=	=A*B*ACOS ((A-X) /A) - (A-X) *Y
GC	D TO 4
F1	=FI+BT2-D2
F2	2=FI-BT2-D2
X1	=F1*RC
IF	T(X1.GT.2.*A) X1=2.*A
X2	2=F2*RC
IF	T(X2.GT.2.*A) X2=2.*A
¥1	=B*SQRT(2.*X1/A-X1*X1/A/A)
¥2	2=B*SQRT(2.*X2/A-X2*X2/A/A)
S1	=A*B*ACOS((A-X1)/A) - (A-X1)*Y1
S2	2=A*B*ACOS ((A-X2) /A) - (A-X2) *Y2
S=	=S1-S2
GC	D TO 4
F1	=FI-BT2-D2
X=	F1*RC
IF	(X.GT.2.*A) X=2.*A
Y=	B*SQRT (2.*X/A-X*X/A/A)
S2	2=A*B*ACOS ((A-X) /A) - (A-X) *Y
S=	=A*B*PI-S2
RE	TURN
EN 	טו
FU	UNCTION CV0(T)
СС	MMON/CDR/ADR(4)
ТC	с=т-273.
CV	70=ADR(1)+ADR(2)*TC+ADR(3)*TC*TC+ADR(4)*TC*TC*TC
RE	TURN
EN	ID
 FU	UNCTION G(T0,P0,PC)
RE	AL I,IO
CC	MMON/RW/R
IF	(PU.LT.PC) GO TO 3
CV	
10)= (CV+R) *T0
RC	=R/(CV+R)
PŘ 	$= FU^{(2.*CV)}(CV+CV+K) \times (1./KC)$
IF TF	(PC.LE.PK) GO TO I
T=	=TU^ (PC/PU)^^KC
RC	/= ε/((K^Τ))
GC) TO 2

	T=T0*(PK/P0)**RC
	RO=PK/(R*T)
	I = (CV+R) *T
	IF(IO.LE.I) I=IO
	G = RO * SQRT(2.*(10-1))
	G-U. Remiirn
	END
	BLOCK DATA
	воздух
	COMMON/CDR/ADR(4)/RW/R
	DATA R/287./,ADR/717.0,0.2223,-4.978E-5,2.469E-9/
	END
fu	<pre>nction rgyt(p2,p1,t2,del,1,b)</pre>
	Определение протечек через зазор (щель)
-	р2 - давление на входе щели (в полости высокого давления), Па
рт	- давление на выходе щели (в полости низкого давления), lla
	гоі - плотность газа, определяемая при давлении рі и температуре
	del – величина зазора l – ширина шели b – плина шели (пути таза)
	ти – пинамическая вязкость возлуха (формула Сатерленда, Па*с)
im	plicit real (k-m)
co	mmon/rw/rb
ro	1=p1/(rb*t2)
mu	=17.12e-6*384./(t2+111.)*(t2/273.)**1.5
ta	u=p2/p1
if	(tau.lt.1.) $tau=1.$
su	m=b/(2.*del)*(1.+del/1)
	al=rol*pl*l*l*del*del*(tau**2-1.)
a 3	$a_2 - a_{100}(c_{40} - c_{2})$ =96 *sum*mu*1
ъ0	=3.5
b1	=-0.00012/(mu*1)
	r = (a2+b0)/b1
	s=a3/b1
	t=-a1/b1
ca	ll rkyb(r,s,t,v1,v2,v3)
rg	yt=v3
re	turn
en	d
	subroutine rkyb(rr,s,tt,v1,v2,v3)
	ПОДПРОГРАММА РЕШЕНИЯ КУБИЧЕСКОГО УРАВНЕНИЯ
	parameter (pi=3.141593)
pp	=(3.*s-rr*rr)/3.
	q=2.*rr*rr*rr/27rr*s/3.+tt
	if(q) 4,4,5
	rb=-sqrt(abs(pp)/3.)
	go to 6

5	rb=sqrt(abs(pp)/3.)
6	d=pp*pp*pp/27.+q*q/4.
	sh=q/(2.*rb*rb*rb)
	a1=-2.*rb
	a2=rr/3.
	if(pp.gt.0.) go to 1
	go to 2
1	fi=alog(sh+sqrt(sh*sh+1.))
	v1=a1*sinh(fi/3.)-a2
	v2=v1
	v3=v1
	return
2	if(d.gt.0.) go to 3
	fi=acos(sh)
	v1=a1*cos(fi/3.)-a2
	v2=a1*cos((fi+2.*pi)/3.)-a2
	v3=a1*cos((fi+4.*pi)/3.)-a2
	return
3	fi=alog(sh+sqrt(sh*sh-1.))
	v1=a1*cosh(fi/3.)-a2
	v2=v1
	v3=v1
	return
	end
С	

Результаты расчета по программе PRDVM.FOR

РО,	PBIX, T0, TBIX, TCT	, DLL , DEPL , I	CPR, DK	
500000.000000	140000.000000	0 293	.0000000	293.0000000
293.000000	1.000000E-004	2.500000E-0	05	3 1.200000E-002
	RR,E,L,DEL,HI,H,	NZ, NPR, OMS,	ALB,WR	
3.000000E-002 6.	000000E-003 8.5	00000E-002	4.000000E-003	3 2.400000E-002
2.500000E-002	6	20	4000.0000000	15.000000
1.000000E-001				
ROR,	ROPL, W0, D3, D2, D1	, D4, DZETA, P	OC, TOC	
7800.000000	1400.000000	3.000000	E-006	3.5810000
4.2050000	6.070000E-001	2.24	10000	9.000000
100000.000000	293.000000	D		
LCP,DC	P,DELCP			
7.000000E-002 1.	500000E-002 1.00	00000E-005		
D3,D2,D1,D4 .366E+01	.436E+01 .524E+0	00 .210E+01		

т	P	RO	TG	MD	MC	W	MPT	OM	FI
.000	.162E+06	2.48	227.4	.362E+01	.362E+01	.365E-04	.000E+00	418.9	.00
.001	.140E+06	2.24	218.5	.384E+01	.384E+01	.296E-04	.444E-04	418.9	. 42
.002	.140E+06	2.23	218.8	.433E+01	.433E+01	.228E-04	.717E-04	418.9	.84
.003	.139E+06	2.22	219.0	.470E+01	.470E+01	.157E-04	.108E-03	418.9	1.26
.004	.140E+06	2.22	219.6	.366E+01	.366E+01	.974E-05	.146E-03	418.9	1.68
.005	.142E+06	2.20	221.2	.512E+01	.512E+01	.565E-05	.170E-03	418.9	2.10
.006	.232E+06	2.15	230.3	.385E+01	.385E+01	.361E-05	.214E-03	418.9	2.51
.007	.430E+06	2.95	274.4	.432E+01	.432E+01	.361E-05	.241E-03	418.9	2.93
.008	.429E+06	4.69	319.9	.474E+01	.474E+01	.565E-05	.277E-03	418.9	3.35
.009	.431E+06	4.88	306.1	.368E+01	.368E+01	.974E-05	.315E-03	418.9	3.77
.010	.423E+06	5.01	299.8	.510E+01	.510E+01	.157E-04	.339E-03	418.9	4.19
.011	.292E+06	4.99	295.5	.384E+01	.384E+01	.228E-04	.384E-03	418.9	4.61
.012	.208E+06	3.82	265.7	.433E+01	.433E+01	.297E-04	.411E-03	418.9	5.03
.013	.172E+06	2.99	241.8	.468E+01	.468E+01	.347E-04	.447E-03	418.9	5.45

.014 .163E+06 2.61 230.3 .368E+01 .368E+01 .365E-04 .485E-03 418.9 5.87

	S1	s2	G1	G2	GUR	GUP	PR	ROR	TR
.000	.000E+00	.199E-06	.000E+00	.606E-04	.277E-03 .	000E+00	.498E+06	5.93	292.7
.001	.000E+00	.703E-03	.000E+00	.130E-01	.000E+00	220E-05	.498E+06	5.93	292.7
.002	.000E+00	.102E-02	.000E+00	.288E-01	.000E+00	273E-05	.498E+06	5.93	292.7
.003	.000E+00	.878E-03	.000E+00	.000E+00	.000E+00	319E-03	.498E+06	5.93	292.7
.004	.000E+00	.440E-03	.000E+00	.202E-01	.000E+00	697E-03	.498E+06	5.93	292.7
.005	.000E+00	.743E-04	.000E+00	.693E-02	.000E+00	154E-02	.498E+06	5.93	292.7
.006	.000E+00	.000E+00	.000E+00	.000E+00	.000E+00	142E-02	.498E+06	5.93	292.7
.007	.117E-03	.000E+00	.894E-02	.000E+00	.111E-04 .	000E+00	.498E+06	5.93	292.6
.008	.396E-03	.000E+00	.597E-01	.000E+00	.707E-03 .	000E+00	.498E+06	5.93	292.6
.009	.396E-03	.000E+00	.000E+00	.000E+00	.147E-02 .	000E+00	.498E+06	5.93	292.6
.010	.112E-03	.000E+00	.302E-01	.000E+00	.165E-02 .	000E+00	.498E+06	5.93	292.6
.011	.000E+00	.000E+00	.000E+00	.000E+00	.108E-02 .	000E+00	.498E+06	5.93	292.6
.012	.000E+00	.000E+00	.000E+00	.000E+00	.598E-03 .	000E+00	.498E+06	5.93	292.6
.013	.000E+00	.000E+00	.000E+00	.000E+00	.386E-03 .	000E+00	.498E+06	5.93	292.6
.014	.000E+00	.602E-07	.000E+00	.188E-04	.285E-03 .	000E+00	.498E+06	5.93	292.6
Т	MS	DHH	FTR	FCB	VP	QB	MYT		GRC
т .000	MS .209E+01	DHH . 362E-04	FTR .272E+01	FCB .582E+02	VP 145E+01	QB 	MYT 	+00 .:	GRC 302E-03
T .000 .001	MS .209E+01 .209E+01	DHH .362E-04 .358E-04	FTR .272E+01 .638E+01	FCB .582E+02 .496E+02	VP 145E+01 254E+01	QB 	MYT 02 .000E 02 .145E	+00 .:	GRC 302E-03 115E-05
T .000 .001 .002	MS .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04	FTR .272E+01 .638E+01 .681E+01	FCB .582E+02 .496E+02 .447E+02	VP 145E+01 254E+01 237E+01	QB 223E+ 210E+ 191E+	MYT 02 .000E 02 .145E 02 .150E	+00 .:	GRC 302E-03 115E-05 264E-05
T .000 .001 .002 .003	MS .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04	FTR .272E+01 .638E+01 .681E+01 .584E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02	VP 145E+01 254E+01 237E+01 184E+01	QB 223E+ 210E+ 191E+ 171E+	MYT 02 .000E 02 .145E 02 .150E 02 .153E	+00 .: -06 .: -06 .:	GRC 302E-03 115E-05 264E-05 450E-08
T .000 .001 .002 .003 .004	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04	FTR .272E+01 .638E+01 .681E+01 .584E+01 .365E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01	QB 223E+ 210E+ 191E+ 171E+ 149E+	MYT 02 .000E 02 .145E 02 .150E 02 .153E 02 .154E	+00 .: -06 .: -06 .: -06	GRC 302E-03 115E-05 264E-05 450E-08 692E-05
T .000 .001 .002 .003 .004 .005	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .398E-04	FTR .272E+01 .638E+01 .681E+01 .584E+01 .365E+01 .772E+00	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01 221E+00	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+	MYT 02 .000E 02 .145E 02 .150E 02 .153E 02 .154E 02 .157E	+00 .: -06 .: -06 .: -06 .: -06 .:	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04
T .000 .001 .002 .003 .004 .005 .006	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .398E-04 .415E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01 221E+00 .651E+00	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+ 459E+	MYT 02 .000E 02 .145E 02 .150E 02 .153E 02 .154E 02 .154E 02 .157E 01 .164E	+00 -06 -06 -06 -06 -06	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04 964E-03
T .000 .001 .002 .003 .004 .005 .006 .007	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .398E-04 .415E-04 .425E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01 486E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02 .387E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01 221E+00 .651E+00 .147E+01	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+ 459E+ .105E+	MYT 02 .000E 02 .145E 02 .150E 02 .153E 02 .154E 02 .157E 01 .164E 02 .413E	+00 -06 -06 -06 -06 -06	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04 964E-03 255E-02
T .000 .001 .002 .003 .004 .005 .006 .007 .008	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .398E-04 .415E-04 .425E-04 .424E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01 486E+01 650E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02 .387E+02 .424E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01 221E+00 .651E+00 .147E+01 .214E+01	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+ 459E+ .105E+ .556E+	MYT 02 .000E 02 .145E 02 .150E 02 .153E 02 .154E 02 .157E 01 .164E 02 .413E 01 .119E	+00 -06 -06 -06 -06 -06 -06	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04 964E-03 255E-02 265E-02
T .000 .001 .002 .003 .004 .005 .006 .007 .008 .009	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .398E-04 .415E-04 .425E-04 .424E-04 .414E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01 486E+01 650E+01 676E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02 .387E+02 .424E+02 .471E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01 221E+00 .651E+00 .147E+01 .214E+01 .251E+01	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+ 459E+ .105E+ .556E+ .321E+	MYT 02 .000E 02 .145E 02 .153E 02 .153E 02 .154E 02 .157E 01 .164E 02 .413E 01 .119E 01 .277E	+00 . -06 . -06 . -06 . -06 . -06 . -06 . -05 .	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04 964E-03 255E-02 265E-02 273E-02
T .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 .010	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .398E-04 .415E-04 .425E-04 .424E-04 .414E-04 .399E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01 486E+01 650E+01 676E+01 569E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02 .387E+02 .424E+02 .471E+02 .522E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01 221E+00 .651E+00 .147E+01 .214E+01 .251E+01 .245E+01	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+ 459E+ .105E+ .556E+ .321E+ .133E+	MYT 02 .000E 02 .145E 02 .150E 02 .154E 02 .154E 02 .157E 01 .164E 02 .413E 01 .119E 01 .277E 01 .543E	+00 -06 -06 -06 -06 -06 -05 -05	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04 964E-03 255E-02 265E-02 273E-02 273E-02
T .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 .010 .011	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .382E-04 .398E-04 .415E-04 .425E-04 .424E-04 .414E-04 .399E-04 .385E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01 486E+01 650E+01 676E+01 569E+01 378E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02 .387E+02 .424E+02 .471E+02 .522E+02 .566E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01 221E+00 .651E+00 .147E+01 .214E+01 .251E+01 .245E+01 .189E+01	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+ 459E+ .105E+ .321E+ .133E+ 121E+	MYT 02 .000E 02 .145E 02 .150E 02 .153E 02 .154E 02 .157E 01 .164E 01 .164E 01 .119E 01 .277E 01 .543E 02 .742E	+00 -06 -06 -06 -06 -06 -05 -05 -05	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04 964E-03 255E-02 265E-02 273E-02 273E-02 165E-02
T .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 .010 .011 .012	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .398E-04 .415E-04 .425E-04 .424E-04 .414E-04 .399E-04 .385E-04 .375E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01 486E+01 650E+01 569E+01 378E+01 161E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02 .387E+02 .424E+02 .471E+02 .522E+02 .566E+02 .595E+02	VP 145E+01 254E+01 254E+01 184E+01 108E+01 221E+00 .651E+00 .147E+01 .214E+01 .245E+01 .189E+01 .896E+00	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+ 459E+ .105E+ .556E+ .321E+ .133E+ 121E+ 195E+	MYT 02 .000E 02 .145E 02 .150E 02 .153E 02 .154E 02 .157E 01 .164E 02 .413E 01 .119E 01 .277E 01 .543E 02 .742E 02 .884E	+00 -06 -06 -06 -06 -05 -05 -05 -05	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04 964E-03 255E-02 273E-02 273E-02 273E-02 270E-02 165E-02 841E-03
T .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 .010 .011 .012 .013	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .398E-04 .415E-04 .425E-04 .424E-04 .399E-04 .385E-04 .385E-04 .367E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01 486E+01 650E+01 569E+01 378E+01 161E+01 .543E+00	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02 .387E+02 .424E+02 .424E+02 .522E+02 .566E+02 .595E+02 .601E+02	VP 	QB 	MYT 02 .000E 02 .145E 02 .150E 02 .153E 02 .154E 02 .157E 01 .164E 01 .119E 01 .277E 01 .543E 02 .742E 02 .884E 02 .964E	+00 . -06 . -06 . -06 . -06 . -06 . -05 . -05 . -05 . -05 .	GRC 302E-03 115E-05 264E-05 450E-08 692E-05 277E-04 964E-03 255E-02 273E-02 273E-02 270E-02 165E-02 841E-03 436E-03
T .000 .001 .002 .003 .004 .005 .006 .007 .008 .009 .010 .011 .012 .013 .014	MS .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01 .209E+01	DHH .362E-04 .358E-04 .360E-04 .368E-04 .382E-04 .415E-04 .425E-04 .424E-04 .414E-04 .399E-04 .385E-04 .375E-04 .367E-04 .362E-04	FTR .272E+01 .638E+01 .584E+01 .365E+01 .772E+00 225E+01 486E+01 650E+01 569E+01 378E+01 161E+01 .543E+00 .271E+01	FCB .582E+02 .496E+02 .447E+02 .404E+02 .374E+02 .361E+02 .366E+02 .387E+02 .424E+02 .424E+02 .522E+02 .566E+02 .595E+02 .601E+02 .583E+02	VP 145E+01 254E+01 237E+01 184E+01 108E+01 221E+00 .651E+00 .147E+01 .214E+01 .245E+01 .189E+01 .896E+00 310E+00 144E+01	QB 223E+ 210E+ 191E+ 171E+ 149E+ 117E+ 459E+ .105E+ .321E+ .321E+ .133E+ 121E+ 195E+ 220E+ 225E+	MYT 02 .000E 02 .145E 02 .153E 02 .154E 02 .154E 02 .157E 01 .164E 01 .119E 01 .277E 01 .543E 02 .742E 02 .884E 02 .964E 02 .101E	+00 . -06 . -06 . -06 . -06 . -06 . -05 . -05 . -05 . -05 . -05 .	GRC 302E-03 115E-05 264E-05 264E-05 277E-04 964E-03 255E-02 265E-02 273E-02 273E-02 270E-02 165E-02 841E-03 316E-03 316E-03

PRK= .339E-01 DVN= .182E+04 DVM= .434E+01 IC= 4 VBX= 50.6 м/с DPBX= .686E+05 Па

Приложение 12

С	KLOT.FOR
С	ОПРЕДЕЛЕНИЕ ПОПРАВКИ К ОБЪЕМУ РАБОЧЕЙ КАМЕРЫ РПД
С	С ТАНГЕНЦИАЛЬНЫМ РАСПОЛОЖЕНИЕМ ЛОПАТОК
С	
С	RO – РАДИУС РОТОРА, М; Е – ЭКСЦЕНТРИСИТЕТ, М; ALFA1 – УГОЛ
С	НАКЛОНА ЛОПАТКИ, град; GAMMA - УГЛОВОЙ ШАГ МЕЖДУ ЛОПАТКАМИ, град
С	DEL – ТОЛЩИНА ЛОПАТКИ, M; DL – ДЛИНА РОТОРА, М
С	
С	См. Зеленецкий С.Б., Рябков Е.Д., Микеров А.Г. Ротационные
С	пневматические двигатели Л.: Машиностроение, 1976. 240с.
С	
	REAL KY1, KY2, KX1, KX2
	PARAMETER (PI=3.1415)
	DATA E, RO, GAMMA, ALFA1, DEL, DL/0.006, 0.03, 90., 30., 0.004, 0.08/
	A=RO/E
	R=RO+E
	DD=DEL*DL/2.
	GAMMA=GAMMA*PI/180.
	ALFA1=ALFA1*PI/180.

```
FI=0.
1
     FI=FI+10.
     FIS=FI*PI/180.
     CALL FIF (FIS, ALFA1, E, R, A, RO, OM1, DOM1, X1, XI1, YO1, DX1, DXI1, PSI1,
     * BETA1, KY1, KX1, DYO1, FI1)
     PSI1=PSI1*180./PI
     BETA1=BETA1*180./PI
     FIS=FIS+GAMMA
     CALL FIF (FIS, ALFA1, E, R, A, RO, OM2, DOM2, X2, X12, YO2, DX2, DX12, PS12,
     * BETA2, KY2, KX2, DYO2, FI2)
     PSI2=PSI2*180./PI
     BETA2=BETA2*180./PI
     S=0.5*SIN(ALFA1)*(X2*Y02-X1*Y01)
     DS=0.5*SIN(ALFA1)*(X2*DYO2+YO2*DX2-X1*DYO1-YO1*DX1)
     OM1=OM1*180./PI
     OM2=OM2*180./PI
      ----- выходные данные ------
С
       FI - УГОЛ ПОВОРОТА РОТОРА, град
С
С
       S - ПОПРАВКА К ПЛОЩАДИ, м2; DS - ПРОИЗВОДНАЯ ПОПРАВКИ, м2/град
С
       ОМ1, ОМ2 - ЦЕНТРАЛЬНЫЕ УГЛЫ, СООТВЕТСТВУЮЩИЕ ВЫСТУПАЮЩИМ
С
                ЧАСТЯМ ЛОПАТОК, град
С
       PSI1, PSI2 - УГЛЫ МЕЖДУ ЛОПАТКОЙ И ПРЯМОЙ, СОЕДИНЯЮЩЕЙ ЦЕНТР
С
                СТАТОРА С КОНЦОМ ЛОПАТКИ, град
       ВЕТА1, ВЕТА2 - УГЛЫ, ОБРАЗОВАННЫЕ ЛИНИЯМИ, СОЕДИНЯЮЩИМИ ТОЧКУ
С
С
                    ПЕРЕСЕЧЕНИЯ ЛОПАТКИ С ОКРУЖНОСТЬЮ РОТОРА С
С
                  ЦЕНТРАМИ РОТОРА И СТАТОРА, град
С
       YO1, YO2 - ВЫСОТЫ ВЫСТУПАЮЩИХ ЧАСТЕЙ ЛОПАТОК, M
С
       X1, X2 - ВЫСОТЫ РАДИАЛЬНЫХ ЛОПАТОК, M
С
       XI1, XI2 - УСЛОВНЫЕ ВЫСОТЫ РАДИАЛЬНЫХ ЛОПАТОК, М
С
     ST - ПЛОЩАДЬ ТЕПЛОТДАЧИ, м2
     FI1, FI2 - УГЛЫ, МЕЖДУ ЛИНИЕЙ СОЕДИНЯЮЩЕЙ ЦЕНТРЫ РОТОРА, СТАТОРА
С
С
     И ЛИНИЕЙ МЕЖДУ ЦЕНТРОМ СТАТОРА И КОНЦАМИ СМЕЖНЫХ ЛОПАТОК, град
С
     PL1 - ПЛЕЧО ДВИЖУЩЕГО МОМЕНТА НА ЛОПАТКЕ, М
С
      _____
                                               WPL=DD*(Y01+Y02)
     DWPL=DD*(DY01+DY02)
     W=S*DL-WPL
     DW=DS*DL-DWPL
     ST=DL* (GAMMA*RO+ (FI2-FI1) *R+Y01+Y02)
     FI1=FI1*180./PI
     FI2=FI2*180./PI
     PL1=(RO+XI1)*COS(ASIN(RO*SIN(ALFA1)/(RO+XI1)))-YO1/2.
     WRITE (6,2) FI, S, DS, OM1, OM2, PSI1, PSI2, BETA1, BETA2
     WRITE (6,3) FI, YO1, YO2, X1, X2, X11, X12, ST, FI1, F12, PL1
     IF(FI.LT.360.) GO TO 1
2
     FORMAT (F5.0,2E10.3,6F6.1)
3
     FORMAT (2X, F5.0, 6F6.4, E9.3, 2F7.1, E9.3)
     STOP
     END
С
      _____
     SUBROUTINE FIF (FI, ALFA1, E, R, A, RO, OM, DOM, X, XI, YO, DX, DXI, PSI,
     * BETA,KY0,KX,DYO,FII)
С
       ------
                           PARAMETER (PI=3.1415)
     REAL KX, KY0
     PSI=ASIN((A*SIN(ALFA1)+SIN(FI+ALFA1))/(A+1.))
     AT=A*A+2.*A*COS(FI)+1.
     BETA=ASIN(SIN(FI)/SQRT(AT))
     DBET= (COS (FI) *SQRT (AT) +A*SIN (FI) **2/SQRT (AT) ) /COS (BETA) /AT
     DPSI=COS (ALFA1+FI) / (A+1.) /COS (PSI)
     AB=ALFA1+BETA
     ABP=AB-PSI
     KYO = (A+1.) *SIN(ABP) / (A*SIN(AB))
```

```
442
```

```
DKY0=((A+1.)*SIN(AB)*COS(ABP)*(DBET-DPSI)-SIN(ABP)*COS(AB)*DBET)
* / (A*SIN(AB)**2)
KX=SQRT(1.+KY0*(KY0+2.*COS(ALFA1)))-1.
DKX=DKY0*(KY0+COS(ALFA1))/SQRT(1.+KY0*(KY0+2.*COS(ALFA1)))
SQ=SQRT((A+1.)**2-SIN(FI)**2)
X=RO*((SQ-COS(FI))/A-1.)
DX=RO*SIN(FI)*(1.-COS(FI)/SQ)/A
XI=KX*RO
RR=XI+RO
FII=ACOS((E**2+R**2-RR**2)/(2.*E*R))
DXI=DKX*RO
YO=KY0*RO
DYO=DKY0*RO
T=SIN(2.*ALFA1)**2+4.*SIN(ALFA1)**2*KX*(2.+KX)
OM=ASIN((-SIN(2.*ALFA1)+SQRT(T))/(2.*(1.+KX)))
DOM=2.*DKX*(SIN(ALFA1)**2/SQRT(T)+(SIN(2.*ALFA1)-SQRT(T))/
* (4.*(1.+KX)**2))/COS(OM)
IF(FI+OM.GT.PI.AND.FI+OM.LT.2.*PI) FII=2.*PI-FII
IF(FI+OM.GE.2.*PI) FII=2.*PI+FII
RETURN
END
_____
```

С

Результаты расчета

C				
10132E-04 .239E-04	.1 6.3	2 31.6	33.0 1.7 11.5	
100001 .0081 .0001	.0066 .000	L .0072	.888E-02 8.4 97.0	.260E-01
20176E-04 .257E-04	.37.	33.0	31.6 3.3 11.4	
200004 .0093 .0003	.0076 .000	3 .0083	.913E-02 17.0 108.4	.262E-01
30223E-04 .249E-04	.87.	5 34.1	30.0 4.9 10.9	
300008 .0104 .0007	.0086 .000	7.0093	.940E-02 25.9 120.0	.264E-01
40267E-04 .210E-04	1.3 8.	L 35.0	28.3 6.4 10.0	
400015 .0114 .0012	.0096 .001	3 .0102	.966E-02 35.0 131.7	.267E-01
50305E-04 .136E-04	2.0 8.	5 35.5	26.5 7.7 8.6	
500023 .0122 .0018	.0104 .002	0.0110	.990E-02 44.5 143.5	.271E-01
60331E-04 .298E-05	2.8 8.	3 35.7	24.6 8.9 6.9	
600033 .0127 .0026	.0111 .002	9 .0115	.101E-01 54.3 155.4	.276E-01
70341E-04101E-04	3.7 9.	35.5	22.8 10.0 4.8	
700044 .0131 .0035	.0116 .003	9 .0119	.103E-01 64.5 167.2	.282E-01
80332E-04244E-04	4.6 9.3	L 35.0	21.1 10.8 2.5	
800056 .0132 .0045	.0119 .004	9 .0120	.105E-01 75.0 178.9	.288E-01
90301E-04382E-04	5.4 9.	34.1	19.5 11.3 .0	
900068 .0132 .0055	.0120 .006	L .0119	.106E-01 85.9 190.5	.294E-01
100250E-04497E-04	6.2 8.	9 33.0	18.0 11.5 -2.5	
1000081 .0128 .0066	.0119 .007	2 .0116	.107E-01 97.0 202.0	.300E-01
110181E-04574E-04	7.0 8.	5 31.6	16.8 11.4 -4.8	
1100093 .0123 .0076	.0116 .008	3 .0112	.108E-01 108.4 213.2	.306E-01
120987E-05602E-04	7.6 8.3	3 30.0	15.8 10.9 -6.9	
1200104 .0117 .0086	.0111 .009	3 .0105	.108E-01 120.0 224.2	.312E-01
130978E-06578E-04	8.1 7.	3 28.3	15.1 10.0 -8.6	
1300114 .0108 .0096	.0104 .010	2.0098	.107E-01 131.7 234.9	.317E-01
140. 792E-05507E-04	8.5 7.	3 26.5	14.6 8.6 -10.0	
1400122 .0099 .0104	.0096 .011	0.0089	.107E-01 143.5 245.4	.321E-01
150161E-04398E-04	8.8 6.	7 24.6	14.5 6.9 -10.9	
1500127 .0089 .0111	.0086 .011	5.0079	.105E-01 155.4 255.5	.324E-01
160231E-04264E-04	9.0 6.	L 22.8	14.6 4.8 -11.4	
1600131 .0078 .0116	.0076 .011	9.0070	.104E-01 167.2 265.4	.325E-01
170284E-04121E-04	9.1 5.	4 21.1	15.1 2.5 -11.5	
1700132 .0067 .0119	.0066 .012	.0060	.102E-01 178.9 274.9	.326E-01
180317E-04 .167E-05	9.0 4.	6 19.5	15.8 .0 -11.3	

1800132 .0057 .0120	.0055	.0119	.0050	.998E-02 190.5 284.2 .326E-01
190330E-04 .135E-04	8.9	3.9	18.0	16.8 -2.5 -10.8
1900128 .0046 .0119	.0045	.0116	.0041	.975E-02 202.0 293.2 .324E-01
200325E-04 .225E-04	8.6	3.2	16.8	18.0 -4.8 -10.0
2000123 .0037 .0116	.0035	.0112	.0032	.951E-02 213.2 302.0 .322E-01
210305E-04 .281E-04	8.3	2.4	15.8	19.5 -6.9 -8.9
2100117 .0028 .0111	.0026	.0105	.0024	.926E-02 224.2 310.5 .318E-01
220272E-04 .305E-04	7.8	1.8	15.1	21.1 -8.6 -7.7
2200108 .0020 .0104	.0018	.0098	.0017	.902E-02 234.9 318.9 .314E-01
230233E-04 .302E-04	7.3	1.2	14.6	22.8 -10.0 -6.4
2300099 .0013 .0096	.0012	.0089	.0011	.878E-02 245.4 327.2 .309E-01
240190E-04 .278E-04	6.7	.7	14.5	24.6 -10.9 -4.9
2400089 .0007 .0086	.0007	.0079	.0006	.855E-02 255.5 335.4 .304E-01
250148E-04 .243E-04	6.1	.3	14.6	26.5 -11.4 -3.3
2500078 .0003 .0076	.0003	.0070	.0003	.835E-02 265.4 343.5 .299E-01
260110E-04 .202E-04	5.4	.1	15.1	28.3 -11.5 -1.7
2600067 .0001 .0066	.0001	.0060	.0001	.818E-02 274.9 351.7 .293E-01
270778E-05 .161E-04	4.6	.0	15.8	30.0 -11.3 .0
2700057 .0000 .0055	.0000	.0050	.0000	.804E-02 284.2 360.0 .288E-01
280517E-05 .123E-04	3.9	.1	16.8	31.6 -10.8 1.7
2800046 .0001 .0045	.0001	.0041	.0001	.793E-02 293.2 368.4 .283E-01
290318E-05 .919E-05	3.2	.3	18.0	33.0 -10.0 3.3
2900037 .0004 .0035	.0003	.0032	.0003	.786E-02 302.0 377.0 .278E-01
300167E-05 .711E-05	2.4	.8	19.5	34.1 -8.9 4.9
3000028 .0008 .0026	.0007	.0024	.0007	.784E-02 310.5 385.9 .274E-01
310475E-06 .629E-05	1.8	1.3	21.1	35.0 -7.7 6.4
3100020 .0015 .0018	.0012	.0017	.0013	.787E-02 318.9 395.0 .270E-01
320667E-06 .691E-05	1.2	2.0	22.8	35.5 -6.4 7.7
3200013 .0023 .0012	.0018	.0011	.0020	.794E-02 327.2 404.5 .266E-01
330201E-05 .897E-05	.7	2.8	24.6	35.7 -4.9 8.9
3300007 .0033 .0007	.0026	.0006	.0029	.806E-02 335.4 414.3 .264E-01
340380E-05 .123E-04	. 3	3.7	26.5	35.5 -3.3 10.0
3400003 .0044 .0003	.0035	.0003	.0039	.822E-02 343.5 424.5 .262E-01
350622E-05 .163E-04	.1	4.6	28.3	35.0 -1.7 10.8
3500001 .0056 .0001	.0045	.0001	.0049	.841E-02 351.7 435.0 .260E-01
360937E-05 .205E-04	.0	5.4	30.0	34.1 .0 11.3
3600000 .0068 .0000	.0055	.0000	.0061	.863E-02 360.0 445.9 .260E-01
C				

Приложение 13

AKS134.FOR
ПРОГРАММА РАСЧЕТА РАБОЧЕГО ПРОЦЕССА В АКСИАЛЬНО-ПОРШНЕВОМ
(АПК) ИЛИ АКСИАЛЬНО-ОППОЗИТНОМ ПОРШНЕВОМ КОМПРЕССОРЕ (АОПК)
ДЛЯ СИСТЕМЫ КОНДИЦИОНИРОВАНИЯ АТС (ЕЛАГИН М.Ю. ФЕВРАЛЬ 2018г.)
ХОЛОДИЛЬНЫЙ АГЕНТ - R134a
PARAMETER (PI=3.1415)
IMPLICIT REAL(K-M)
EXTERNAL DYAKS
DIMENSION Y(30),YO(30),CC(10),P(12),X(12),V(12),W(12),G2(12),
*MC(12),MINP(12),MTR(12),FP(12)
COMMON/PARAM/KL(12)/GEOM/NZ,DK,S,C,MINS,MP,FIZ/KLAP/TK1,TK2
COMMON/VIV/V,X,W,P,G2,MC,MTR,MINP,FP/HY/ROBX,TBX,PBX,PBIX,PKAR,TCT
COMMON/R/R, TKR, PKR/ACD/AD, CD, ALB/ZTP/ZP1, ZP2, ZP3, ZP4, ZP5
COMMON/YPR/IOPP,IO/PODS/MUP,DPS,DPB
COMMON/KFF/AHI, BHI, CHI, DHI, FHI, AHII, BHII, CHII, DHII, FHII/YT/AFK, PSI
ввод исходных данных
DATA AM,BB,DX,HMIN,DXP/1.E-7,0.03,2*1.E-4,0.0025/

```
OPEN(10, FILE='AKSM.DAT')
     READ (10, *) T0, TKD, DTBC, DTPO, TETA, TCT, KL, CC, ALB, OM, ETAM, ROD, MP,
     *RBB, HBB, H, DK, S, C, AFK, PSI, NZ, ICPR, IOPP, AD, CD, MUP, DPS, DPB
     CLOSE(10)
С
      ----- ОПИСАНИЕ ВХОДНЫХ ДАННЫХ ------
С
       ТО, ТКО - ТЕМПЕРАТУРЫ КИПЕНИЯ И КОНДЕНСАЦИИ, К
С
       DTBC - ПЕРЕГРЕВ НА ВСАСЫВАНИИ, ТЕТА - ПЕРЕГРЕВ В КОЖУХЕ, К
С
       DTPO - ВЕЛИЧИНА ПЕРЕОХЛАЖДЕНИЯ В КОНДЕНСАТОРЕ, К
С
       ТСТ - ТЕМПЕРАТУРА СТЕНКИ КОМПРЕССОРА, К
С
       KL(1), KL(2) - ДИАМЕТРЫ ВСАС. И НАГН. КЛАПАНОВ, М
С
       KL(3), KL(4) - ТЕКУЩИЙ ХОД ВСАС. И НАГН. КЛАПАНОВ, М
       КL(5) - ТОЛЩИНА КЛАПАННОЙ ДОСКИ, М
С
С
       КL(6) - ЛИНЕЙНЫЙ МЕРТВЫЙ ОБЪЕМ КОМПРЕССОРА, М
С
       KL(7), KL(8) - MAX XOД BCAC. И НАГН. КЛАПАНОВ, м
С
       КL(9) - ДИАМЕТР ПОРШНЯ, М
С
       КL (10) - РАДИАЛЬНЫЙ ЗАЗОР МЕЖДУ ПОРШНЕМ И ЦИЛИНДРОМ, М
С
       KL(11), KL(12) - PACCYNTUBAЮTCЯ ПРОГРАММОЙ
С
       СС(1), СС(6) - ДЛИНА ПЛАСТИН ВСАС. И НАГН. КЛАПАНОВ, М
       СС(2), СС(7) - ТОЛЩИНА ПЛАСТИН, М
С
С
       СС(3), СС(8) - ШИРИНА ПЛАСТИН ВСАС. И НАГН. КЛАПАНА В ВЕРШИНЕ, М
С
       СС(4), СС(9) - ШИРИНА ПЛАСТИН ВСАС. И НАГН. КЛАП. В ОСНОВАНИИ, М
С
       СС(5), СС(10) - МОДУЛИ УПРУГОСТИ МАТЕРИАЛА ПЛАСТИН, МПа
       ALB - УДЕЛЬНЫЙ К-Т ТЕПЛООТДАЧИ, Вт/(м2*К)/(кг/м3)
С
       ОМ - ЧАСТОТА ВРАЩЕНИЯ ВАЛА КОМПРЕССОРА, об/мин
С
С
       ЕТАМ- МЕХАНИЧЕСКИЙ КПД КОМПРЕССОРА; Н - ТОЛЩИНА ШАЙБЫ, М
С
       ROD - ПЛОТНОСТЬ МАТЕРИАЛА КОМПРЕССОРА, кг/м3;
С
     МР - МАССА ПОРШНЯ СО ШТОКОМ, кг;
С
     RBB, НВВ - РАДИУС ВАЛА И ЕГО ДЛИНА, М
С
       DK - К-Т ТРЕНИЯ СКОЛЬЖЕНИЯ КРЕЙЦКОПФА; S - ХОД ПОРШНЯ, м
С
          - РАССТОЯНИЕ МЕЖДУ ОСЬЮ ВАЛА И ОСЬЮ КОМПРЕССОРА, М
       С
С
       АҒК - ПОПРАВКА КОРИОЛИСА ДЛЯ ЛАМИНАРНОГО ТЕЧЕНИЯ
С
       PSI - ЭМПИРИЧЕСКИЙ КОЭФФИЦИЕНТ; ICPR - ЧИСЛО РАССЧИТЫВ. ЦИКЛОВ
С
       NZ - ЧИСЛО ЦИЛИНДРОВ КОМПРЕССОРА ( NZ <= 12 )
     ІОРР- ПРИЗНАК ТИПА КОМПРЕССОРА ( ІОРР=2 - АОПК; ІОРР=1 - АПК )
С
С
     АD - ДЛИНА ПОРШНЯ, M; CD - ДЛИНА ЦИЛИНДРА КОМПРЕССОРА, M
С
     МИР - КОЭФФ. ТРЕНИЯ УПОРНОГО ЦИЛИНДРИЧЕСКОГО РОЛИКОПОДШИПНИКА
     DPS - ДИАМЕТР ОТВЕРСТИЯ ПОДШИПНИКА В ШАЙБЕ. М
С
С
     DPB - ДИАМЕТР ОТВЕРСТИЯ ПОДШИРНИКА ВАЛА, М
С
     WRITE (6,*)'
                                        T0, TKD, DTBC, DTPO, TETA, TCT'
     WRITE (6,*)T0,TKD,DTBC,DTPO,TETA,TCT
     WRITE (6,*)'
                                                 KL(12)'
     WRITE (6,*)KL
     WRITE (6,*)'
                                                 CC(10)'
     WRITE (6,*)CC
                    ALB, OM, ETAM, ROD, MP, RBB, HBB, H, DK, S, C'
     WRITE (6,*)'
     WRITE (6,*)ALB, OM, ETAM, ROD, MP, RBB, HBB, H, DK, S, C
     WRITE (6,*) ' AFK, PSI, NZ, ICPR, IOPP, AD, CD, MUP, DPS, DPB'
     WRITE (6,*)AFK, PSI, NZ, ICPR, IOPP, AD, CD, MUP, DPS, DPB
     WRITE (6,61)
     WRITE (6,62)
     WRITE (6,61)
      ----- ВЫЧИСЛЕНИЕ КОНСТАНТ ------
С
     OM=OM*PI/30.
     NS=2*NZ+4
     IO=NZ/IOPP
     FIZ=2.*PI/IO
```

```
S=S/2.
        BETA=ATAN (C/S)
        RD=SQRT (C*C+S*S)
        MSS=PI*RD*RD*H*ROD
        MBB=PI*RBB*RBB*HBB*ROD
        MINS=MSS*((3.*RD*RD+H*H)*COS(BETA)**2/12.+
        RD*RD*SIN(BETA)**2/2.)+0.5*MBB*RBB*RBB
     TBX=T0+DTBC+TETA
     PBX=PS(PKR,TKR,T0)
С
     ----- ЗАДАНИЕ ДАВЛЕНИЯ (PKAR) В КАРТЕРЕ КОМПРЕССОРА ------
     PKAR=PBX
     PBIX=PS(PKR,TKR,TKD)
        H0=PLNM4 (AHII, BHII, CHII, DHII, FHII, T0)
        TF=TKD-DTPO
        HG=PLNM4 (AHI, BHI, CHI, DHI, FHI, TF)
        QM0=H0-HG
      CALL OTI (CC, TK1, TK2)
      ----- ОПРЕДЕЛЕНИЕ ПЛОЩАДИ KL(11) И МЕРТВОГО ОБЪЕМА KL(12) -----
С
     KL(11) = PI*(KL(5)*KL(2)+KL(6)*KL(9))
     KL(12) = PI*(KL(5)*KL(2)**2+KL(6)*KL(9)**2)/4.
      ZP=ZP1+ZP2*TBX+ZP3*TBX*TBX+ZP4*PBX+ZP5*PBX*PBX
С
      ----- ЗАДАНИЕ НАЧАЛЬНЫХ УСЛОВИЙ ------
     IC=0
     ROBX=PBX/(R*TBX*ZP)
     J=1
     DO 1 I=1,NZ
     Y(J)=ROBX
     Y(J+1) = TBX
1
     J=J+2
     Y(2*NZ+1) = OM
70
     т=0.
     TP=T
     TN=T
     Y(2*NZ+3)=0.
     Y(2*NZ+4)=0.
7
      CALL SOLDI (NS, AM, BB, T, Y, DYAKS, DX, TO, YO, TP, HMIN, NMIN)
     IF(T.LT.TP) GO TO 4
     IF(IC.LT.ICPR) GO TO 44
     WRITE (6,5)T,X(1),V(1),W(1),P(1),Y(1),Y(2),Y(2*NZ+2),MC(1),MTR(1),
     *MINP(1), FP(1)
С
      ----- ОПИСАНИЕ ВЫХОДНЫХ ПАРАМЕТРОВ ------
     X(1), V(1), W(1) - ПУТЬ, СКОРОСТЬ ПОРШНЯ; ОБЪЕМ ПОЛОСТИ КОМПРЕССОРА
С
С
     Р(1), Y(1), Y(2) - ДАВЛЕНИЕ, ПЛОТНОСТЬ, ТЕМПЕРАТУРА ПАРА В КОМПРЕССОРЕ
С
     Y(2*NZ+2) - УГОЛ ПОВОРОТА ВАЛА, рад; МС(1)-МОМЕНТ СОПРОТИВЛЕНИЯ, Н*м
С
     MTR(1) - МОМЕНТ СОПРОТИВЛЕНИЯ ТРЕНИЯ, Н*м
     MINP(1)
              - ПЕРЕМЕННАЯ ЧАСТЬ МОМЕНТА ИНЕРЦИИ, кг*м2
С
     FP(1) - СИЛА, ДЕЙСТВУЮЩАЯ НА ШАЙБУ СО СТОРОНЫ ПОРШНЯ, Н
С
С
          - ПРОИЗВОДИТЕЛЬНОСТЬ КОМПРЕССОРА, кг/с
     PR
     DVN - МОЩНОСТЬ ПОТРЕБЛЯЕМАЯ КОМПРЕССОРОМ, Вт
С
С
     ОМОК - ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ КОМПРЕССОРА, Вт
С
     KE
          - ХОЛОДИЛЬНЫЙ КОЭФФИЦИЕНТ; Т - ТЕКУЩЕЕ ВРЕМЯ, с
С
      _____
44
     TP=TP+DXP
4
     T=TO
     DO 6 I=1,NS
6
     Y(I) = YO(I)
     IF(Y(2*NZ+2).LT.2.*PI) GO TO 7
```

```
446
```

```
IC=IC+1
      TK=T-TN
      Y(2*NZ+2) = Y(2*NZ+2) - 2.*PI
      PR=Y(2*NZ+3)/TK
      DVN=Y(2*NZ+4)/TK/ETAM
      QM0K=QM0*PR
      KE=QM0K/DVN
      IF(IC.LE.ICPR) GO TO 70
      WRITE(6,61)
      WRITE (6,60) PR, DVN, QMOK, KE, IC
      STOP
5
      FORMAT (F6.4, F6.4, F6.2, 2E9.3, F5.1, F5.0, F5.2, E10.3, E10.3, E9.3, F7.1)
      FORMAT (5X, 'PR=', E10.3, 1X, 'DVN=', F7.1, 1X, 'QM0K=', F7.1, 1X,
60
     *'KE=',F6.3,2X,'IC=',I2)
      FORMAT (90 (1H-))
61
      FORMAT(3X, 'T', 5X, 'X', 5X, 'V', 6X, 'W', 9X, 'P', 5X, 'RO', 3X, 'T', 4X, 'FI',
62
     *6X, 'MC', 7X, 'MTR', 6X, 'MINP', 5X, 'FP')
      END
С
      SUBROUTINE DYAKS (XT, Y, DY, NS)
С
      _____
С
        П/П ПРАВЫХ ЧАСТЕЙ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ РАСЧЕТА ПРОЦЕССОВ
С
         В АКСИАЛЬНОМ ИЛИ АКСИАЛЬНО-ОППОЗИТНОМ ПОРШНЕВОМ КОМПРЕССОРЕ
С
      IMPLICIT REAL (K-M)
      DIMENSION Y(NS), DY(NS), SI(6), P(12), X(12), V(12), W(12), G1(12),
     *G2 (12) , GU (12) , MC (12) , MD (12) , MINP (12) , MTR (12) , FP (12) , FN (12)
      COMMON/PARAM/KL(12)/GEOM/NZ,DK,S,C,MINS,MP,FIZ
      COMMON/VIV/V,X,W,P,G2,MC,MTR,MINP,FP/YPR/IOPP,IO/PODS/MUP,DPS,DPB
      COMMON/HY/ROBX, TBX, PBX, PBIX, PKAR, TCT/ACD/AD, CD, ALB/R/R, TKR, PKR
      FNS=0.
      FPS=0.
      MSK=0.
      MDK=0.
      G2S=0.
      MIN=0.
      J=1
      DO 1 I=1,NZ
      IF (IOPP.EQ.2.AND.I.GT.IO) GO TO 2
      YFI=Y(2*NZ+2)+FIZ*(I-1)
      GO TO 3
2
      YFI=Y(2*NZ+2)+FIZ*(I-1-IO)
3
      CALL PGZ(Z1, P(I), Z, Y(J+1), Y(J))
      CALL XV(S,YFI,Y(2*NZ+1),X(I),V(I),I)
      CALL PLOX(PBX, P(I), PBIX, SI, X(I))
      IF(SI(3).LE.O.OR.PBX.GT.P(I)) GO TO 60
      ADX=KL(6)+AD+X(I)
      IF (ADX.GT.CD) SLU=AD-ADX+CD
      IF(ADX.LT.CD) SLU=AD
      G=GYT(PBX,TBX,Y(J+1),Y(J),SLU,KL(10))
      GU(I) = SI(3) *G
      GO TO 40
60
      GU(I)=0.
40
      CALL MCK(S,SI(4),C,YFI,P(I),PKAR,DK,MC(I),MD(I),MTR(I),MP,
     *Y(2*NZ+1),V(I),MINP(I),I,SLU,KL(9)/2.,KL(10),TCT,FP(I),FN(I))
      W(I) = SI(6)
      IF(SI(1).LE.0.) GO TO 10
```

```
G=GR(TBX,PBX,P(I))
     FIM1=FIM(ROBX,TBX,G)
     KO1=OPKR(KL(1),KL(3))
     G1(I)=G*SI(1)*KO1*FIM1
     CALL PGU(PG, PU, TBX, Y(J+1), PBX, Y(J))
     GO TO 20
10
     G1(I) = 0.
20
     IF(SI(2).LE.0.) GO TO 30
     G=GR(Y(J+1), P(I), PBIX)
     FIM2=FIM(Y(J), Y(J+1), G)
     KO2=OPKR(KL(2),KL(4))
     G2(I)=G*SI(2)*KO2*FIM2
     GO TO 5
30
     G2(I) = 0.
5
     QB=ALB*Y(J)*SI(5)*(TCT-Y(J+1))
     DY(J) = (G1(I) - G2(I) - GU(I) - Y(J) * SI(4) * V(I)) / W(I)
     CALL CTP(Y(J+1), Y(J), CV)
     DY (J+1) = R*Y (J+1) * (((PG-PU) / (R*Y (J+1)) + Z1) * G1 (I) - (Z+Z1) *
     * (G2 (I) +GU (I) +Y (J) *SI (4) *V (I) ) +QB/ (R*Y (J+1) ) ) / (CV*Y (J) *W (I) )
     FNS=FNS+FN(I)
     FPS=FPS+FP(I)
     MSK=MSK+MC(I)
     MDK=MDK+MD(I)
     G2S=G2S+G2(I)
     MIN=MIN+MINP(I)
1
     J=J+2
     MTP=FMTRP(FNS, FPS, MUP, DPS, DPB)
     MDK=MDK+MTP
     MSK=MSK+MTP
     DY(2*NZ+1) = (MDK-MSK) / (MINS+MIN)
     DY(2*NZ+2) = Y(2*NZ+1)
     DY(2*NZ+3) = G2S
     DY(2*NZ+4) = MSK*Y(2*NZ+1)
     RETURN
     END
С
      _____
     REAL FUNCTION GYT (P1, T1, T2, RO2, SL, DELT)
            _____
С
С
                РАСЧЕТ ВЕЛИЧИНЫ УТЕЧЕК [ GYT, кг/(с*м^2) ]
С
       См. МИЛОВАНОВ В.И. - ПОВЫШЕНИЕ ДОЛГОВЕЧНОСТИ МАЛЫХ ХОЛОДИЛЬНЫХ
С
       КОМПРЕССОРОВ. - М.: ПИЩЕВАЯ ПРОМ-СТЬ, 1980. - 200с. (с. 39)
С
      _____
     COMMON/YT/AFK, PSI/R/R, TKR, PKR/FMUU/FM1, FM2, FM3
     COMMON/ZTP/ZP1, ZP2, ZP3, ZP4, ZP5/APD/PD1, PD2, PD3, PD4, PD5
      Z1=ZP1+ZP2*T1+ZP3*T1*T1+ZP4*P1+ZP5*P1*P1
     RO1=P1/(R*T1*Z1)
     IF(RO2.LE.RO1+0.001) GO TO 1
     PAD=PD1+PD2*T2+PD3*T2*T2+PD4*RO2+PD5*RO2*RO2
     IF(PAD.GT.3.) GO TO 1
     P=PAD*PSI
С
      ----- ОПРЕДЕЛЕНИЕ ДИНАМИЧЕСКОЙ ВЯЗКОСТИ R134a ------
     FMU= (FM1*(T2-243.)**FM2+FM3)*1.E-7
     PN=P+1.
     R1=P*P1/PN/RO1**P
     R2=RO2**PN-RO1**PN
     A1=R1*R2
     A2=AFK*ALOG(RO2/RO1)
```

```
A3=12.*FMU*SL/DELT/DELT
     GYT = (-A3 + SQRT (A3 * A3 + 4 . * A2 * A1)) / (2 . * A2)
     GO TO 2
1
     GYT=0.
2
     RETURN
     END
С
     _____
     FUNCTION FIM(RO,T,G)
С
     _____
     ПОДПРОГРАММА ОПРЕДЕЛЯЕТ ФУНКЦИЮ FIM, ОЦЕНИВАЮЩУЮ ВЛИЯНИЕ СКОРОСТИ
С
С
     ПАРА В КЛАПАНЕ НА КОЭФФИЦИЕНТЫ РАСХОДА КО(1,2); G - РАСХОД ПАРА,
С
     ПРИХОДЯЩИЙСЯ НА ЕД.ПЛОЩАДИ; КО,Т- ПЛОТНОСТЬ И ТЕМПЕРАТУРА ПАРА (К)
С
     _____
      COMMON/A3B/A31, A32, A33, A34, A35
      V=G/RO
      V3B=A31+A32*T+A33*T*T+A34*R0+A35*R0*R0
      AMAX=V/V3B
      FIM=1.-0.5*AMAX*AMAX
      RETURN
      END
С
      _____
      SUBROUTINE SOLDI (JM, A, B, XI, YI, RP, HIO, XO, YO, XP, HMIN, MIN)
С
      _____
С
           ПОДПРОГРАММА ИНТЕГРИРОВАНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
С
    _____
      REAL K, MAX
      DIMENSION Y(50), D1(50), D2(50), YI(50), YO(50)
      H=HIO
      HC=H
      X=XI
      MIN=0
      DO 10 J=1, JM
10
      YO(J) = YI(J)
20
      MAX=0
      DO 25 J=1,JM
25
      Y(J) = YO(J)
      CALL RP(X,Y,D1,JM)
      DO 30 J=1, JM
      D1(J) = H*D1(J)
30
      Y(J) = Y(J) + D1(J)
      CALL RP(X+H,Y,D2,JM)
      DO 40 J=1,JM
      D2(J) = 0.5*(D1(J) + H*D2(J))
40
      Y(J) = Y(J) - D1(J) + 0.5 * D2(J)
      CALL RP(X+0.5*H, Y, D1, JM)
      DO 60 J=1,JM
      D1(J) = (2.0 + H + D1(J) + D2(J)) / 3.0
      Y(J) = Y(J) - 0.5 * D2(J)
      K=ABS (D1 (J) - D2 (J)) / (A+B*ABS (D1 (J)))
      IF(K-MAX)60,50,50
50
      MAX=K
60
      CONTINUE
      IF (MAX-1.25) 80,80,65
65
      IF (MM) 70,70,100
      H=H/SQRT (MAX)
70
      IF (H-HMIN) 75,20,20
75
      H=HMIN
```

	MM=1
	MIN=1
	GO TO 20
80	IF(MAX-0.5)85,100,100
85	IF (MAX-0.0001) 90,90,95
90	MAX=0.0001
95	HC=H/SORT (SORT (MAX))
100	DO 110 $J=1.JM$
110	Y(J) = Y(J) + D1(J)
	MM=0
	X=X+H
	H=HC
	DO 115 J=1 JM
115	YO(J) = Y(J)
115	TE(X-XE) = 120 = 140 = 140
120	$TE(X_{L} = VD) 20 20 120$
120	
130	
	H = AP = A + 1.0E = 25
140	
140	
	RETURN
~	END
C	
C	
	$ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ $
	ОПР-Е КОЭФФИЦИЕНТА РАСХОДА В КЛАПАНЕ (ЯКОВСОН В.В. СТр. 148.)
C	
	$\frac{1}{2} \left(\frac{1}{2} \right) = 0 \frac{1}{2} \frac{1}{2$
	OPRR=0.8-0.6*OTH
-	
1	OPKR=0.75
2	RETURN
-	END
С	
-	SUBROUTINE PGZ (Z1, P2, Z, T2, RO2)
С	
	COMMON/R/R, TKR, PKR/ZZI/AZ, BZ, CZ, DZ, EZ, AZI, BZI, CZI
	IF (T2.LE.U.OR.RO2.LE.U.) GO TO 1
	Z=AZ+BZ*T2+CZ*T2*T2+DZ*RO2+EZ*RO2*RO2
	P2=R*RO2*T2*Z
	Z1=EXP(AZ1+BZ1*ALOG(T2)+CZ1*ALOG(RO2))
	Z1=Z1*T2
1	RETURN
	END
С	
	SUBROUTINE PLOX(PI, PP, PK, SI, XP)
С	
	DIMENSION SI(6)
	REAL KL
	COMMON/PARAM/KL(12)/KLAP/TK1,TK2
	SK(D)=0.785*D**2
	S(D,X)=3.1415*D*X
	IF(PP.LT.PI) GO TO 1
	KL(3)=0.
	GO TO 2
1	KL(3)=TK1*(PI-PP)

	IF(KL(3).GT.KL(7)) KL(3)=KL(7)
2	IF(PP.GT.PK) GO TO 3
	$KT_{(4)} = 0$
2	
3	KL(4) = TK2*(PP-PK)
	IF(KL(4).GT.KL(8)) KL(4)=KL(8)
4	IF(S(KL(1),KL(3)).LT.SK(KL(1))) GO TO 5
	SI(1) = SK(KI(1))
-	
5	SI(1) = S(KL(1), KL(3))
6	IF(S(KL(2),KL(4)).LT.SK(KL(2))) GO TO 7
	SI(2)=SK(KL(2))
	GO TO 8
7	SI(2) = S(RI(2) - RI(4))
,	
8	SI(3) = S(KL(9), KL(10))
	SI(4)=SK(KL(9))
	SI(5)=KL(11)+S(KL(9),XP)+2.*SI(4)
	SI(6)=KL(12)+SI(4)*XP
	BETTIBN
_	END
С	
	SUBROUTINE CTP(T,RO,CV)
С	
С	ОПРЕЛЕЛЕНИЕ ИЗОХОРНОЙ ТЕПЛОЕМКОСТИ
c c	
C	
	COMMON/CCV/ACV, BCV, CCV, DCV, ECV
	CV=ACV+BCV*T+CCV*T*T+DCV*RO+ECV*RO*RO
	RETURN
	END
C	
C	
_	SUBROUTINE PGU(PG,U,TI,TZ,PI,RUZ)
С	
	COMMON/PGPU/APG,BPG,CPG,DPG,EPG,AU,BU,CU,DU,EU
	PG = (APG+BPG*T1+CPG*T1*T1+DPG*P1+EPG*P1*P1)*1000.
	$I = (\lambda II + B II + m^2 + C II + m^2 + m II + B C + m II + B C + m C + $
	RETURN
	END
С	
	FUNCTION GR(T,P,PC)
C	
C	
	OIPEREJENIE PACKORA PERJENOTO TASA - GR
C	
	COMMON/R/R, TKR, PKR
	COMMON/X6/U56, U57, U58, U59, U60, U61, U62, U63, U64, U65, U66, OTT
	TE (PC GE P OR PC LT ()) GO TO 1
	IF (T.GT.2. *TRR.OR.P.GT.PRR) GO TO I
	T1=ALOG(T)
	P1=ALOG(P)
	PK = EXP(U64 + U65 + T1 + U66 + P1)
	GO TO 5
6	OT=PC/P
	IF (OT.LT.OTT) GO TO 2
	GO TO 3
2	
2	GR-EAF(U50TU5/^TITU50^FITU59^ALUG(UT)+U0U*UT)
	GO TO 4
3	GR=EXP (U56+U57*T1+U58*P1+U59*ALOG (OTT) +U60*OTT)

	GR=GR*(1OT)/(1OTT)
	GO TO 4
5	GR=EXP(U61+U62*T1+U63*P1)
	GO TO 4
1	GR=0.
4	BETTIBN
-	END
С	FUNCTION PLNM4(A,B,C,D,F,T)
С	
	PLNM4=A+B*T+C*T*T+D*T*T*T+F*T*T*T*T
	RETURN
	END
С	
	SUBROUTINE OTI (C, TK1, TK2)
С	
C C	РАСЧЕТ КОНСТАНТ ДЛЯ НАХОЖДЕНИЯ ПРОГИБА ПЛАСТИН КЛАПАНОВ
C	DIMENSION C(10)
	A = (C(4) - C(3)) / C(1)
	IF(A.LE.0.) GO TO 1
	T1 = (ALOG(C(3)) - 1) * C(3) * * 3/A
	$T^{2}=A*C(3)*C(1)**2/2 - A**2*C(1)**3/3$
	$T_2 = (\Delta T_1 \cap C_1(\Delta + C_1(1) + C_1(3))) + C_1(3) + + 3/\Delta$
	$\pi/-(\lambda + C(1) + C(3)) + C(3) + \lambda + 2/\lambda$
	$\frac{1}{1} = (\frac{1}{1} + \frac{1}{1} + 1$
1	GO IO Z mr1-0
1	
•	GU TU 3
2	TK1=4.*C(3)*(T1-T2-T3+T4)/A**3
3	TKI = (C(1) * * 4/2. + TKI) / (C(5) * C(2) * * 3)
	A = (C(9) - C(8)) / C(6)
	IF(A.LE.U.) GO TO 4
	T1 = (ALOG(C(8)) - 1.) *C(8) **3/A
	T2=A*C(8)*C(6)**2/2A**2*C(6)**3/3
	T3=ALOG(A*C(6)+C(8))*C(8)**3/A
	T4 = (A*C(6)+C(8))*C(8)**2/A
	GO TO 5
4	TK2=0.
	GO TO 6
5	TK2=4.*C(8)*(T1-T2-T3+T4)/A**3
6	TK2=(C(6)**4/2.+TK2)/(C(10)*C(7)**3)
	RETURN
	END
С	SUBROUTINE XV(S,FI,OM,X,V,I)
С	
C	ОПРЕДЕЛЕНИЕ ПУТИ (S), СКОРОСТИ ПОРШНЯ (V)
C	
	PARAMETER (PI=3.1415)
	COMMON/YPR/IOPP, IO
	IF(IOPP.EQ.2.AND.I.GT.IO) GO TO 1
	FIN=FI
	GO TO 2
1	FIN=FI+PI
2	X=S*(1COS(FIN))
	V=OM*S*SIN(FIN)
	RETURN

```
END
С
        SUBROUTINE MCK(S,SP,C,FI,P,PKAR,DK,MC,MD,MTR,MP,OM,V,MIN,I,DL,
     RP, DEL, T, FP, FN)
С
      _____
                     _____
С
          ОПРЕДЕЛЕНИЕ МОМЕНТА СОПРОТИВЛЕНИЯ КОМПРЕССОРА (МС)
С
            И ПЕРЕМЕННОЙ ЧАСТИ МОМЕНТА ИНЕРЦИИ (MIN)
С
    PARAMETER (PI=3.1415)
     IMPLICIT REAL (M)
   COMMON/YPR/IOPP, IO
   IF (IOPP.EQ.2.AND.I.GT.IO) GO TO 1
   FIN=FI
    GO TO 2
1
   FIN=FI+PI
2
     ALFA=ATAN(S/C*SQRT(1.-COS(FIN))/2.)
   TRG=COS (ALFA) * (SIN (ALFA) +DK*COS (ALFA)) *C
   FT=FTR (T, RP, P-PKAR, DEL, V, DL)
   FP=(P-PKAR)*SP
   FN=FP*COS (ALFA)
   MTR=FT*TRG
     MC=FP*TRG+MTR
   MIN=MP*V*V/OM/OM
     MD=MC
     RETURN
     END
         _____
С
     FUNCTION FTR(T,RP,DP,DEL,VP,DL)
С
    _____
С
          ОПРЕДЕЛЕНИЕ СИЛЫ ТРЕНИЯ В СОПРЯЖЕНИИ ПОРШЕНЬ-ЦИЛИНДР
С
    _____
       Т - ТЕМПЕРАТУРА СТЕНКИ КОМПРЕССОРА, К; RP - РАДИУС ПОРШНЯ, М;
С
     DP - ПЕРЕПАД ДАВЛЕНИЯ, Па; DEL - ЗАЗОР В СОПРЯЖЕНИИ ПОРШЕНЬ-
С
   ЦИЛИНДР, м; VP - СКОРОСТЬ ПОРШНЯ, м/с; DL - ДЛИНА СОПРЯЖЕНИЯ, м
С
С
    _____
    PARAMETER (PI=3.1415)
С
    _____
С
   Определение динамической вязкости (FMU) смазочного масла РАG 100
С
    _____
   X = (T - 273.) / 10. - 3.
   FMU= (0.1023*X**4-2.053*X**3+16.708*X**2-74.208*X+179.43)*1.E-3
   AL=ALOG(1.+DEL/RP)
   FTR=PI*RP*RP*DP*(1.-DEL/(RP*AL))+2.*PI*VP*DL*FMU/AL
   RETURN
   END
    _____
С
     REAL FUNCTION PS (PKR, TKR, T)
     _____
С
С
            ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ R134a НА ЛИНИИ НАСЫЩЕНИЯ
С
     _____
     COMMON/PSS/X1, X2, X3, X4, X5, X6
     TAY=T/TKR
     TY=1.-TAY
     PS=PKR*EXP((X1*TY+X2*TY**1.5+X3*TY**2.5+X4*TY**4+X5*TY**4.5+
     X6*TAY*ALOG(TAY))/TAY)
     RETURN
     END
```

С		
		BLOCK DATA R134a
С		· .
С		В ДАННОИ П/П ПРИВОДЯТСЯ ТЕРМОДИНАМИЧЕСКИЕ СВОИСТВА R134a
C	*	COMMON/R/R, TKR, PKR/CCV/ACV, BCV, CCV, DCV, ECV COMMON/KFF/AHI, BHI, CHI, DHI, FHI, AHII, BHII, CHII, DHII, FHII COMMON/ZTP/ZP1, ZP2, ZP3, ZP4, ZP5/ZZ1/AZ, BZ, CZ, DZ, EZ, AZ1, BZ1, CZ1 COMMON/PGPU/APG, BPG, CPG, DPG, EPG, AU, BU, CU, DU, EU/FMUU/FM1, FM2, FM3 COMMON/X6/U56, U57, U58, U59, U60, U61, U62, U63, U64, U65, U66, OTT COMMON/A3B/A31, A32, A33, A34, A35/A3BP/AP1, AP2, AP3, AP4, AP5 COMMON/APD/PD1, PD2, PD3, PD4, PD5/PSS/X1, X2, X3, X4, X5, X6 DATA R/81.48/, TKR/374.53/, PKR/4055000./, X1, X2, X3, X4, X5, X6/ 126.9674, -10.26281, -124.8586, 325.2989, -351.7632, 134.0362/
		СВ-ВА ФРЕОНА НА ЛИНИИ НАСЫШЕНИЯ АППРОКСИМИРОВАНЫ ЗАВИСИМОСТЯМИ ВИДА F=A+B*X+C*X**2+D*X**3+F*X**4 АНІFHI - ЭНТАЛЬПИЯ ЖИДКОСТИ; АНІІFHII - ЭНТАЛЬПИЯ ПАРА
C		
		DATA AHI, BHI, CHI, DHI, FHI//3085.88,1062./,0.,1.82661E-3,0./,
	*	AHII, BHII, CHII, DHII, FHII/1049494.02, -5/88.8, 18.3/12, 0.,
	*	-4.29011E-5/ DATA 7D1 7D2 7D3 7D4 7D5/1 53557 -4 00531E-3 7 45303E-6
	*	DAIR $\Delta PI, \Delta PZ, \Delta PS, \Delta P4, \Delta PS/1.55557, -4.05551E-5, 7.45505E-0, -1.50205E-7.5.404013E-15/$
	~	-1.59200E-7, 5.44913E-157 DATA AZ.BZ.CZ.DZ.EZ/1.286982.33917E-3.4.401E-63.73671E-3.
	*	7.45851E-6/.AZ1.BZ1.CZ1/22.828115.6654.0.92766/
		DATA APG, BPG, CPG, DPG, EPG/-49.59329, 0.58318, 1.40421E-3,
	*	-1.67906E-5,3.20406E-13/,AU,BU,CU,DU,EU/-89.55438,0.78685,
	*	9.08179E-4,-0.31174,4.44421E-4/
		DATA ACP, BCP, CCP, DCP, ECP/5171.15137, -27.224, 4.31294E-2,
	*	2.1974,1.96006E-2/,ACV,BCV,CCV,DCV,ECV/5041.95264,-27.473,
	*	4.42462E-2,1.0969,-3.05545E-3/
С		
С		ДАННЫЕ В ОБЩЕЙ ОБЛАСТИ Х6 ПРЕДСТАВЛЯЮТ СОБОЙ НАБОР
С		КОЭФФИЦИЕНТОВ ИСПОЛЬЗУЕМЫХ В П/П GR ДЛЯ ОПРЕДЕЛЕНИЯ
С		РЕАЛЬНО-ГАЗОВОГО РАСХОДА ЧЕРЕЗ КЛАПАНЫ
С		
	*	DATA $050,057,058,059,060,061,062,063,064,065,066/18.35941,$
	÷	-0.03511, 1.0010, 10.004, -21.049, -2.49114, -0.00/04, 1.0559, -0.50901, -2.006000-2.1.0252/ $0000/04, 1000/04$
		-2.99009E-2,1.03337,01170.937,FM1,FM2,FM370.0143,1.044,104.07
	*	BATH AST, ASZ, ASS, AST, ASS, SO, 47550, 0.140, 2.40502E 4, 0.49542, 8 66874E-4 AD1 AD2 AD3 AD4 AD5/134 15831 -0 11648 6 96126E-4
	*	-2 04778E - 5 1 20759E - 13/ PD1 PD2 PD3 PD4 PD5/1 30645
	*	-1 36679E -3 2 22727E -6 -2 17397E -3 4 24685E $-6/$
		END
c	FU	JNCTION FMTRP (FNS, FPS, FMUP, DPS, DPB)
C	Or	пределение момента трения упорных подшипников шайбы и вала, H*м
C	FN	/TRP=0.5*FMUP*(FNS*DPS+FPS*DPB)
	RE	
c	EI	
-		

Исходные данные

278. 338. 15. 10. 0. 348.

0.009 0.009 0.0 0.0 0.003 0.002 0.002 0.0015 0.036 0.015E-3 2*0.

0.028 0.0003 0.012 0.012 206000. 0.020 0.0003 0.012 0.008 206000.

10. 3000. 0.90 7800. 0.05 0.008 0.150 0.020 0.10 0.030

0.035 2. 1.35 5 2 1 0.015 0.044 0.005 0.036 0.016

TO TKD DTBC DTPO TETA TCT

KL(1) KL(2) KL(3) KL(4) KL(5) KL(6) KL(7) KL(8) KL(9) KL(10) KL(11) KL(12)

CC(1) CC(2) CC(3) CC(4) CC(5) CC(6) CC(7) CC(8) CC(9) CC(10)

ALB OM ETAM ROD MP RBB HBB H DK S

C AFK PSI NZ ICPR IOPP AD CD MUP DPS DPB

HARRISON v5

Результаты расчета по программе AKS134.for

		г	'0, TKD, DT	BC,DTPO,	TETA	, TCT					
278.000000				338.000	0000		15	5.0000000	1	0.000000)
		.00000	00	348.000	0000						
					KL (12	2)					
9.0	00000	E-003	9.00000	0E-003			00000	000	.0000	000	
3.0	00000	E-003	2.00000	0E-003	2.000	000E	-003	1.50000	0E-003 3	.60000E	-002
1.5	00000	E-005		.000000	0		.00	00000			
					CC (10))					
2.8	00000	E-002	3.00000	0E-004	1.200	000E	-002	1.20000	0E-002	206000.0	000000
2.0	00000	E-002	3.00000	0E-004	1.200	000E	-002	8.00000	0E-003	206000.0	000000
	A	LB,OM,	ETAM, ROD	, MP, RBB,	HBB, I	H, DK,	s,c				
	10	.00000	000	3000.000	0000	9.0	00000	DE-001	7800.0	000000	
5.0	00000	E-002	8.00000	0E-003	1.500	0000E	-001	2.00000	0E-002 1	.00000E	-001
3.0	00000	E-002	3.50000	0E-002							
		P	FK, PSI, N	Z,ICPR,I	OPP,	AD, CD	, MUP	, DPS , DPB			
	2	.00000	00	1.350	0000			5	2		1
1.5	00000	E-002	4.40000	0E-002	5.000	0000E	-003	3.60000	0E-002 1	.600000E	-002
Т	х	37									
		v	w	P	RO	т	FI	MC	MTR	MINP	FP
.0000	.0001	• . 39	W 	P .182E+07	RO 81.2	т 366.	FI 	MC .592E+01	MTR .461E-02	MINP .757E-07	FP 1504.0
.0000	.0001	.39 3.57	w .228E-05 .754E-05	P .182E+07 .532E+06	RO 81.2 23.8	T 366. 316.	FI .05 .84	MC .592E+01 .163E+01	MTR .461E-02 .122E+00	MINP .757E-07 .647E-05	FP 1504.0 193.1
.0000 .0025 .0050	.0001 .0052 .0167	.39 3.57 4.68	w .228E-05 .754E-05 .192E-04	P .182E+07 .532E+06 .280E+06	RO 81.2 23.8 12.7	T 366. 316. 292.	FI .05 .84 1.62	MC .592E+01 .163E+01 467E+00	MTR .461E-02 .122E+00 .223E+00	MINP .757E-07 .647E-05 .111E-04	FP 1504.0 193.1 -63.5
.0000 .0025 .0050 .0075	.0001 .0052 .0167 .0263	.39 3.57 4.68 3.10	w .228E-05 .754E-05 .192E-04 .290E-04	P .182E+07 .532E+06 .280E+06 .272E+06	RO 81.2 23.8 12.7 12.3	T 366. 316. 292. 292.	FI .05 .84 1.62 2.41	MC .592E+01 .163E+01 467E+00 713E+00	MTR .461E-02 .122E+00 .223E+00 .169E+00	MINP .757E-07 .647E-05 .111E-04 .486E-05	FP 1504.0 193.1 -63.5 -70.9
.0000 .0025 .0050 .0075 .0100	.0001 .0052 .0167 .0263 .0300	.39 3.57 4.68 3.10 35	w .228E-05 .754E-05 .192E-04 .290E-04 .327E-04	P .182E+07 .532E+06 .280E+06 .272E+06 .322E+06	RO 81.2 23.8 12.7 12.3 14.3	T 366. 316. 292. 292. 297.	FI .05 .84 1.62 2.41 3.19	MC .592E+01 .163E+01 467E+00 713E+00 285E+00	MTR .461E-02 .122E+00 .223E+00 .169E+00 195E-01	MINP .757E-07 .647E-05 .111E-04 .486E-05 .607E-07	FP 1504.0 193.1 -63.5 -70.9 -20.5
.0000 .0025 .0050 .0075 .0100 .0125	.0001 .0052 .0167 .0263 .0300 .0244	.39 3.57 4.68 3.10 35 -3.68	W .228E-05 .754E-05 .192E-04 .290E-04 .327E-04 .270E-04	P .182E+07 .532E+06 .280E+06 .272E+06 .322E+06 .410E+06	RO 81.2 23.8 12.7 12.3 14.3 17.5	T 366. 316. 292. 292. 297. 304.	FI .05 .84 1.62 2.41 3.19 3.98	MC .592E+01 .163E+01 467E+00 713E+00 285E+00 .642E+00	MTR .461E-02 .122E+00 .223E+00 .169E+00 195E-01 196E+00	MINP .757E-07 .647E-05 .111E-04 .486E-05 .607E-07 .685E-05	FP 1504.0 193.1 -63.5 -70.9 -20.5 68.9
.0000 .0025 .0050 .0075 .0100 .0125 .0150	.0001 .0052 .0167 .0263 .0300 .0244 .0140	.39 3.57 4.68 3.10 35 -3.68 -4.70	W .228E-05 .754E-05 .192E-04 .290E-04 .327E-04 .270E-04 .165E-04	P .182E+07 .532E+06 .280E+06 .272E+06 .322E+06 .410E+06 .691E+06	RO 81.2 23.8 12.7 12.3 14.3 17.5 28.9	T 366. 316. 292. 292. 297. 304. 324.	FI .05 .84 1.62 2.41 3.19 3.98 4.76	MC .592E+01 .163E+01 467E+00 713E+00 285E+00 .642E+00 .344E+01	MTR .461E-02 .122E+00 .223E+00 .169E+00 195E-01 196E+00 213E+00	MINP .757E-07 .647E-05 .111E-04 .486E-05 .607E-07 .685E-05 .112E-04	FP 1504.0 193.1 -63.5 -70.9 -20.5 68.9 354.4
.0000 .0025 .0050 .0075 .0100 .0125 .0150 .0175	.0001 .0052 .0167 .0263 .0300 .0244 .0140 .0037	.39 3.57 4.68 3.10 35 -3.68 -4.70 -3.10	W .228E-05 .754E-05 .192E-04 .290E-04 .327E-04 .270E-04 .165E-04 .599E-05	P .182E+07 .532E+06 .280E+06 .272E+06 .322E+06 .410E+06 .691E+06 .182E+07	RO 81.2 23.8 12.7 12.3 14.3 17.5 28.9 77.2	T 366. 316. 292. 292. 297. 304. 324. 364.	FI .05 .84 1.62 2.41 3.19 3.98 4.76 5.55	MC .592E+01 .163E+01 467E+00 713E+00 285E+00 .642E+00 .344E+01 .106E+02	MTR .461E-02 .122E+00 .223E+00 .169E+00 195E-01 196E+00 213E+00 101E+00	MINP .757E-07 .647E-05 .111E-04 .486E-05 .607E-07 .685E-05 .112E-04 .486E-05	FP 1504.0 193.1 -63.5 -70.9 -20.5 68.9 354.4 1498.6

```
---- AMD.FOR ------
С
С
           ГОЛОВНАЯ ПРОГРАММА РАСЧЕТА ТЕРМОДИНАМИЧЕСКИХ ПРОЦЕССОВ
С
                 В АВИАМОДЕЛЬНОМ УГЛЕКИСЛОТНОМ ДВИГАТЕЛЕ,
С
        РАБОТАЮЩЕМ ОТ БАЛЛОНА С УГЛЕКИСЛОТОЙ (ЕЛАГИН М.Ю. 2016 г.)
С
        _____
       IMPLICIT REAL (K-M)
       EXTERNAL DYAMD
       DIMENSION Y(15), YO(15), WIW(12,21), WIW1(11,21)
       COMMON/MAS/MS, MP, PMR, PMS/HY/VC, STH, CMD, PBIX, DVI, DVII/FMU/FM1, FM2
       COMMON/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5, D/VIV2/MD, MC, V, X, W, P, G1, G2
       COMMON/FI/SKL, SII, BS2, XH2, CFI1, CFI2/PARAM/KL(3)
       COMMON/VIV1/QH,QG,QP,QGP/VIV/GGP,PBX,PI,VI/ALTF/TF(9)
     COMMON/ALFA/TOC, ALG, ALP, ALPG, ALH, FH, FP, VB, DB, HB, PR, CMG
       DATA AM, BB, DX, HMIN, DXP/1.E-7, 0.03, 2*1.E-5, 0.0005/, NEQS/12/
С
       ----- ВВОД - ВЫВОД ИСХОДНЫХ ДАННЫХ ------
     OPEN(10, FILE='AMD.DAT')
       READ (10,*)L,D,S,BS2,XH1,XH2,DM,KL(1),KL(2),KL(3),OMS,MS,MP,MR,
       S0, PBIX, FM1, FM2, TOC, DB, HB, CM, GM, TKP, NPR, ICPR, GD, STH
     CLOSE(10)
     WRITE(6,*)'
                     L,D,S,BS2,XH1,XH2,DM,KL(1),KL(2),KL(3)'
     WRITE (6, *) L, D, S, BS2, XH1, XH2, DM, KL(1), KL(2), KL(3)
     WRITE (6,*) ' OMS, MS, MP, MR, S0, PBIX, FM1, FM2'
     WRITE (6,*) OMS, MS, MP, MR, S0, PBIX, FM1, FM2
       WRITE (6, *) ' TOC, DB, HB, CM, GM, TKP, NPR, ICPR, GD, STH '
       WRITE (6, *) TOC, DB, HB, CM, GM, TKP, NPR, ICPR, GD, STH
С
       ----- ИСХОДНЫЕ ДАННЫЕ -----
С
       L – ДЛИНА ШАТУНА, м;
                              DM - ДИАМЕТР МАХОВИКА, м
С
       D, S - ДИАМЕТР, МАКСИМАЛЬНЫЙ ХОД ПОРШНЯ, М
С
       BS2 - ЧАСТЬ ПЕРИМЕТРА ЦИЛИНДРА, ЗАНЯТОГО ОКНОМ ВЫХЛОПА, М
С
     хн1, хн2 - положение поршня, соответствующее началу открытия
С
                ВПУСКНОГО КЛАПАНА И ВЫПУСКНОГО ОТВЕРСТИЯ, М
С
       MS, MP, MR - МАССА ШАТУНА, ПОРШНЯ, МАХОВИКА, КГ
С
       РВІХ - ДАВЛЕНИЕ НА ВЫХОДЕ ДВИГАТЕЛЯ, Па
С
     S0 - РАССТОЯНИЕ МЕЖДУ ВМТ И КРЫШКОЙ ЦИЛИНДРА, М
       КL (1) - ДИАМЕТР ОТВЕРСТИЯ В СЕДЛЕ ВПУСКНОГО КЛАПАНА, М
С
С
     КL (2) - ДИАМЕТР ТОЛКАТЕЛЯ ШАРИКОВОГО КЛАПАНА, М
С
       KL(3) - МАКСИМАЛЬНЫЙ ХОД КЛАПАНА, М
С
       OMS - УГЛОВАЯ СКОРОСТЬ ВАЛА ДВИГАТЕЛЯ, Об/мин
     FM1, FM2 - КОЭФФИЦИЕНТЫ РАСХОДА НА ВХОДЕ И ВЫХОДЕ ДВИГАТЕЛЯ
С
С
     ТОС - ТЕМПЕРАТУРА ОКРУЖАЮЩЕЙ СРЕДЫ, К
С
     DB, НВ - ДИАМЕТР И ВЫСОТА БАЛЛОНА, М
С
     СМ - ТЕПЛОЕМКОСТЬ СТАЛИ, Дж/(кг*К); GM - МАССА БАЛЛОНА, кг
С
       NPR - КОЛИЧЕСТВО ВЫХОДОВ НА ПЕЧАТЬ В ЦИКЛЕ ДВИГАТЕЛЯ
       ICPR - ПЕРИОДИЧНОСТЬ ПЕЧАТИ ЦИКЛА; ТКР - ВРЕМЯ РАСЧЕТА, с
С
С
     GD - МАССА ДВИГАТЕЛЯ, кг;
С
     STH - НАРУЖНАЯ ПЛОЩАДЬ ТЕПЛООТДАЧИ ДВИГАТЕЛЯ, м2
С
        ----- ВЫЧИСЛЕНИЕ КОНСТАНТ -----
       OMS = OMS * 6.283/60.
        CMG=CM*GM
        CMD=CM*GD
          FP=0.785*DB*DB
          VB=FP*HB
          PR=3.1415*DB
          FH=PR*HB+2.*FP
```

```
VC=2.*S*OMS/6.283
        LAM=0.5*S/L
        SP=0.785*D*D
        VH=SP*S
        PD=3.1415*D
        PMR=MR*DM*DM/8.
        PMS=MS*L*L/12.
        S5=0.5*S
        VH5=0.5*VH
        LAM5=0.5*LAM
        SX=PD*S0
     W1=SP*S0
     SKL=0.785*(KL(1)**2-KL(2)**2)
С
        ---- УГЛЫ ПОВОРОТА КОЛЕНЧАТОГО ВАЛА (FIO1, FIO2), ОТСЧИТЫВАЕМЫЕ
С
     ----- ОТ ВМТ, СООТВЕТСТВУЮЩИЕ НАЧАЛУ ВПУСКА И ВЫПУСКА, рад
     A=LAM*S/4.
     B=S5
     C1=XH1-B-A
     FIO1=ACOS((-B+SQRT(B**2-4.*A*C1))/(2.*A))
        FI01=6.283-FI01
     C2=XH2-B-A
     FIO2=ACOS((-B+SQRT(B**2-4.*A*C2))/(2.*A))
     WRITE (6,1) FIO1, FIO2
        CFI1=COS (FI01)
        CFI2=COS(FIO2)
        TC=0
С
        ----- ЗАДАНИЕ НАЧАЛЬНЫХ УСЛОВИЙ ------
        DVI=0.
        DVII=0.
           PH=PS (TOC, DPS)
           Y(1)=RORKV(TOC, PH)
           Y(2)=TOC
        Y(4) = TOC
        TX = (Y(4) - 218.) / 2. + 1.
        ROI=FRO (TX, DROT)
        MMAX=VB*ROI
        MG=0.8*MMAX
        Y(3)=MG
        Y(5)=TOC
        Y(6)=RORKV(TOC, PH)
        Y(7)=TOC
        Y(8)=OMS
        Y(9) = 0.
     Y(12)=TOC
        т=0.
        TP=0.
        TPR=0.
70
        Y(10) = 0.
        Y(11) = 0.
        DPR=6.283/Y(8)/NPR
     NP=0
        TN=T
С
     ----- ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТОВ ТЕПЛООТДАЧИ ------
     ALG, ALP - КОЭФФИЦИЕНТЫ ТЕПЛООТДАЧИ МЕЖДУ ЖИДКОСТЬЮ, ПАРОМ И
С
С
                ВНУТРЕННЕЙ ПОВЕРХНОСТЬЮ БАЛЛОНА (Вт/м2*К)
С
     АLН - КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ МЕЖДУ НАРУЖНОЙ ПОВЕРХНОСТЬЮ
С
            БАЛЛОНА И ОКРУЖАЮЩЕЙ СРЕДОЙ
```

```
С
     ALGP - КОЭФФИЦИЕНТ ТЕПЛООБМЕНА МЕЖДУ ЖИДКОСТЬЮ И ПАРОМ
С
     _____
        ALG=ALFA1(DB,Y(5),Y(4))
        ALP=ALFA2(DB, Y(5), Y(2))
        ALGP=ALFA2(DB,Y(4),Y(2))
        ALH=ALFAL(TF,DB,Y(5),TOC)
С
       ----- ОПИСАНИЕ ВЫХОДНЫХ ПАРАМЕТРОВ ------
С
       Т - ВРЕМЯ ПРОЦЕССА (с); Y(9) - ТЕКУЩИЙ УГОЛ ПОВОРОТА ВАЛА (рад)
С
       X, V - ПУТЬ (м) И СКОРОСТЬ ПОРШНЯ (м/с)
       W - ОБЪЕМ ЦИЛИНДРА ДВИГАТЕЛЯ (M3);
                                            МО – ДВИЖУЩИЙ МОМЕНТ (Н*м)
С
С
       Y(8) - УГЛОВАЯ СКОРОСТЬ ВАЛА ДВИГАТЕЛЯ (рад/с)
С
       Y(6), Y(7), P - ПЛОТНОСТЬ (кг/м3), ТЕМПЕРАТУРА (К), ДАВЛЕНИЕ
С
                     (Па) УГЛЕКИСЛОГО ГАЗА В ЦИЛИНДРЕ ДВИГАТЕЛЯ
С
     Y(12) - ТЕМПЕРАТУРА СТЕНКИ ДВИГАТЕЛЯ (K)
С
     G1, G2 - РАСХОДЫ НА ВПУСКЕ И ВЫХЛОПЕ (кг/с)
С
           GGP - РАСХОД ИЗ ЖИДКОСТИ В ПАРОВУЮ ФАЗУ (кг/с)
С
           Y(1), Y(2) - ПЛОТНОСТЬ (кг/м3) И ТЕМПЕРАТУРА ПАРА (К)
С
           Y(3), Y(4) - МАССА (кг) И ТЕМПЕРАТУРА ЖИДКОГО CO2 (К)
С
         Y(5) - ТЕМПЕРАТУРА СТЕНКИ БАЛЛОНА (K)
С
           РВХ - ДАВЛЕНИЕ ПАРА В БАЛЛОНЕ (Па)
С
           РІ, VI - ДАВЛЕНИЕ (ПА) И ОБЪЕМ НАСЫЩЕННОЙ ЖИДКОСТИ (м3)
С
            - ВНЕШНИЙ ТЕПЛОВОЙ ПОТОК (Вт)
         OH
С
        _____
7
       CALL SOLDI (NEQS, AM, BB, T, Y, DYAMD, DX, TO, YO, TP, HMIN, NMIN)
       IF(T.LT.TPR) GO TO 4
     NP=NP+1
       WIW(1,NP) = T
       WIW(2,NP) = Y(9)
       WIW(3, NP) = X
       WIW(4, NP) = V
       WIW(5, NP) = W
       WIW(6, NP) = MD
       WIW(7,NP) = Y(8)
       WIW(8,NP)=Y(6)
       WIW(9,NP) = Y(7)
       WIW(10, NP) = P
       WIW(11, NP) = G1
       WIW(12,NP)=G2
         WIW1(1,NP)=GGP
         WIW1(2, NP) = Y(1)
         WIW1(3, NP) = Y(2)
         WIW1(4,NP)=PBX
         WIW1(5, NP) = Y(3)
         WIW1(6, NP) = Y(4)
         WIW1(7,NP)=PI
         WIW1(8,NP)=VI
         WIW1(9, NP) = Y(5)
         WIW1 (10, NP) = QH
         WIW1(11,NP)=Y(12)
       TPR=TPR+DPR
4
       TP=TP+DXP
       T=TO
       DO 6 I=1, NEQS
6
       Y(I) = YO(I)
       IF(Y(9).LT.6.283) GO TO 7
       IC=IC+1
       Y(9) = Y(9) - 6.283
```

```
TK=T-TN
        PRK=Y(10)/TK
        DVN=Y(11)/TK
        IF(IC.LT.ICPR) GO TO 70
     CALL PRVIV (WIW, WIW1, NP)
        WRITE (6,3) PRK, DVN, IC
1
     FORMAT(2X, 'FIO1=', F6.3, 2X, 'FIO2=', F6.3)
3
        FORMAT (2X, 'G=', E10.3, 2X, 'DVN=', E10.3, 2X, 'IC=', I2)
        IC=0
        IF(T.LE.TKP) GO TO 70
        STOP
        END
С
     _____
     SUBROUTINE PRVIV (VIV, VIV1, N)
С
     _____
С
                          ПОДПРОГРАММА ПЕЧАТИ
С
                                    _____
     DIMENSION VIV(12,N), VIV1(11,N)
        WRITE(6,8)
        WRITE(6,55)
        WRITE(6,8)
        WRITE(6,22)((VIV1(I,J),I=1,11),J=1,N)
        WRITE(6,8)
        WRITE(6, 5)
        WRITE(6,8)
        WRITE(6,2)((VIV(I,J),I=1,12),J=1,N)
     WRITE(6,8)
2
        FORMAT (F8.4, F6.3, F5.3, F5.1, E9.3, 2F6.1, F7.2, F5.0, E9.3, 2F5.3)
        FORMAT (3X, 'T', 6X, 'FI', 4X, 'X', 5X, 'V', 5X, 'W', 7X, 'MD',
5
        3X, 'OM', 5X, 'RO', 3X, 'TT', 6X, 'P', 6X, 'G1', 3X, 'G2')
        FORMAT (80 (1H-))
8
22
        FORMAT (E9.3, F7.2, F6.1, F9.0, F6.4, F6.1, F9.0, E9.3, F7.2, F6.4, F6.1)
        FORMAT (3X, 'GGP', 5X, 'ROII', 2X, 'TII', 5X, 'PBX', 5X, 'MI',
55
        4X, 'TI', 5X, 'PI', 7X, 'VI', 6X, 'TC', 6X, 'QH', 3X, 'TCD')
     *
     RETURN
     END
С
        SUBROUTINE DYAMD (XT, Y, DY, NEQS)
С
     _____
        IMPLICIT REAL (L-M)
        DIMENSION Y (NEQS), DY (NEQS)
        COMMON/GM/VH5, SP, PD, LAM, LAM5, W1, SX, S5, DC/FMU/FM1, FM2
        COMMON/VIV2/MD, MC, V, X, W, P, G1, G2/HY/VC, STH, CMD, PBIX, DVI, DVII
        COMMON/RW/R, AT, D1AT, D2AT, B, CV0/FI/SKL, SII, BS2, XH2, CFI1, CFI2
        COMMON/VIV1/QH,QG,QP,QGP/VIV/GGP,PBX,PI,VI/ALTF/TF(9)
        COMMON/ALFA/TOC, ALG, ALP, ALGP, ALH, FH, FP, VB, DB, HB, PR, CMG
        CALL RKT(Y(2))
        PBX=R*Y(2)*Y(1)*(1./(1.-B*Y(1))-Y(1)*AT/(1.+B*Y(1)))
        PI=PS(Y(4),DPS)
     TX = (Y(4) - 218.) / 2. + 1.
        ROI=FRO (TX, DROT)
        ROII=RORKV(Y(4), PI)
        VI=Y(3)/ROI
        HSI=VI/FP
        FI=PR*HSI+FP
     FII=PR*(HB-HSI)+FP
     QH=FH*ALH*(TOC-Y(5))
```

```
QG=FI*ALG*(Y(5)-Y(4))
     QP=FII*ALP*(Y(5)-Y(2))
     QGP=FP*ALGP*(Y(4)-Y(2))
        TPO=FTPO (TX)
С
     ----- ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ИСПАРЕНИЯ (FKSI) -------
С
        Шулейкин В.В. Кинетическая теория испарения// Журн. рус. физико-
С
     хим. общ-ва.-1926.-Ч. Физическая. Т. LVIII. Вып. 3.- С. 527-540.
С
     GGP - расход(кг/с) при испарении, опр. по формуле Герца-Кнудсена
С
     _____
     FKSI=ROI*EXP(-TPO/(R*Y(4)))/ROII
        GGP=FKSI*FP*(PI-PBX)/SQRT(6.2832*R*Y(4))
        DY(1) = (GGP-G1-Y(1) * DVII) / (VB-VI)
        DU=R*Y(2)*Y(2)*Y(1)*D1AT/(1.+B*Y(1))
        HP=H(Y(2), Y(1))
        UP=HP-PBX/Y(1)+R*Y(2)*Y(2)*DIAT*ALOG(1.+B*Y(1))/B
     HII=H(Y(4),ROII)
        HI=HII-TPO
        UI=HI-PI/ROI
        CVP=CVR(Y(2),Y(1))
        CVG=CGG(TX)
        IF(GGP.LE.0.) GO TO 1
        PGU1=HII-UP-DU
        PGU2=HII-UI
        GO TO 2
1
        PGU1=HP-UP-DU
        PGU2=HP-UI
2
        DY(2) = (PGU1*GGP-(HP-UP-DU)*G1+QP+QGP-(PBX-Y(1)*DU)*DVII)/
        (CVP*Y(1)*(VB-VI))
        DY(3) = -GGP
        DY(4) = (-PGU2*GGP+QG-QGP-PI*DVI) / (CVG*Y(3))
     DY(5) = (QH-QG-QP)/CMG
        DVI = (DY(3) - Y(3) * DROT * DY(4) / ROI) / ROI
        DVII=-DVI
        CALL PUCV(Y(7), Y(6), P, U, CV, Z, ZP1, ZP2)
        CALL WDW(Y(9), Y(8), W, DW, X, V, MIN, ST)
        IF(COS(Y(9)).LT.CFI1) GO TO 3
        IF(PBX.LE.P) GO TO 3
        H1=H(Y(2),Y(1))
     SI=SKL
        G1=GKV(Y(2), PBX, P)*SI*FM1
        GO TO 4
3
        G1=0.
     SI=0.
4
        IF(COS(Y(9)).GT.CFI2) GO TO 5
        IF(P.LE.PBIX) GO TO 5
        SII=FBIX(X, PD, BS2, XH2)
        G2=GKV(Y(7), P, PBIX)*SII*FM2
        GO TO 6
5
        G2 = 0.
     SII=0.
6
        ALB=ALFAD(VC, DC, Y(7))
        QB = ALB * ST * (Y(7) - Y(12))
        DY(6) = (G1 - G2 - Y(6) * DW) / W
        DY(7) = ((H1-U+ZP2)*G1-QB-R*Y(7)*(Z+ZP1)*(G2+Y(6)*DW))/
     *
       (CV*Y(6)*W)
        CALL MCMD(P,PBIX,Y(9),MD,MC)
        DY(8) = (MD - MC) / MIN
```

c	DY (9) =Y (8) DY (10) =G2 DY (11) =MD*Y (8) ALHD=ALFAL (TF,DC,Y(12),TOC) QHD=ALHD*STH*(Y(12)-TOC) DY (12) = (QB-QHD)/CMD RETURN END
C a	REAL FUNCTION ALFAD(V,D,T)
C C	КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ УГЛЕКИСЛЫЙ ГАЗ – ЦИЛИНДР ДВИГАТЕЛЯ
	X= (T-218.)/2.+1. TNUP= (21.073-0.4926*X+0.0044*X**2)*1.E-8 TLAMP= (161.8-1.3471*X-0.014*X**2)*1.E-6 RE=V*D/TNUP ALFAD=0.0218*RE**0.8*TLAMP/D RETURN END
С	REAL FUNCTION FBIX(X,PD,BS2,XH)
C C	РАСЧЕТ ПЛОЩАДИ ПРОХОДНОГО СЕЧЕНИЯ ПРИ ВЫПУСКЕ
C	FBIX=PD*BS2*(X-XH) RETURN END
С	SUBROUTINE MCMD (P, PI, FI, MD, MC)
C C	РАСЧЕТ МОМЕНТОВ: ДВИЖУЩЕГО (MD) И СОПРОТИВЛЕНИЯ (MC), Н*м
C	IMPLICIT REAL (L-M) COMMON/GM/VH5,SP,PD,LAM,LAM5,W1,SX,S5,D ALFA=ASIN(LAM*SIN(FI)) MD=SP*(P-PI)*S5*SIN(FI+ALFA)/COS(ALFA) MC=MD RETURN END
С	SUBROUTINE WDW(FI,OM,W,DW,X,V,MIN,ST)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ПОДПРОГРАММА РАСЧЕТА ТЕКУЩЕГО ОБЪЕМА (W, м3) ЦИЛИНДРА ДВИГАТЕЛЯ И СКОРОСТИ ЕГО ИЗМЕНЕНИЯ (DW, м3/с); ПУТИ (X, м), СКОРОСТИ (V, м/с) ПОРШНЯ, ПЛОЩАДИ ТЕПЛООТДАЮЩЕЙ ПОВЕРХНОСТИ (ST, м2), МОМЕНТА ИНЕРЦИИ ДВИЖУЩИХСЯ МАСС (MIN, кг*м2)
	<pre>IMPLICIT REAL (L-M) COMMON/MAS/MS,MP,PMR,PMS/GM/VH5,SP,PD,LAM,LAM5,W1,SX,S5,D W=W1+VH5*(1COS(FI)+LAM5*SIN(FI)*SIN(FI)) DW=VH5*OM*(SIN(FI)+LAM5*SIN(2.*FI)) X=(W-W1)/SP V=DW/SP ST=(SX+X)*PD+2.*SP VCX=S5*OM*(SIN(FI)+LAM*SIN(2.*FI)/4.) VCY=S5*OM*COS(FI)/2.</pre>

```
VC=SORT (VCX*VCX+VCY*VCY)
      OMS=OM*LAM*COS(FI)
      MIN=PMR+ (MS*VC*VC+PMS*OMS*OMS+MP*V*V) / (OM*OM)
      RETURN
      END
С
      _____
      SUBROUTINE PUCV (T, RO, P, U, CV, Z3, ZP1, ZP2)
С
      ------
      ПОДПРОГРАММА ДЛЯ РАСЧЕТА ДАВЛЕНИЯ, Р (Па); УДЕЛЬНОЙ ВНУТРЕННЕЙ
С
         ЭНЕРГИИ, U (Дж/кг); ИЗОХОРНОЙ ТЕПЛОЕМКОСТИ, CV (Дж/кг*К)
С
      _____
С
      COMMON/RW/R, AT, D1AT, D2AT, B, CV0
      CALL RKT(T)
      Z1=1./(1.-B*RO)
      Z2=1.+B*RO
      Z3=Z1-RO*AT/Z2
      P=R*T*RO*Z3
      CV=CV0+R*T*ALOG(Z2)*(2.*D1AT+T*D2AT)/B
      U=CV0*T+R*T*T*D1AT*ALOG(Z2)/B
      ZP1=-RO*T*D1AT/Z2
      ZP2=ZP1*R*T
      RETURN
      END
С
                 _____
      _____
      FUNCTION H(T,RO)
С
      _____
                    _____
С
       РАСЧЕТ УДЕЛЬНОЙ ЭНТАЛЬПИИ РЕАЛЬНОГО РАБОЧЕГО ТЕЛА (Н, Дж/кг)
      _____
С
      COMMON/RW/R, AT, D1AT, D2AT, B, CV0
      CALL RKT(T)
      Z1=1./(1.-B*RO)
      Z2=1.+B*RO
      Z3=Z1-RO*AT/Z2
      H=CV0*T+R*T*(Z3+T*D1AT*ALOG(Z2)/B)
      RETURN
      END
С
      _____
      BLOCK DATA CO2
С
      _____
      COMMON/DD/ADR(4), TKR, PKR, OM, AR/GAR/A, B, C, D/ALTF/TF(9)
С
    _____
С
      См: Р. Рид., Дж. Праусниц, Т. Шервуд/Свойства газов и жидкостей.
С
      ----- Справочное пособие. - Л.: Химия, 1982. - 592 с. ------
С
      ADR - МАССИВ КОЭФФИЦИЕНТОВ ДЛЯ РАСЧЕТА CV0
С
      ТКR, PKR - КРИТИЧЕСКИЕ ТЕМПЕРАТУРА (К), ДАВЛЕНИЕ (Па)
С
      ОМ - ФАКТОР АЦЕНТРИЧНОСТИ; AR - ГАЗОВАЯ ПОСТОЯННАЯ, Дж/ (кг*К)
      А, В, С, D - К-ТЫ УРАВНЕНИЯ ГАРЛАХЕРА ДЛЯ ДАВЛЕНИЯ НАСЬЩЕННЫХ ПАРОВ
С
С
      _____
      DATA ADR/626.16,0.8658,-4.6173E-4,8.283E-8/,TKR,PKR,OM,AR/304.2,
      7141680.,0.225,188.91/,A,B,C,D/52.703,-3146.64,-5.572,0.705/
С
    ----- ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА ВОЗДУХА ------
      ТГ (1,2,3) - КОЭФФИЦИЕНТЫ ДЛЯ РАСЧЕТА КИНЕМАТИЧЕСКОЙ ВЯЗКОСТИ
С
      ТГ (4,5,6) - КОЭФФИЦИЕНТЫ ДЛЯ РАСЧЕТА ТЕПЛОПРОВОДНОСТИ
С
С
      ТГ (7,8,9) - КОЭФФИЦИЕНТЫ ДЛЯ РАСЧЕТА КРИТЕРИЯ ПРАНДТЛЯ
С
      _____
      DATA TF/-10.77,0.0885,1.E-6,0.28,0.00785,1.E-2,0.785,-0.00027,1/
      END
```

С	
C	<pre>subroutine soldi(jm,a,b,xi,yi,rp,hio,xo,yo,xp,hmin,min)</pre>
C	
	real K, max
	dimension y(15), d1(15), d2(15), y1(15), y0(15)
	nc=n
	x=x1
	$\min_{n=0} = 0$
1.0	do 10 j=1, jm
10	yo(j)=yi(j)
20	max=U
25	do 25 j=1, jm
25	y(j) = y(j)
	call $rp(x, y, \alpha, jm)$
	do = 50 = 1, jm d1 (-1) = 5 + d1 (-1)
20	di(j) = in di(j)
30	$y(j) - y(j) + \alpha I(j)$
	$d_{0} = \frac{1}{1} \frac{1}$
	$d0 \ 40 \ J=1, Jm$ $d2(i)=0 \ Et(d1(i)+b+d2(i))$
40	$a_2(j) = 0.5^{\circ}(a_1(j) + 11^{\circ}a_2(j))$
40	$y(j) - y(j) - \alpha I(j) + 0.5 + \alpha Z(j)$
	$d_{0} \in \{0, \frac{1}{2}, \frac{1}{2}$
	d1 (i) = (2 + b + d1 (i) + d2 (i)) / 3
	$u(j) = (2 \cdot m^{-1} u(j) + u($
	$y(j) - y(j) = 0.5^{a} dz(j)$ k=abs(d1(i) - d2(i))/(a+b*abs(d1(i)))
	$x = abs(ar(j)) az(j)) (arb^abs(ar(j)))$ if(k=max) 60 50 50
50	max = k
60	continue
00	if(max-1, 25) = 80, 80, 65
65	if(mm) = 70, 70, 100
70	h=h/sart(max)
	if(h-hmin) 75.20.20
75	h=hmin
	mm=1
	min=1
	r_{r}
80	if(max-0.5) = 85.100.100
85	if(max-0.0001) 90.90.95
90	max=0.0001
95	hc=h/sgrt(sgrt(max))
100	do 110 $i=1$, im
110	v(i) = v(i) + d1(i)
	mm=0
	x=x+h
	h=hc
	do 115 j=1,jm
115	$v_{0}(i) = v(i)$
	if(x-xp) 120,140,140
120	if(x+h-xp) 20,20,130
130	hio=h
	h=xp-x+1.e-25
	go to 20
140	xo=x
	return
	end

С		
~		function gkv(t0,p0,pc)
C C		
c		
•		real i.iO
		common/rw/r, at, d1at, d2at, b, cv0
		equivalence (cv0,cv)
		data em/1000.0/
		ro0=rorkv(t0,p0)
		w1=cv0/r
		wl=wl+1./(1b*ro0)-at*ro0/(1.+b*ro0)
	*	+t0*d1at*alog(1.+b*ro0)/b
		i0=r*t0*w1
		t=(t0+t0)*cv0/(cv0+cv0+r)
		et=em
20		e0=et
		t1=t
		ro=adrokv(ro0,t0,t1)
		cv=cv+r*tl*alog(1.+b*ro)*(2.*dlat+tl*d2at)/b
		$w^2=3./(1b*ro)+(cv0+cv0)/r$
		w2=w2-at*ro*(4.+3.*b*ro)/(1.+b*ro)/
	*	(1.+D*rO)+2.*CI*dIat*alog(1.+D*rO)/D
		$w_{3}=1./(1D^{10})-r_{0}/(1.+D^{10})^{(at+t_{1})}$
		$(-2.*(0^{W1})(W2+1)(0^{W3}W3))$
		t = (t + t + t)/2. et=abs(1 - t1/t)
		if(et=e0) = 20.50.50
50		pk=r*t*ro*(1, /(1, -b*ro)-ro*at/(1, +b*ro))
		tk=t
		rok=ro
		if(pc.le.pk) go to 80
		et=em
40		e0=et
		t1=t
		ro=rorkv(t1,pc)
		t=adtkv(t0,ro0,ro)
		t=(t+t1)/2.
		et=abs(1t1/t)
		if(et-e0) 40,80,80
80		call rkt(t)
	÷	1=1+r*t*(1.)(1D*ro)-at*ro)(1.+D*ro)+
	Ŷ	$t^{1}a_{1}a_{1}o_{3}(1.+b^{1}o)/b)$
		11(10.10.1) 1-10 aky=rotegent(2, t(i))
		$g_{KV} = 10^{\circ} \text{ Sqr}(2.2.2)$
		END
с		
•		function adtkv(t0,ro0,ro)
C C		ВЫЧИСЛЕНИЕ ТЕМПЕРАТУРЫ ПО УРАВНЕНИЮ АДИАБАТЫ
С		$\sum_{n=1}^{\infty} (m n) = \frac{1}{n} + \frac{1}$
		common / rw/r, at, atat, azat, b, CVU
		$d_{a+a} = m/1000 0/$
		if(ro) ne, ro) go to 5

		adtkv=t0
		return
5		call rkt(t0)
		w1 = alog(ro/ro0) + alog(1.+b*ro0)*(at+t0*)
	*	dlat)/b+alog((1b*ro0)/(1b*ro))
		t=t0*(ro/ro0)**(r/cv0)
		e=em
40		t1=t
		e0=e
		call rkt(t1)
		$r^{2} = r^{1} = cr^{0} / r^{2} = cr^{1} / r^{2}$
		$w_2 - w_1 - c_{V0}/1^{a_{100}}(1/10)$
		$w_2 = w_2 - a \log (1 + b^{r} O)^{r} (a t + t + a t a t) / b$
		$CV = CV + r^{1} c1^{alog} (1.+b^{ro})^{a} (2.^{d1al+t1^{d2al}})^{b}$
		$W_3 = -CV/r/t_1 - alog(1.+b*ro)*(2.*dlat+tl*d2at)/b$
		t=t1*(1w2/(w3*t1))
		e=abs(1t1/t)
		if(e-e0) 40,80,80
80		adtkv=t1
		return
		end
С		
		function rorkv(t,p)
С		
с		РАСЧЕТ ПЛОТНОСТИ ПО ИЗВЕСТНЫМ (Т,р) ДЛЯ УРАВНЕНИЯ СОСТОЯНИЯ R-Кw
С		
		common/rw/r,at,d1at,d2at,b,cv0
		data em/1000.0/
		call rkt(t)
		e=em
		ro=p/(r*t)
10		ro0=ro
		e0=e
		$a_{1=1} - b * r_{0}0$
		$a^{2} = 1 + b + r_{0}0$
		a2 = 1.15 + 100 a1 = n/(ro0 + r + 1)
		$21-p/(100^{-1}+c)$
		22 - 1./a1 - a1 - a1 - a1 - a1 + a0 + (1 + a2) / a2 / a2
		$23-1.7$ ($a1^{-}a1$) $-a1^{-}(00^{-}(1.+a2)/a2/a2)$
		$r_{0}=r_{0}(1, -(22-21)/23)$
		e=abs(1rou/ro)
~~		1I(e-eu) 10,30,30
30		rorkv=roU
		return
		end
С		
~		function adrokv(ro0,t0,t)
C		
C C		вычисление плотности по уравнению адиабаты
C		
		$conumon/rW/r, at, \alpha tat, \alpha tat, b, CVU$
		data em/1000.0/
		if(t.ne.t0) go to 5
		adrokv=ro0
		return
5		call rkt(t0)
		w1 = -cv0/r*alog(t/t0)
		w1=w1+alog(1.+b*ro0)*(at+t0*d1at)/b
		ro=ro0*(t/t0)**(cv0/r)

		call rkt(t)
		e=em
20		rol=ro
20		
		$e_{0} = e_{0}$
		$w_2 = alog(rol/rol) + w_1 - alog(l. + D^rol)^{-1}$
	×	(at+t*diat)/b+alog((1b*ro0)/(1b*ro1))
		w3=1./rol+b/(1b*rol)-(at+t*dlat)/(1.+b*rol)
		ro=ro1*(1w2/(w3*ro1))
		e=abs(1ro1/ro)
		if(e-e0) 20,40,40
40		adrokv=ro1
		return
		end
с		
		subroutine rkt(t)
С		молификация Вильсона
•		common/rw/r at d1at d2at b $cv0/dd/adr(4)$ tkr pkr om ar
		roal k
	r=	ar
		D=0.08664 * r * tkr/pkr
		ak=4.934*b
		k=1.57+1.62*om
		at=ak*(1.+k*(tkr/t-1.))
		dlat=-k*ak*tkr/t/t
		d2at=-d1at*2./t
		tc=t-273.15
		cv0=adr(1)+adr(2)*tc+adr(3)*tc*tc+adr(4)*tc*tc*tc
		return
		end
с		
•		REAL FUNCTION CVR (T. RO)
С		
c		ОПРЕЛЕЛЕНИЕ ИЗОХОРНОЙ РЕАЛЬНО-ГАЗОВОЙ ТЕПЛОЕМКОСТИ
c		
U		COMMON/RW/R at n1at n2at B CVO
		CVD = CVD + D + T + D + T + D + T + D + T + D + D
		RETURN
~		END
С		
-		REAL FUNCTION PS(T, DPS)
С		v
С		ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НА ЛИНИИ НАСЬЩЕНИЯ И ЕГО ПРОИЗВОДНОИ
С		ПО ТЕМПЕРАТУРЕ (ИСПОЛЬЗУЕТСЯ УРАВНЕНИЕ ГАРЛАХЕРА См: стр. 176)
С		
		COMMON/GAR/A,B,C,D
		data em/1000.0/
		e=em
		al=a+b/t+c*alog(t)
		p = exp(a1)
10		n=0=n
10		
		$p-p_0 = (p_0 - exp(a_1 + a^p_0 / t^2)) / (1 - exp(a_1 + a^p_0 / t^2 / a) + a^p_0 / t^2 / a)$
		e=abs(1p0/p)
		11 (e-e0) 10, 30, 30
30		ps=p0*133.3605
		dps=(c*t**2-b*t-2.*d*p0)/(t**3/p0-d*t)*133.3605
		RETURN

	END
	REAL FUNCTION CGG(T)
	ОПРЕДЕЛЕНИЕ УДЕЛЬНОЙ ТЕПЛОЕМКОСТИ НАСЫЩЕННОЙ ЖИДКОСТИ СО2
, CG	CGG=1.5327+0.1508*T-0.0241*T**2+0.0017*T**3-5.E-5*T**4+ 5.E-7*T**5 G=CGG*1000. RETURN END
	REAL FUNCTION FRO(T, DROT)
	ПЛОТНОСТЬ НАСЫЩЕННОЙ ЖИДКОСТИ СО2 и ее ПРОИЗВОДНАЯ по Т
F.F	C=1191.8-10.728*T+0.2362*T*T-0.0064*T*T*T DROT=-4.0984+0.5355*T-0.1507*T*T+0.0157*T**3-0.0008*T**4 +2.E-5*T**5-2.E-7*T**6 RETURN END
RE	AL FUNCTION FTPO(T)
	ТЕПЛОТА ПАРООБРАЗОВАНИЯ СО2
FJ FJ RE EN	TPO=343.18-0.8845*T-0.2639*T*T+0.01*T*T*T-0.0002*T*T*T*T PO=FTPO*1000. TURN ID
 FJ RE EN	TPO=343.18-0.8845*T-0.2639*T*T+0.01*T*T*T-0.0002*T*T*T*T PO=FTPO*1000. TURN ID FUNCTION TFL(A,B,C,T)
 F1 F1 EN	ТРО=343.18-0.8845*T-0.2639*T*T+0.01*T*T*T-0.0002*T*T*T*T PO=FTPO*1000. TURN ID FUNCTION TFL(A,B,C,T) ПОДПРОГРАММА ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ВОЗДУХА
 F'] RE EN	ТРО=343.18-0.8845*T-0.2639*T*T+0.01*T*T*T-0.0002*T*T*T*T PO=FTPO*1000. TURN ID FUNCTION TFL (A, B, C, T) ПОДПРОГРАММА ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ВОЗДУХА TFL= (A+B*T) *C RETURN END
 FJ RE EN	TPO=343.18-0.8845*T-0.2639*T*T+0.01*T*T*T-0.0002*T*T*T*T TPO=FTPO*1000. TURN ID FUNCTION TFL(A,B,C,T) ПОДПРОГРАММА ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ВОЗДУХА TFL=(A+B*T)*C RETURN END FUNCTION ALFAL(TF,DEL,TC,TO)
 F7 F1 EN	TPO=343.18-0.8845*T-0.2639*T*T+0.01*T*T*T-0.0002*T*T*T*T TPO=FTPO*1000. TURN ID FUNCTION TFL (A, B, C, T) ПОДПРОГРАММА ОПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ВОЗДУХА TFL= (A+B*T) *C RETURN END FUNCTION ALFAL (TF, DEL, TC, TO) КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ СО СТОРОНЫ ОКРУЖАЮЩЕГО ВОЗДУХА
 F1 F2 EN	<pre>PPO=343.18-0.8845*T-0.2639*T*T+0.01*T*T*T-0.0002*T*T*T*T PPO=FTPO*1000. ETURN ID FUNCTION TFL(A,B,C,T) </pre>
 FI FI RH EN 	<pre>PPO=343.18-0.8845*T-0.2639*T*T+0.01*T*T*T-0.0002*T*T*T*T PPO=FTPO*1000. TURN ID FUNCTION TFL(A, B, C, T) </pre>
 FT FE E E E E E E E E E E E E E E E E E	PPO=343.18-0.8845*T-0.2639*T*T+0.01*T*TT-0.0002*T*T*T*T PPO=FTPO*1000. TURN ID FUNCTION TFL(A,B,C,T)

	FUNCTION ALFA1 (DEL,TC,TG)
	КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ СО СТОРОНЫ СО2 (ЖИДКОСТЬ – СТЕНКА)
	TM = (TG+TC)/2.
X	=(TM-218.)/2.+1.
	TNUG=(79.733-4.8569*X+0.1265*X**2-0.0012*X**3)*1.E-8
	TLAMG=(9.9423+0.7111*X-0.0372*X**2+0.0009*X**3)*1.E-6
	PRG=-0.2896+0.4028*X-0.028*X**2+0.0005*X**3
	BETG=0.0005+0.0009*X-6.E-5*X**2+1.E-6*X**3
	GRG=9.81*DEL**3*BETG*ABS(TG-TC)/(TNUG*TNUG)
R	AG=GRG*PRG
IJ	F(RAG.LT.8.E+6) GO TO 1
A)	LFA1=0.15*RAG**0.33*TLAMG/DEL
G	D TO 2
	ALFA1=0.54*RAG**0.25*TLAMG/DEL
	RETURN
	END
	FUNCTION ALFA2 (DEL, TC, TP)
	КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ СО СТОРОНЫ СО2 (ПАР - СТЕНКА, ЖИДКОСТЬ)
	TM=(TP+TC)/2.
X	=(TM-218.)/2.+1.
	TNUP=(21.073-0.4926*X+0.0044*X**2)*1.E-8
	TLAMP=(161.8-1.3471*X-0.014*X**2)*1.E-6
	PRP=2.1744+0.1585*X-0.014*X**2+0.0003*X**3
	BETP=0.0373+0.001*X-0.0001*X**2+2.E-6*X**3
	GRP=9.81*DEL**3*BETP*ABS(TP-TC)/(TNUP*TNUP)
R	AP=GRP*PRP
I	F(RAP.LT.8.E+6) GO TO 1
A	LFA2=0.15*RAP**0.33*TLAMP/DEL
G	D TO 2
	ALFA2=0.54*RAP**0.25*TLAMP/DEL
	RETURN
	END

Результаты расчета

L,D,S,BS2,XH	H1, XH2, DM, KL(1)	,KL(2),KL(3)							
9.00000E-003	8.00000E-003	5.500000E-00	3 1.500000E-001	1.400000	E-003				
4.100000E-003	5.000000E-002	2.00000E-00	3 1.00000E-003	3.00000	E-003				
OMS, MS, MP, MF	R,SO,PBIX,FM1,F	м2							
2500.00000	0 5.00000E-0	03 5.000000E	-003 1.000000E-0	002 8.000	000E-003				
100000.00000	0 6.200000E-0	01 5.600000E	-001						
TOC, DB, HB, CM, GM, TKP, NPR, ICPR, GD, STH									
293.00000	00 1.750000E-0	02 6.670000E	460.00	00000					
3.000000E-002	1.00000	00	20 3	1.000000	-002				
1.000000E-003									
FI01= 5.344 FIC	02= 1.937								
GGP ROII I	TII PBX	MI TI	PI VI	TC	QH TCD				
.191E-04 183.83 2	293.0 5544362.	.0095 291.7 5	544398122E-04	293.00 .0	000 293.0				
.139E-01 183.83 2	293.0 5516972.	.0095 291.7 5	543573122E-04	293.00 .0	000 293.0				
	.352E-01 182.51	L 292.1 54	457758009	5 291.7	5526233.	.122E-04	293.00	.0000	293.0
---	-----------------	------------	------------	---------	-----------	-----------	----------	---------	-------
	.533E-04 180.92	2 292.8 5	508958009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.197E-04 180.95	5 292.9 5	509024009	4 291.4	5509063.	.121E-04	293.00	.0000	293.0
	.590E-01 180.13	3 291.9 5	371081009	4 291.4	5490192.	.121E-04	293.00	.0000	293.0
	.189E-02 176.10	291.35	450696009	4 291.1	5454662.	.120E-04	293.00	.0000	293.0
	.210E-04 176.77	7 292.7 54	454405009	4 291.0	5454449.	.120E-04	293.00	.0000	293.0
_									
_	T FI	x v	W	MD OM	RO	TT	P (31 G2	2
	.0485 .131 .	.000 .2	.408E-06	.3 261	.8 138.85	31958	5E+07 .(00.00	00
	.0495 .393 .	.000 .5	.426E-06	.5 261	.8 134.82	31555	2E+07 .(00. 00	00
	.0505 .655 .	.001 .6	.453E-06	.6 261	.8 133.64	31154	7E+07 .(00.00	00
	.0520 1.048 .	.002 .7	.505E-06	.7 261	.8 132.87	304 492	2E+07 .(00. 00	00
	.0530 1.309 .	.003 .7	.543E-06	.6 261	.8 123.44	29444	1E+07 .(00. 00	00
	.0545 1.702 .	.004 .6	.596E-06	.5 261	.8 111.75	28238	5E+07 .(00.00	00
	.0555 1.964 .	.004 .5	.625E-06	.3 261	.8 105.70	27633	3E+07 .(000 .01	LO
	.0565 2.226 .	.005 .4	.648E-06	.2 261	.8 86.10	25322	OE+07 .(000 .01	L7
	.0580 2.619 .	.005 .2	.671E-06	.0 261	.8 46.98	19893	OE+06 .0	000 .01	12
	.0590 2.880 .	.005 .1	.677E-06	.0 261	.8 29.07	164502	2E+06 .(00.00	07
	.0605 3.273 .	.0051	.675E-06	.0 261	.8 14.46	12321	1E+06 .0	00.00)3
	.0615 3.535 .	.0053	.665E-06	.0 261	.8 9.72	10513	2E+06 .0	00.00)2
	.0625 3.797 .	.0054	.648E-06	.0 261	.8 7.40	9310	5E+06 .(00.00	00
	.0640 4.189 .	.0046	.611E-06	.0 261	.8 6.85	90104	4E+06 .0	00.00	00
	.0650 4.451 .	.0047	.579E-06	.0 261	.8 7.12	9211	2E+06 .0	00.00	00
	.0660 4.713 .	.0037	.543E-06	.0 261	.8 7.55	9412	2E+06 .(00.00	00
	.0675 5.106 .	.0027	.487E-06	.0 261	.8 8.39	9814	1E+06 .(00.00	00
	.0685 5.368 .	.0016	.453E-06	3 261	.8 16.69	19824	5E+07 .(038 .00	00
	.0700 5.760 .	.0004	.415E-06	4 261	.8 124.77	31255	7E+07 .(00.00	00
	.0710 6.022 .	.0001	.403E-06	1 261	.8 131.85	31958	3E+07 .(00.00	00
-									
_	G= .252E-02	DVN= .3	66E+02 IC=	3 					
_	GGP ROII	TII 	PBX MI	TI 	PI	VI	TC	QН	TCD
	.218E-04 166.17	7 291.6 52	274441009	1 289.6	5274496.	.115E-04	293.00	.0000	293.0
	.150E-01 166.17	7 291.6 52	233248009	1 289.6	5271268.	.114E-04	293.00	.0000	293.0
	.124E-01 165.10	290.8 52	224762009	1 289.5	5256644.	.114E-04	293.00	.0000	293.0
	.134E-03 164.93	3 291.4 52	248779009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0
	.197E-04 164.96	5 291.4 52	249074009	1 289.4	5249125.	.114E-04	293.00	.0000	293.0

.483E-01 164.30 290.6 5103795. .0091 289.4 5231219. .113E-04 293.00 .0000 293.0 .626E-02 161.76 289.8 5174855. .0091 289.0 5192029. .113E-04 293.00 .0000 293.0 .895E-04 162.19 290.9 5190457. .0090 288.9 5190703. .112E-04 293.00 .0000 293.0

T FI	x v	W 1	MD OM	RO	тт	P	G1 G2	2
.1200 .003 .	.000 .1	.403E-06	.1 261.	8 124.39	32155	4E+07 .	000 .00	10
.1215 .395 .	000 .5	420E-00	.5 201.	8 120.20	313 52	45+07 . 35+07)0)0
.1240 1.050	.002 .7	.505E-06	.7 261.	8 121.35	30647	2E+07 .	000 .00	0
.1250 1.312	.003 .7	.543E-06	.6 261.	8 112.74	29742	5E+07 .	000 .00	00
.1260 1.573	.004 .7	.579E-06	.5 261.	8 105.28	28838	7E+07 .	000 .00	00
.1275 1.966	.004 .5	.625E-06	.3 261.	8 96.53	27832	2E+07 .	000 .01	∟0
.1285 2.228	.005.4	.649E-06	.2 261.	8 78.20	25521	1E+07 .	000 .01	.5
.1300 2.621 .	.005 .2	.671E-06	.0 261.	8 42.01	20086	9E+06 .	000 .01	.1
.1310 2.882	.005 .1	.677E-06	.0 261.	8 25.70	16546	0E+06 .	000 .00)7
.1320 3.144	.0051	.677E-06	.0 261.	8 15.83	13625	0E+06 .	000 .00)4
.1335 3.53/ .	.0053	. 665E-06	.0 261.	8 8.43	10511	9E+06 .		11
.1345 5.799	.0034	.040E-00	.0 201.	0 0.00	9510	15700 . 27106)0 \0
1370 4 453	004 - 7	578E-06	0 261	8 6 71	94.10	3E+00 . 1E+06)0)0
1380 4 715	003 - 7	542E-06	0 261	8 7 12	98 12	1E+06		0
.1395 5.108	.0027	.486E-06	.0 261.	8 7.91	102.14	1E+06 .	000 .00	0
.1405 5.370	.0016	.453E-06	3 261.	8 16.06	20623	8E+07 .	035 .00	00
.1420 5.762	.0004	.415E-06	3 261.	8 107.86	31052	5E+07 .	000.00	00
.1430 6.024	.0001	.403E-06	1 261.	8 120.68	31954	9E+07 .	000 .00	00
G= .230E-02	DVN= .35	2E+02 IC= 3	3					
GGP ROII	 TII	PBX MI	 TI	PI	VI	тс	ОН	TCD
.142E-04 155.47	7 289.4 50	26850008	9 287.6	5026896.	.109E-04	293.00	.0000	293.0
.131E-04 155.47	7 289.4 50	26854008	9 287.6	5026896.	.109E-04	293.00	.0000	293.0
.530E-02 155.37	7 289.3 50	07387008	9 287.6	5024595.	.109E-04	293.00	.0000	293.0
.271E-03 155.16	5 289.3 50	18750008	9 287.6	5019633.	.108E-04	293.00	.0000	293.0
.146E-04 155.20	0 289.3 50	19538008	9 287.6	5019585.	.108E-04	293.00	.0000	293.0
.136E-04 155.20	J 289.3 50 D 289.3 50	19541008	9 287.6	5019585.	.108E-04	293.00	.0000	293.0
.130E-04 155.20 126E-04 155 20	J 209.3 50 D 200 3 50	19541008	9 201.0	5019565.	100E-04	293.00		293.0
136E-04 155.20	289.3 50 289 3 50	19541008	9 207.0	5019585.	108E-04	293.00	0000	293.0
136E-04 155.20) 289.3 50) 289 3 50	19541 008	9 287 6	5019585.	108E-04	293.00	0000	293.0
136E-04 155.20	289.350	19541 008	9 287.6	5019585	108E-04	293.00	.0000	293.0
.136E-04 155.20	289.350	19541008	9 287.6	5019585.	.108E-04	293.00	.0000	293.0
.127E-04 155.20	289.350	19544008	9 287.6	5019585.	.108E-04	293.00	.0000	293.0
.123E-05 155.20	289.3 50	19581008	9 287.6	5019585.	.108E-04	293.00	.0000	293.0
.123E-05 155.20	289.3 50	19581008	9 287.6	5019585.	.108E-04	293.00	.0000	293.0
.123E-05 155.20	289.3 50	19581008	9 287.6	5019585.	.108E-04	293.00	.0000	293.0
.123E-05 155.20	289.3 50	19581008	9 287.6	5019585.	.108E-04	293.00	.0000	293.0
.392E-01 154.61	L 288.5 48	74301008	9 287.6	5004109.	.108E-04	293.00	.0000	293.0
.335E-02 152.53	3 287.8 49	52310008	8 287.1	4963874.	.107E-04	293.00	.0000	293.0
.138E-03 153.03	3 288.7 49	62390008	8 287.1	4962866.	.107E-04	293.00	.0000	293.0
 T FI	x v	 W 1	MD OM	RO	 TT	 P	G1 G2	2
.1925 .135	.000 .2	.408E-06	.2 261.	8 117.03	31952	1E+07 .	000 .00)0
.1935 .397	.000 .5	.426E-06	.4 261.	8 113.58	31648	9E+07 .	000.00)0
.1945 .658	.001 .6	.453E-06	.6 261.	8 108.94	30947	6E+07 .	000 .00	00
.1960 1.051	.002 .7	.506E-06	.6 261.	8 108.76	30243	UE+07 .	000 .00	10
.19/0 1.313 .	.003 .7	.343E-U6	.5 261.	Ø 101.05	∠9438	δ些+U/ . 1 〒→ 0 7		10
.1905 1.705 . 1005 1 047	.004 .6 004 F	625E-06	.4 201. 2 261	0 91.49 0 04 E1	20234	1870/ . 58107		10
2005 2 220		649E-06	.J 201. 1 261	10.00 0	254 10	3E+07 .	000 .00	4
.2020 2.622	.005 .2	.671E-06	.0 261	8 37.34	19979	0E+06	000 .00	.₌)9
								-

.2030 2.8	384 .00	05.1	.677E-0	6	.0 26	51.8	22.73	164.	.414E+06	.000 .0	06
.2045 3.2	276 .00	051	.675E-0	6	.0 26	51.8	11.09	123.	.168E+06	.000 .0	03
.2055 3.5	538 .00	053	.665E-0	6	.0 26	51.8	7.45	105.	.110E+06	.000 .0	01
.2065 3.8	300 .00	054	.648E-0	6	.0 26	51.8	6.20	97.	.100E+06	.000 .0	00
.2080 4.1	193 .00	046	.611E-0	6	.0 26	51.8	6.19	97.	.103E+06	.000 .0	00
.2090 4.4	454 .00	047	.579E-0	6	.0 26	51.8	6.44	98.	.111E+06	.000 .0	00
.2105 4.8	347 .00	028	.524E-0	6	.0 26	51.8	7.07	102.	.127E+06	.000 .0	00
.2115 5.1	109 .00	027	.487E-0	6	.0 26	51.8	7.59	106.	.140E+06	.000 .0	00
.2125 5.3	371 .00	016	.453E-0	6 –	.3 26	51.8	15.48	209.	.228E+07	.033 .0	00
.2140 5.7	763 .00	004	.415E-0	6 –	.3 26	51.8	106.29	311.	.488E+07	.000 .0	00
.2150 6.0	025 .00	001	.403E-0	6 –	.1 26	51.8	110.85	316.	.509E+07	.000 .0	00
G= .205E-	-02 DV	VN= .33	L8E+02 :	IC= 3							
GGP I	ROII	FII	PBX	MI	TI		PI	VI	TC	QH	TCD
.130E-04 14	48.37 2	287.2 48	329369.	. 0087	286.	04	829420.	.104E	-04 293.0	0000.00	293.0
.153E-02 14	48.37 2	287.2 48	323265.	. 0087	286.	04	829269.	.104E	-04 293.0	0000.00	293.0
.519E-02 14	48.11 2	286.9 48	304786.	.0087	286.	04	825272.	.104E	-04 293.0	0000.00	293.0
.504E-03 14	47.97 2	287.0 48	317602.	. 0087	285.	94	819602.	.104E	-04 293.0	0000.00	293.0
.354E-04 14	48.04 2	287.1 48	319286.	. 0087	285.	94	819427.	.104E	-04 293.0	0000.00	293.0
.123E-04 14	48.04 2	287.1 48	319378.	. 0087	285.	94	819427.	.104E	-04 293.0	0000.00	293.0
.110E-04 14	48.04 2	287.1 48	319383.	. 0087	285.	94	819427.	.104E	-04 293.0	0000. 00	293.0
.138E-05 14	48.04 2	287.1 48	319421.	. 0087	285.	94	819427.	.104E	-04 293.0	0000.00	293.0
.113E-05 14	48.04 2	287.1 48	319422.	0087	285.	94	819427.	.104E	-04 293.0	00.0000	293.0
113E-05 14	18 04 2	287 1 48	319422	0087	285	94	819427	104E	-04 293 (293 0
1138-05 1/	18 04 3	287 1 49	319422	0087	285	0 1	819427	1045	-04 293 (203 0
1138-05 1/	10.04 2	207.1 40	210/22	0007	205.	0 1	919427.	1045	-04 293.0		293.0
1120 05 14	10.01 2	207.1 40	10422	0007	205.	0 4	010427	1045	04 295.0		293.0
1120 05 14	±0.04 4	207.1 40	319422.	. 0087	205.	94	010427.	1045	-04 293.0		293.0
.1136-05 14	48.04 4	28/.1 40	319422.	.0087	285.	94	819427.	.1046	-04 293.0		293.0
.1136-05 14	48.04 2	28/.1 40	319422.	.0087	285.	94	819427.	.1048	-04 293.0		293.0
.1136-05 14	48.04 2	28/.1 40	319422.	.0087	285.	94	819427.	.1046	-04 293.0		293.0
.113E-05 14	48.04 2	287.1 48	319422.	.0087	285.	94	819427.	.104E	-04 293.0	0000.0000	293.0
.318E-01 14	47.49 2	286.3 40	578733.	.0087	285.	94	806704.	.104E	-04 293.0	0000.0000	293.0
.601E-02 14	45.31 2	284.8 4	741190.	.0086	285.	54	766323.	.103E	-04 293.0	0000.000	293.0
.487E-03 14	46.11 2	286.3 4	761911.	.0086	285.	44	763952.	.103E	-04 293.0	0000.000	293.0
T. E.I	LX	v	W	м	DC	M	RO	1.1.	P	GI G	2
2645 1	136 00	nn 2	4088-0	 د	2 26	:1 8	113 15	310	506F±07	000 0	00
2655 3	398 00	00 .2	426E-0	5	1 26	1 8	109 80	315	481E+07	003 0	00
.2055	590 .00	00 .J	4208-00	5	6 26	1 0	109.80	211	401E+07	.005 .0	00
.2005 .0	559.00		.455E-00	5 c	.0 20	-1 O	109.45	202	4200-07	.003 .0	00
.2680 1.0		02.7	.506E-00		.0 20	ο <u>τ</u> .8	108.57	303.	.4326+07	.000 .0	
.2690 1.3	314 .00	03.7	.543E-0	0	.5 26	91.8	100.87	294.	.3908+07	.000 .0	00
.2705 1.7	/06 .00	04.6	.596E-0	6	.4 26	9T.8	91.33	283.	.342E+07	.000 .0	00
.2715 1.9	968 .00	04.5	.625E-0	6	.3 26	1.8	86.36	277.	.297E+07	.000 .0	09
.2725 2.2	230 .00	05.4	.648E-0	b	.1 26	1.8	69.73	254.	.196E+07	.000 .0	14
.2740 2.6	623 .00	05.2	.671E-0	5	.0 26	51.8	37.15	199.	.801E+06	.000 .0	10
.2750 2.8	384 .00	05 .1	.677E-0	5	.0 26	51.8	22.59	164.	.416E+06	.000 .0	06
.2765 3.2	277 .00	051	.675E-0	6	.0 26	51.8	11.01	123.	.168E+06	.000 .0	03
.2775 3.5	539.00	053	.665E-0	6	.0 26	51.8	7.39	105.	.110E+06	.000 .0	01
.2785 3.8	301 .00	054	.648E-0	6	.0 26	51.8	6.17	97.	.100E+06	.000 .0	00
.2800 4.1	193 .00	046	.611E-0	6	.0 26	51.8	6.17	97.	.103E+06	.000 .0	00
.2810 4.4	455 .00	047	.579E-0	6	.0 26	51.8	6.41	99.	.111E+06	.000 .0	00
.2825 4.8	348 .00	028	.525E-0	6	.0 26	51.8	7.04	103.	.127E+06	.000 .0	00
.2835 5.1	110 .00	027	.487E-0	6	.0 26	51.8	7.56	106.	.140E+06	.000 .0	00
.2845 5.3	371 .00	016	.453E-0	6 –	.2 26	51.8	15.38	209.	.217E+07	.031 .0	00
.2860 5.7	764 .00	004	.415E-0	6 –	.3 26	51.8	105.28	311.	.485E+07	.000 .0	00
.2870 6.0	025 .00	001	.403E-0	6 –	.1 26	51.8	109.90	316.	.506E+07	.000 .0	00
G= .205E-	-02 DV	VN= .32	20E+02	IC= 3							
GGP I	ROII	TII	PBX	MI	TI		PI	VI	TC	QН	TCD

	270E-04	4 142.0	07 284	.746	535381.	.008	5 28	4.3	46	35509.	.100E	-04	293.	00	.0000	293	. 0
	156E-02	2 142.0	07 284	.846	527875.	.008	5 28	4.3	46	35249.	.100E	-04	293.	00	.0000	293	. 0
	445E-02	2 141.8	31 284	.4 46	510439.	.008	5 28	4.3	46	31607.	.100E	-04	293.	00	.0000	293	. 0
	710E-03	3 141.0	68 284	.4 46	522707.	.008	5 28	4.2	46	26098.	.100E	-04	293.	00	.0000	293	. 0
	846E-04	4 141.7	77 284	.646	525390.	.008	5 28	4.2	46	525794.	.100E	-04	293.	00	.0000	293	. 0
	502E-05	5 141.7	78 284	.646	525712.	.008	5 28	4.2	46	525736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	5 141.7	78 284	.646	525733.	.008	5 28	4.2	46	525736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	525736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	525736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	25736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	25736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	25736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	525736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	5 141.7	78 284	.646	525733.	.008	5 28	4.2	46	525736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	25736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	525736.	.100E	-04	293.	00	.0000	293	. 0
	733E-06	6 141.7	78 284	.646	525733.	.008	5 28	4.2	46	25736.	.100E	-04	293.	00	.0000	293	. 0
	257E-01	1 141.2	28 283	.944	91735.	.008	5 28	4.2	46	515544.	.100E	-04	293.	00	.0000	293	. 0
	703E-02	2 139.1	14 282	.1 45	542197.	.008	5 28	3.9	45	77359.	.994E	-05	293.	00	.0000	293	. 0
	909E-03	3 140.0	01 283	.7 45	69417.	.008	4 28	3.8	45	573978.	.993E	-05	293.	00	.0000	293	. 0
	Т 	FI 	X	v 	W 		MD	ОМ 		RO	TT 	1 	P 	Ģ 	31 G2	2	
	.3365	.134	.000	.2	.408E-	-06	.2	261	. 8	107.97	316.	. 483	3E+07	1.0	00.00	00	
	.3375	.396	.000	.5	.426E-	-06	.4	261	. 8	104.80	312.	.46	2E+07	7.0	03.00	00	
	.3385	. 658	.001	. 6	.453E-	-06	.5	261	. 8	105.05	309.	.459	9E+07	7.0	004.00	00	
	.3400	1.050	.002	.7	.506E-	-06	.6	261	. 8	104.24	301.	.41!	5E+07	7.0		00	
	.3410	1.312	.003	.7	.543E-	-06	.5	261	. 8	96.84	292.	.37!	5E+07	7.0	00.00	00	
	.3425	1.705	.004	. 6	.596E-	-06	.4	261	. 8	87.68	281.	.32	9E+07	7.0	00 .00	00	
	.3435	1.967	.004	.5	.624E-	-06	.3	261	. 8	82.91	275.	.288	BE+07	7.0	00 .00	08	
	.3445	2.229	.005	. 4	.648E-	-06	.1	261	. 8	67.02	253.	.189	9E+07	7.0	000.01	13	
	.3460	2.621	.005	.2	.671E-	-06	.0	261	. 8	35.71	198.	.77	1E+06	5.0	00 .00)9	
	3470	2 883	005		677E-	-06	0	261	. e 8	21 69	164	40	3E+06	5 0		16	
	3485	3,276	.005	- 1	675E-	-06	.0	261	. 8	10.56	123	16	2E+06	5.0		12	
	.3495	3.538	.005	3	.665E-	-06	.0	261	. 8	7.12	105.	.10	7E+06	5.0	00 .00	01	
	3505	3,800	.005	- 4	.648E-	-06	.0	261	. 8	6.07	98	.100	DE+06	5.0		0	
	3520	4,192	.004	- 6	.612E-	-06	.0	261	. 8	6.09	98	.10	3E+06	5.0		0	
	3530	4 454	004	- 7	580E-	-06	0	261	. e 8	6 34	100	11	1E+06	5 0		0	
	3545	4 847	002	- 8	525E-	-06	.0	261	. U . R	6 95	104	12	78+06	5 0		50 10	
	3555	5 109	002	- 7	488E-	-06	.0	261	. U . R	7 47	107	14)E+06	5 0		50 10	
	3565	5 370	001	- 6	453E-	-06	- 2	261	. U 8	14 66	206	204	4E+07	, ,	030 00	50 50	
	3580	5 764	0001	_ 4	.4000 /15F-	.06	- 3	261	.υ 	101 11	200.	.20-	4E+07	,		50 10	
	3590	6 025	000	- 1	403E-	-06	- 1	261	. U . R	105 45	314	48/	4E+07	,		50 10	
				· -	.4056				 								
	G= .19	96E-02	DVN=	.30)7E+02	IC=	3										
	 сср	BOT 1	 г		DRY	 мт	 ייי	 т		 рт	 VT		 ידר		 ੦ਸ	 דריי	
	890E-04	4 136.4	45 282	.2 44	152974.	.008	3 28	2.7	44	53473.	.970E	-05	293.	00	.0000	293	. 0
	118E-02	2 136.4	46 282	.3 44	46610.	.008	3 28	2.7	44	53214.	.970E	-05	293.	00	.0000	293	. 0
	379E-02	2 136.2	21 281	.944	28813.	.008	3 28	2.7	44	50144.	.970E	-05	293.	00	.0000	293	. 0
	907E-03	3 136.0	07 281	.944	39742.	.008	3 28	2.6	44	44868.	.969E	-05	293.	00	.0000	293	. 0
	152E-03	3 136.1	18 282	.1 44	43519.	.008	3 28	2.6	44	44376.	.969E	-05	293.	00	.0000	293	. 0
	110E-04	4 136.2	20 282	.1 44	44233.	.008	3 28	2.6	44	44295.	.969E	-05	293.	00	.0000	293	. 0
	124E-05	5 136.2	20 282	.1 44	44288.	.008	3 28	2.6	44	44295.	.969E	-05	293.	00	.0000	293	. 0
	124E-05	5 136.2	20 282	.1 44	44288.	.008	3 28	2.6	44	44295.	.969E	-05	293.	00	.0000	293	. 0
	124E-05	5 136.2	20 282	.1 44	44288.	.008	3 28	2.6	44	44295.	.969E	-05	293.	00	.0000	293	. 0
	124E-05	5 136.2	20 282	.1 44	44288.	.008	3 28	2.6	44	44295.	.969E	-05	293.	00	.0000	293	. 0
	124E-05	5 136.2	20 282	.1 44	44288.	.008	3 28	2.6	44	44295.	.969E	-05	293.	00	.0000	293	. 0
	124E-05	5 136.2	20 282	.1 44	44288.	.008	3 28	2.6	44	44295.	.969E	-05	293.	00	.0000	293	. 0
	124E-0	5 136.2	20 282	.1 44	44288	.008	3 28	2.6	44	44295.	.969F	-05	293	00	.0000	293	. 0
	124E-05	5 136.2	20 282	.1 44	44288.	.008	3 28	2.6	44	44295.	.969E	-05	293.	00	.0000	293	. 0
•																	

.124E-	-05 136.	20 282.	1 44	44288.	.0083	282.6	4444295.	.969E-05	293.00	.0000	293.0
.124E-	-05 136.	20 282.	1 44	44288.	.0083	282.6	4444295.	.969E-05	293.00	.0000	293.0
.124E-	-05 136.	20 282.	1 44	44288.	.0083	282.6	4444295.	.969E-05	293.00	.0000	293.0
.204E-	-01 135.	79 281.	5 43	320730.	.0083	282.6	4436631.	.967E-05	293.00	.0000	293.0
.772E-	-02 133.	60 279.	4 43	855321.	.0083	282.3	4400715.	.961E-05	293.00	.0000	293.0
.141E-	-02 134.	51 281.	1 43	88046.	.0083	282.2	4396391.	.960E-05	293.00	.0000	293.0
 m	 FT		·		 MI		 BO	 mm		C1 C1	
	г I 		• •						г 	GI G2	
. 408	35 .133	.000	.2	.408E-0)6	.2 261	.8 104.02	31446	4E+07 .	.000 .00	00
. 409	95 .395	.000	. 5	.426E-0)6	.4 261	.8 100.98	31044	4E+07 .	003 .00	00
.410)5 .656	.001	. 6	.453E-0)6	.5 261	.8 101.12	30644	1E+07 .	004 .00	00
. 412	20 1.049	.002	.7	.505E-0)6	.6 261	.8 100.35	29939	9E+07 .	000 .00	00
.413	30 1.310	.003	.7	.543E-0)6	.5 261	.8 93.23	29036	1E+07 .	000 .00	00
.414	1.703	.004	. 6	.595E-0)6	.4 261	.8 84.41	27931	8E+07 .	000 .00	00
.415	55 1.965	.004	.5	.625E-0)6	.3 261	.8 79.83	27327	7E+07 .	000 .00	28
.416	55 2.227	.005	. 4	.648E-0)6	.1 261	.8 64.67	25218	3E+07 .	000 .0:	13
.418	30 2.619	.005	.2	.671E-0	6	.0 261	.8 34.50	19874	5E+06	000 .00	09
.419	0 2.881	.005	.1	.677E-0	6	.0 261	.8 20.96	16338	8E+06	000 .00	05
420)5 3 274	.005	- 1	675E-0	6	0 261	.8 10.20	123. 15	6E+06	000 00	12
421	5 3 536	005	- 3	665E-0	6	0 261	8 6 90	104 10	5E+06)1
422	25 3 797	005	- 4	648E-0	16	0 261	8 5 99	98 10	02+06		<u>10</u>
. 422	10 4 190	004	- 6	612F-0	16	0 201	8 6 03	99 10	38+06		
125	50 4.150 50 4 452	004	- 7	580F-0) G	0 201	.0 0.03 9 6 27	100 11	1E+06		50 20
.42.	5 / 9/5	.004	/ _ 0	525E-0	16	0 201	.0 0.27	10011	7E+00 .		50 20
.420	75 4.045	.002	0	.JZJE-0		0 201	.0 0.00	104.12	08+00 .		
. 42	5 5.100	.002	/	.400E-0)6 _	2 261	0 12 00	201 19	0E+00 .		
.420	0 5 761	.001	0	.434E-0)6 –	3 261	9 97 35	20110	68107 .		50 20
.430	0 6 000	.000	4	.410E-0	- 00 06	1 261	.0 97.33 9 101 EC	30744	06707 .		
.431	10 0.022		1	.4036-0		.1 201	.8 101.50	51240			
G= .	188E-02	DVN=	.29	95E+02	IC= 3						
GGP	ROI	I TII		PBX	MI	TI	 PI	VI	тс	Qн	TCD
100世	.02 121	22 270	7 42	002166	0002	201 1	1202602	040E-05	202 00	0000	202 0
.100E-	-US ISI. 02 121	35 219. 35 370	0 1 2	02400.	.0002	201.1	4203092.	.940E-03	293.00		293.0
.100E-	-02 131. -02 121	35 Z/9.	1 12	50200.	.0002	201.1	4203410.	.940E-05	293.00		293.0
.320E- 10/F-	-02 131.	11 279. 06 270	1 12	59200. 69025	.0082	201.1	4200731.	.939E-05	293.00		293.0
.104E-	-02 130. 02 121	90 279. 00 270	6 10	00925.	.0002	201.1	42/5/00.	.930E-03			293.0
.233E-	-03 131.	00 279. 11 270	6 42	73000.	.0002	201.1	4275154.	.930E-05	293.00		293.0
.233E-	-04 131.	11 279.	6 42	74000.	.0002	201.1	4274959.	.930E-05	293.00		293.0
.332E-	-05 131.	12 279.	6 42	74911. 71012	.0002	201.1	4274940.	.930E-05	293.00		293.0
. 332E-	06 131.	12 279.	6 42	1494J.	.0002	201.1	4274940.	.930E-03			293.0
. 3325-	06 131.	12 279.	6 42	2/4943.	.0002	201.1	42/4940.	.9366-03	293.00		293.0
.332E-	-06 131.	12 279.	6 42	74943. 71012	.0002	201.1	4274940.	.930E-05	293.00		293.0
. 332E-	-06 131.	12 2/9.	6 42	1494J.	.0002	201.1	4274940.	.938E-03			293.0
. 3326-	-00 131. 06 131	12 279.	6 42	2/4943.	.0082	201.1	42/4946.	.9366-03			293.0
. 3325-	06 131.	12 279.	6 42	2/4943.	.0002	201.1	42/4940.	.9366-03	293.00		293.0
. 5328-	-06 131.	12 2/9.	6 42	2/4943.	.0082	201.1	42/4946.	.9386-05			293.0
. 5328-	-06 131.	12 2/9.	0 42	2/4943.	.0082	281.1	42/4946.	.9386-05		.0000	293.0
.5328-	-06 131.	12 2/9.	6 42	2/4943.	.0082	281.1	42/4946.	.938E-05	293.00	.0000	293.0
.532E-	-06 131.	12 2/9.	6 42	2/4943.	.0082	281.1	42/4946.	.938E-05	293.00	.0000	293.0
.1658-	-01 130.	/5 2/9.		.59564.	.0082	281.1	42688/2.	.9378-05	293.00	.0000	293.0
.8395-	-02 128.	50 276.		./915/.	.0082	280.8	4236294.	.932E-05	293.00	.0000	293.0
.200E-	-02 129.	45 278.	4 42	21/362. 	.0082	280.7	4231025.	.931E-05	293.00		293.0
Т	FI	х	v	W	M	о ом	RO	TT	P	G1 G2	2
. 480)5 .131	.000	.2	.408E-0)6	.2 261	.8 100.12	311 44	5E+07	.000 .00	_
.481	15 .393	.000	.5	.426E-0)6	.4 261	.8 97.21	308 42	7E+07	003 .00	00
. 482	25 .655	.001	. 6	.453E-0)6	.5 261	.8 97.52	304. 42	4E+07	004 .00	00
484	10 1.048	.002	.7	.505E-0)6	.5 261	.8 96 77	297. 38	5E+07	.000 .00	00
485	50 1.309	.003	.7	.542E-0)6	.5 261	.8 89 91	288	8E+07	000 .00	00
. 486	55 1.702	.004	.6	.595E-0	6	.4 261	.8 81.39	27730	6E+07	000 .00	00
. = 5 4											

	.4875	1.964	.004	. 5	.625E-0	6	.3 261	. 8	76.98	271.	.268	3E+07	.00	0.0	07
	.4885	2.226	.005	. 4	.648E-0	6	.1 261	. 8	62.44	250.	.178	3E+07	.00	0.0	12
	.4900	2.618	.005	.2	.671E-0	6	.0 261	. 8	33.34	197.	.723	3E+06	.00	0.0	09
	.4910	2.880	.005	.1	.677E-0	6	.0 261	. 8	20.25	162.	.37	7E+06	.00	0.0	05
	. 4925	3.273	.005	1	.675E-0	6	.0 261	. 8	9.85	122.	.151	1E+06	.00	0.0	02
	. 4935	3.535	.005	3	.665E-0	6	.0 261	. 8	6.70	104.	.104	4E+06	.00	0.0	01
	.4945	3.797	.005	4	.649E-0	6	.0 261	. 8	5.93	99.	.100)E+06	5.00	0.0	00
	.4960	4.189	.004	6	.611E-0	6	.0 261	. 8	5.98	99.	.103	3E+06	5.00	0.0	00
	.4970	4.451	.004	7	.579E-0	6	.0 261	. 8	6.22	101.	.111	1E+06	.00	0.0	00
	.4985	4.844	.002	8	.524E-0	6	.0 261	. 8	6.82	105.	.127	7E+06	.00	0.0	00
	. 4995	5.106	.002	7	.487E-0	6	.0 261	. 8	7.33	108.	.14()E+06	.00	0.0	00
	.5005	5.367	.001	6	.454E-0	6 –	.2 261	. 8	13.28	198.	.179	9E+07	.02	7.0	00
	.5020	5.760	.000	4	.416E-0	6 –	.3 261	. 8	93.70	304.	. 42	7E+07	.00	0.0	00
	.5030	6.022	.000	1	.404E-0	6 –	.1 261	. 8	97.76	309.	.446	6E+07	.00	0.0	00
-															
_	G= .18	1E-02	D VN=	.28	4E+02 	IC= 3									
_	GGP	ROII	C TII		PBX 	МІ 	TI 		PI 	VI		тс		Qн	TCD
	.342E-03	126.5	57 277	.3 41	22189.	.0081	279.6	41	24760.	.912E	-05	293.	00.	0000	293.0
	.101E-02	126.6	50 277	.3 41	16740.	.0081	279.6	41	24339.	.912E	-05	293.	00.	0000	293.0
	.288E-02	126.3	36 277	.0 41	00263.	.0081	279.6	41	21928.	.912E	-05	293.	00.	0000	293.0
	.113E-02	126.2	21 276	.9 41	08772.	.0081	279.6	41	17300.	.911E	-05	293.	00.	0000	293.0
	.316E-03	126.3	34 277	.1 41	14143.	.0081	279.6	41	16531.	.911E	-05	293.	00.	0000	293.0
	.487E-04	126.3	38 277	.2 41	15919.	.0081	279.6	41	16287.	.911E	-05	293.	00.	0000	293.0
	.128E-04	126.3	38 277	.2 41	16140.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.377E-05	126.3	38 277	.2 41	16208.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.202E-05	126.3	38 277	.2 41	16221.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.397E-06	126.3	38 277	.2 41	16233.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.397E-06	126.3	38 277	.2 41	16233.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.397E-06	126.3	38 277	.2 41	16233.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.397E-06	126.3	38 277	.2 41	16233.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.397E-06	126.3	38 277	.2 41	16233.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.397E-06	126.3	38 277	.2 41	16233.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.397E-06	126.3	38 277	.2 41	16233.	.0081	279.6	41	16236.	.911E	-05	293.	00 .	0000	293.0
	.397E-06	126.3	38 277	.2 41	16233.	.0081	279.6	41	16236.	.911E	-05	293.	00.	0000	293.0
	.144E-01	126.0	02 276	.7 40	01490.	.0081	279.6	41	10599.	.910E	-05	293.	00.	0000	293.0
	.845E-02	123.7	78 274	.1 40	16146.	.0080	279.3	40	81984.	.905E	-05	293.	00.	0000	293.0
_	.248E-02	124.7	72 275	.8 40	56727. 	.0080	279.2	40 	76176.	.904E	-05 	293.	00 .	0000	293.0
_	Т 	FI	x	v	W 	MI	о ом		RO	TT 	1	P 	G1	G	2
	. 5525	.133	.000	.2	.408E-0	6	.2 261	. 8	96.47	309.	. 42	7E+07	.00	0.0	00
	.5535	.395	.000	.5	.426E-0	6	.4 261	. 8	93.65	306.	. 411	1E+07	.00	3.0	00
	.5545	. 657	.001	. 6	.453E-0	6	.5 261	. 8	94.20	302.	. 408	3E+07	.00	4.0	00
	.5560	1.050	.002	.7	.505E-0	6	.5 261	. 8	93.38	295.	. 370)E+07	.00	0.0	00
	.5570	1.312	.003	.7	.543E-0	6	.5 261	. 8	86.75	286.	. 33!	5E+07	.00	0.0	00
	.5585	1.704	.004	. 6	.595E-0	6	.3 261	. 8	78.54	275.	. 295	5E+07	.00	0.0	00
	.5595	1.966	.004	.5	.625E-0	6	.2 261	. 8	74.28	269.	.25	7E+07	.00	0.0	07
	.5605	2.228	.005	. 4	.648E-0	6	.1 261	. 8	60.15	248.	.170)E+07	.00	0.0	12
	.5620	2.621	.005	.2	.671E-0	6	.0 261	. 8	32.08	195.	. 701	1E+06	.00	0.0	08
	.5630	2.882	.005	.1	.677E-0	6	.0 261	. 8	19.49	161.	.36	7E+06	.00	0.0	05
	.5645	3.275	.005	1	.675E-0	6	.0 261	. 8	9.49	121.	.140	6E+06	.00	0.0	02
	.5655	3.537	.005	3	.665E-0	6	.0 261	. 8	6.52	104.	.103	3E+06	.00	0.0	00
	.5665	3.799	.005	4	.648E-0	6	.0 261	. 8	5.89	100.	.100)E+06	.00	0.0	00
	.5680	4.191	.004	6	.611E-0	6	.0 261	. 8	5.94	100.	.103	3E+06	.00	0.0	00
	.5690	4.453	.004	7	.579E-0	6	.0 261	. 8	6.17	102.	.111	1E+06	.00	0.0	00
	.5705	4.846	.002	8	.524E-0	6	.0 261	. 8	6.77	106.	.12	7E+06	.00	0.0	00
	.5715	5.107	.002	7	.487E-0	6	.0 261	. 8	7.27	109.	.141	1E+06	.00	0.0	00
	.5725	5.369	.001	6	.453E-0	6 –	.2 261	. 8	13.41	199.	.184	4E+07	.02	6.0	00
	.5740	5.762	.000	4	.416E-0	6 –	.3 261	. 8	90.39	302.	.411	1E+07	.00	0.0	00
	.5750	6.024	.000	1	.403E-0	6 –	.1 261	. 8	94.28	307.	. 429	9E+07	.00	0.0	00
_															

G= .174E-02 DVN= .273E+02 IC= 3

GGP	ROII	TII	PBX	MI	TI	PI	VI	TC	QH	TCD
947E-03	122 01	274 7	3968254	0079	278 2	3976321	8888-05	293 00	0000	 293 N
999E-03	122.01	275 0	3966810	0079	278 2	3975332	887E-05	293.00	0000	293.0
255E-02	121.91	274.6	3951365	.0079	278.2	3973168	.887E-05	293.00	.0000	293.0
121E-02	121.75	274.5	3958542	.0079	278.1	3968877	.886E-05	293.00	.0000	293.0
405E-03	121.88	274.8	3964520	.0079	278.1	3967995	.886E-05	293.00	.0000	293.0
135E-03	121.92	274.8	3966530	.0079	278.1	3967692	.886E-05	293.00	.0000	293.0
.257E-04	121.94	274.9	3967347.	.0079	278.1	3967567.	.886E-05	293.00	.0000	293.0
.751E-05	121.94	274.9	3967465.	.0079	278.1	3967530.	.886E-05	293.00	.0000	293.0
.128E-05	121.94	274.9	3967519.	.0079	278.1	3967530.	.886E-05	293.00	.0000	293.0
.175E-06	121.94	274.9	3967528.	.0079	278.1	3967530.	.886E-05	293.00	.0000	293.0
.175E-06	121.94	274.9	3967528.	.0079	278.1	3967530.	.886E-05	293.00	.0000	293.0
.175E-06	121.94	274.9	3967528.	.0079	278.1	3967530.	.886E-05	293.00	.0000	293.0
.175E-06	121.94	274.9	3967528.	.0079	278.1	3967530.	.886E-05	293.00	.0000	293.0
.175E-06	121.94	274.9	3967528.	.0079	278.1	3967530.	.886E-05	293.00	.0000	293.0
.175E-06	121.94	274.9	3967528.	.0079	278.1	3967530.	.886E-05	293.00	.0000	293.0
175E-06	121.94	274.9	3967528	.0079	278.1	3967530	.886E-05	293.00	.0000	293.0
175E-06	121.94	274.9	3967528	.0079	278.1	3967530	.886E-05	293.00	.0000	293.0
113E-01	121 61	274 4	3866082	0079	278 1	3963449	885E-05	293 00	0000	293 0
845E-02	119 35	271 6	3862915	0079	277 9	3937319	881E-05	293 00	0000	293 0
294E-02	120 26	273 3	3905029	0079	277 8	3931079	880E-05	293 00	0000	293 0
T 	FI 	x ·	V W	M	D OM	RO	TT 	P (G1 G2	<u>2</u>
. 6240	.002 .	000	.1 .403E-	06	.1 261	.8 93.45	30741	7E+07 .0	00. 00	00
. 6255	.395 .	000	.5 .426E-	06	.3 261	.8 90.36	30339	6E+07 .	003 .00	00
. 6265	.657 .	001	.6 .453E-	06	.5 261	.8 91.06	30039	3E+07 .	004 .00	00
. 6280	1.049 .	002	.7 .505E-	06	.5 261	.8 90.23	29335	7E+07 .0	00. 00	00
. 6290	1.311 .	003	.7 .542E-	06	.4 261	.8 83.83	28432	4E+07 .0	00. 00	00
. 6300	1.573 .	004	.7 .579E-	06	.4 261	.8 78.28	27729	6E+07 .0	00. 00	00
.6315	1.966 .	004	.5 .625E-	06	.2 261	.8 71.77	26824	8E+07 .	00.00)7
. 6325	2.227 .	005	.4 .648E-	06	.1 261	.8 58.16	24716	7E+07 .0	000 .02	L2
.6340	2.620 .	005	.2 .671E-	06	.0 261	.8 31.05	19467	8E+06 .	00.00	08
.6350	2.882 .	005	.1 .677E-	06	.0 261	.8 18.87	16135	3E+06 .	00.00)5
. 6360	3.144 .	005 -	.1 .678E-	06	.0 261	.8 11.55	13219	0E+06 .	00.00)3
. 6375	3.536	005 -	.3 .665E-	06	.0 261	.8 6.36	10410	2E+06 .	000.00	00
. 6385	3.798	005 -	.4 .649E-	06	.0 261	.8 5.84	10010	0E+06 .0	000.00	00
.6400	4.191	004 -	6 611E-	06	0 261	.8 5.89	101.10	3E+06		0
. 6410	4.453	004 -	7 579E-	06	0 261	.8 6.12	102.11	1E+06		0
6420	4 715	003 -	7 543E-	06	0 261	8 6 50	105 12	1E+06 (0
6435	5 107	002 -	7 487E-	06	0 261	8 7 22	110 14	0E+06 (0
6445	5 369	001 -	6 454E-	06 -	2 261	8 13 13	198 16	5E+07 (125 00	0
6460	5 762	000 -	4 416E-	06 -	3 261	8 87 25	300 39	5E+07 (10
.6470	6.023 .	000 -	.1 .404E-	06 -	.1 261	.8 91.02	30541	2E+07 .0		00
G= .16	 8E-02	DVN=	 .263E+02	IC= 3						
GGP	ROII	TII 	PBX	MI 	TI 	PI	VI 	TC	Qн 	TCD
.122E-02	117.75	272.3	3825026.	.0078	276.8	3836692.	.865E-05	293.00	.0000	293.0
.984E-03	117.91	272.6	3825931.	.0078	276.8	3835357.	.865E-05	293.00	.0000	293.0
.230E-02	117.69	272.3	3811221.	.0078	276.8	3833324.	.864E-05	293.00	.0000	293.0
.120E-02	117.54	272.2	3817767.	.0078	276.7	3829348.	.864E-05	293.00	.0000	293.0
.466E-03	117.66	272.5	3823937.	.0078	276.7	3828432.	.864E-05	293.00	.0000	293.0
.179E-03	117.71	272.6	3826323.	.0078	276.7	3828052.	.864E-05	293.00	.0000	293.0
.436E-04	117.74	272.6	3827460.	.0078	276.7	3827881.	.864E-05	293.00	.0000	293.0
.174E-04	117.74	272.6	3827687	.0078	276.7	3827855.	.864E-05	293.00	.0000	293.0
.376E-05	117.75	272.6	3827789	.0078	276.7	3827826	.864E-05	293.00	.0000	293.0
.830E-06	117.75	272.6	3827818.	.0078	276.7	3827826.	.864E-05	293.00	.0000	293.0

.519E-07	117.75	272.	6 38	27825.	.0078	276.7	3827826.	.864E	-05 293.	00 .0000	293.0
.519E-07	117.75	272.	6 38	27825.	.0078	276.7	3827826.	.864E	-05 293.	00 .0000	293.0
.519E-07	117.75	272.	6 38	27825.	.0078	276.7	3827826.	.864E	-05 293.	00 .0000	293.0
.519E-07	117.75	272.	6 38	27825.	.0078	276.7	3827826.	.864E	-05 293.	00 .0000	293.0
.519E-07	117.75	272.	6 38	27825.	.0078	276.7	3827826.	.864E	-05 293.	00 .0000	293.0
.519E-07	117.75	272.	6 38	27825.	.0078	276.7	3827826.	.864E	-05 293.	00 .0000	293.0
.519E-07	117.75	272.	6 38	27825.	.0078	276.7	3827826.	.864E	-05 293.	00 .0000	293.0
.991E-02	117.42	272.	1 37	28273.	.0078	276.7	3824104.	.863E	-05 293.	00.0000	293.0
.821E-02	115.18	269.	2 37	20395.	.0078	276.5	3801274.	.859E	-05 293.	00.0000	293.0
.324E-02	116.04	270.	9 37	62702.	.0078	276.4	3794779.	.858E	-05 293.	00.0000	293.0
т	FI	х	v	W	M	D OM	RO	тт	P	G1 G	2
. 6960	.003 .	000	.1	.403E-	06	.1 261	.8 90.31	305.	.402E+07	.000 .0	00
. 6975	.395 .	000	.5	.426E-	06	.3 261	.8 87.31	301.	.382E+07	.003 .0	00
.6985	.657 .	001	. 6	.453E-	06	.4 261	.8 88.09	298.	.380E+07	.004 .0	00
.7000 1	1.050 .	002	.7	.505E-	06	.5 261	.8 87.25	291.	.344E+07	.000 .0	00
.7010 1	1.312 .	003	.7	.543E-	06	.4 261	.8 81.06	282.	.312E+07	.000 .0	00
.7020 1	1.573 .	004	.7	.579E-	06	.4 261	.8 75.70	275.	.286E+07	.000 .0	00
.7035 1	1.966 .	004	.5	.625E-	06	.2 261	.8 69.40	266.	.241E+07	.000 .0	07
.7045 2	2.228 .	005	.4	.648E-	06	.1 261	.8 56.22	245.	.162E+07	.000 .0	11
.7060 2	2.621 .	005	.2	.670E-	06	.0 261	.8 30.01	193.	.663E+06	.000 .0	08
.7070 2	2.883 .	005	.1	.677E-	06	.0 261	.8 18.24	160.	.340E+06	.000 .0	05
.7080 3	3.144 .	005	1	.678E-	06	.0 261	.8 11.17	132.	.184E+06	.000.0	03
.7095	3.537	005	3	.665E-	06	.0 261	.8 6.21	104.	.101E+06	.000 .0	00
7105	3.799	005	- 4	648E-	06	0 261	.8 5.80	101	100E+06	.000 .0	00
7120 4	4 192	004	- 6	612E-	06	0 261	8 5 85	101	103E+06		00
7130	1.192 . 1 153	004	- 7	580E-	06	0 261	8 6 08	103	111111-06		00
7140	1.135 . 1 715	003	- 7	544E-	06	0 261	8 6 45	105.	1218+06	000 0	00
7155 5	±./1J . 5 100	003	,	.J446-	00	0 261	0 7 17	110	140E+00	.000 .0	
.7155 5	5.100 .	002	/	.400L-	00	2 261	.0 7.17	100.	1672107	.000 .0	000
.7105 :	5.309.	001	0	.434E-	06 -	2 201	.0 13.00	190.	.10/6+0/	.024 .0	
.7180 :	5.76Z.	000	4	.4108-	06 -	1 261	.8 84.34	298.	.3816+07	.000 .0	
./190 6	0.024 .	000		.4048-	- 00	.1 201	.8 87.98	303.	.39/6+0/	.000 .0	00
G= .162	2E-02	DVN=	.25	4E+02	IC= 3						
GGP	ROII	TII		PBX	MI	TI	PI	VI	TC	Qн	TCD
.145E-02	113.69	270.	0 36	90027.	.0077	275.5	3705484.	.844E	-05 293.	00 .0000	293.0
.104E-02	113.89	270.	4 36	92766.	.0077	275.5	3703848	~	-05 293		202 0
.212E-02	113.69	270					5705040.	.844E	05 295.	00.0000	293.0
.125E-02			1 36	79306.	.0077	275.4	3701909.	.844E	-05 293.	00 .000C 00 .0000	293.0
	113.53	270.	1 36 0 36	79306. 84810.	.0077 .0077	275.4 275.4	3701909. 3698211.	.844E .844E .843E	-05 293. -05 293.	00 .0000 00 .0000 00 .0000	293.0 293.0 293.0
.534E-03	113.53 113.66	270. 270.	1 36 0 36 2 36	79306. 84810. 91465.	.0077 .0077 .0077	275.4 275.4 275.4	3701909. 3698211. 3697189.	.844E .844E .843E .843E	-05 293. -05 293. -05 293.	00 .0000 00 .0000 00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03	113.53 113.66 113.72	270. 270. 270.	1 36 0 36 2 36 4 36	79306. 84810. 91465. 94227.	.0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755.	.844E .844E .843E .843E .843E	-05 293. -05 293. -05 293. -05 293.	00 .0000 00 .0000 00 .0000 00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04	113.53 113.66 113.72 113.75	270. 270. 270. 270.	1 36 0 36 2 36 4 36 4 36	79306. 84810. 91465. 94227. 95782.	.0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512.	.844E .844E .843E .843E .843E .843E	-05 293. -05 293. -05 293. -05 293. -05 293.	00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04	113.53 113.66 113.72 113.75 113.75	270. 270. 270. 270. 270. 270.	1 36 0 36 2 36 4 36 4 36 4 36	79306. 84810. 91465. 94227. 95782. 96139.	.0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441.	.844E .844E .843E .843E .843E .843E .843E	-05 293. -05 293. -05 293. -05 293. -05 293. -05 293.	00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05	113.53 113.66 113.72 113.75 113.75 113.75	270. 270. 270. 270. 270. 270. 270.	1 36 0 36 2 36 4 36 4 36 4 36 4 36	79306. 84810. 91465. 94227. 95782. 96139. 96340.	.0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696431.	.844E .844E .843E .843E .843E .843E .843E .843E	-05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293.	00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05	113.53 113.66 113.72 113.75 113.75 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	1 36 0 36 2 36 4 36 4 36 4 36 4 36 4 36	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696431. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293.	00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06	113.53 113.66 113.72 113.75 113.75 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	1 36 0 36 2 36 4 36 4 36 4 36 4 36 4 36 4 36 4 36	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388. 96410.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696431. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293.	00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00	113.53 113.66 113.72 113.75 113.75 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	1 36 0 36 2 36 4 36 4 36 4 36 4 36 4 36 4 36 4 36 4	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388. 96410. 96420	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696431. 3696420. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293.	00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00	113.53 113.66 113.72 113.75 113.75 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	1 36 0 36 2 36 4 36 4 36 4 36 4 36 4 36 4 36 4 36 4	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388. 96410. 96420.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696431. 3696420. 3696420. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293. -05 293.	00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000 00 .0000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00	113.53 113.66 113.72 113.75 113.75 113.76 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{c}1 & 36\\ 0 & 36\\ 2 & 36\\ 4 & 36\\ $	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388. 96410. 96420. 96420.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696420. 3696420. 3696420. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293.	00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00	113.53 113.66 113.72 113.75 113.76 113.76 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{c} 1 & 36 \\ 0 & 36 \\ 2 & 36 \\ 4 & 3$	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388. 96410. 96420. 96420. 96420.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293.	00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00	113.53 113.66 113.72 113.75 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{c}1&36\\0&2&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4$	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388. 96410. 96420. 96420. 96420. 96420.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696431. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293.	00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00 .000E+00	113.53 113.66 113.72 113.75 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{c}1&36\\0&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4$	79306. 84810. 91465. 94227. 96139. 96340. 96388. 96410. 96420. 96420. 96420. 96420. 96420.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696431. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293.	00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000 00 .00000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00 .000E+00	113.53 113.66 113.72 113.75 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{c}1&36\\0&2&36\\4&366\\4&366\\4&366\\4&366\\4&366\\4&366\\4&366\\4&366\\4&366\\6&6\\6&6\\6&6\\6&6\\6&6\\6&6\\6&6\\6&6\\6&6$	79306. 84810. 91465. 94227. 96139. 96340. 96388. 96410. 96420. 96420. 96420. 96420. 96420.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696431. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293.	00 .00000 00 .00000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00	113.53 113.66 113.72 113.75 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{c} 1 \\ 3 \\ 6 \\ 6 \\ 6 \\ 3 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	79306. 84810. 91465. 94227. 96139. 96340. 96388. 96410. 96420. 96420. 96420. 96420. 96420. 96420.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696441. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420.	.844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293.	00 .00000 00 .00000	293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .836E-02 .820E-02	113.53 113.66 113.72 113.75 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{c} 1 \\ 3 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388. 96410. 96420. 96420. 96420. 96420. 96420. 96420. 96420. 96420. 96420.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696421. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420.	.844E .844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293.	00 .00000 00 .00000	293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .836E-02 .820E-02 .361E-02	113.53 113.66 113.72 113.75 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{c}1&36\\0&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4&36\\4$	79306. 84810. 91465. 94227. 95782. 96139. 96340. 96388. 96410. 96420. 96420. 96420. 96420. 96420. 96420. 96420. 96420. 96423. 83705. 26793.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696421. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420. 3696420.	.844E .844E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E .843E	-05 293. -05 293.	00 .00000 00 .00000	293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .836E-02 .820E-02 .361E-02	113.53 113.66 113.72 113.75 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.76 113.44 111.20 112.03	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79306. 84810. 91465. 94227. 96139. 96340. 96388. 96410. 96420. 96420. 96420. 96420. 96420. 96420. 96420. 96420. 96420. 96420. 96423. 83705. 26793.	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.2 275.4 275.4 275.2 275.4 275.2 275.4	3701909. 3698211. 3697189. 3696755. 3696512. 3696421. 3696420. 369640	.844E .843E	-05 293. -05 29	00 .0000 00 .00000 00 .00000 00 .0000 00 .0000 00 .0000 00 .0000 00 .	293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .836E-02 .820E-02 .361E-02	113.53 113.66 113.72 113.75 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79306. 84810. 91465. 94227. 96139. 96340. 96388. 96410. 96420. 966420. 966420. 966420. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 966565. 96655. 96555. 96555. 96555. 96555. 96555. 96555. 96555. 96555. 96555. 965555. 965555. 96555. 965555. 965555. 965555. 9655555. 965555. 9	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.2 275.1 	3701909. 3698211. 3697189. 3696755. 3696512. 3696420. 36973255. 3666490. RO	.844E .843E	-05 293. -05 29	00 .0000 00 .00000 00 .00000 00 .0000 00 .0000 00 .0000 00 .0000 00 .	293.0 293.0
.534E-03 .236E-03 .681E-04 .282E-04 .849E-05 .296E-05 .956E-06 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .836E-02 .820E-02 .361E-02 .7680	113.53 113.66 113.75 113.75 113.76	270. 270. 270. 270. 270. 270. 270. 270.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	79306. 84810. 91465. 94227. 96139. 96340. 96388. 96410. 96420. 96	.0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077 .0077	275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.4 275.2 275.1 	3701909. 3698211. 3697189. 3696755. 3696512. 3696420. 3693312. 3673255. 3666490. RO	.844E .844E .843E .833E .833E .833E .833E .833E .833E	-05 293. -05 29	00 .0000 00 .00000 00 .00000 00 .0000 00 .0000 00 .0000 00 .0000 00 .	293.0 293.0

	.7705	. 657	.001	. 6	.453E-	06	.4 261	. 8	85.27	296	366E+	07 .0	003 .00	00
	.7720	1.050	.002	.7	.504E-	06	.5 261	. 8	84.44	289	333E+	07 .0	00. 00	00
	.7730	1.312	.003	.7	.543E-	06	.4 261	. 8	78.45	280	302E+	07.0	00. 000	00
	.7740	1.573	.004	.7	.578E-	06	.4 261	. 8	73.26	273	277E+	07 .0	00. 00	00
	.7755	1.966	.004	. 5	.624E-	06	.2 261	. 8	67.17	264.	234E+	07 .0	00. 000	06
	.7765	2.228	.005	. 4	.647E-	06	.1 261	. 8	54.44	244	157E+	07 .0	000 .02	11
	.7780	2.620	.005	.2	.670E-	06	.0 261	. 8	29.08	192	661E+	06 .0	00. 00	08
	.7790	2.882	.005	.1	.677E-	06	.0 261	. 8	17.68	159	326E+	06 .0	00. 00	05
	.7800	3.144	.005	1	.677E-	06	.0 261	.8	10.83	131.	174E+	06.0	00.00	03
	.7815	3.537	.005	3	.665E-	06	.0 261	. 8	6.09	104.	101E+	06.0	00.00	00
	.7825	3.798	.005	4	.648E-	06	.0 261	.8	5.76	101.	100E+	06.0	000.00	00
	.7840	4.191	.004	6	.611E-	06	.0 261	.8	5.81	102.	103E+	06.0	00.00	00
	.7850	4.453	.004	7	.579E-	06	.0 261	.8	6.04	103.	111E+	06.0	00.00	00
	.7860	4.715	.003	7	.543E-	06	.0 261	.8	6.41	106.	121E+	06.0	000.00	00
	.7875	5.107	.002	7	.487E-	06	.0 261	.8	7.12	111.	140E+	06.0	000.00	00
	7885	5.369	.001	- 6	454E-	06 -	2 261	.8	12.60	194	158E+	07 0	023 00	00
	7900	5 762	000	- 4	417E-	06 -	3 261	8	81 58	296	366E+	07 0		00
	7910	6 023	000	- 1	404E-	06 -	1 261	8	85 10	301	382E+	07 0		00
_				· ·										
	G= .15	56E-02	DVN=	= .24	5E+02	IC= 3								
_														
	GGP	ROI	I TII	[PBX	MI	TI	1	PI	VI	т	с	OH	TCD
_														
	.169E-02	2 109.	82 267	7.8 35	61752.	.0076	274.2	35	81597.	.825E-	-05 29	3.00	.0000	293.0
	.109E-02	2 110.	04 268	3.2 35	66813.	.0076	274.2	35'	79620.	.825E-	-05 29	3.00	.0000	293.0
	.197E-02	2 109.	87 268	3.0 35	54573.	.0076	274.1	35'	77776.	.825E-	-05 29	3.00	.0000	293.0
	.124E-02	2 109.	71 267	7.9 35	59620.	.0076	274.1	35'	74311.	.824E-	-05 29	3.00	.0000	293.0
	.587E-03	3 109.	84 268	3.1 35	66289.	.0076	274.1	35'	73231.	.824E-	-05 29	3.00	.0000	293.0
	.280E-03	3 109.	90 268	3.2 35	69420.	.0076	274.1	35'	72734.	.824E-	-05 29	3.00	.0000	293.0
	.921E-04	1 109.	94 268	3.3 35	571337.	.0076	274.1	35'	72427.	.824E-	-05 29	3.00	.0000	293.0
	.452E-04	109.	95 268	3.3 35	571821.	.0076	274.1	35'	72355.	.824E-	-05 29	3.00	.0000	293.0
	.145E-04	1 109.	95 268	3.3 35	572143.	.0076	274.1	35'	72315.	.824E-	-05 29	3.00	.0000	293.0
	.632E-05	5 109.	95 268	3.3 35	572219.	.0076	274.1	35'	72294.	.824E-	-05 29	3.00	.0000	293.0
	.283E-05	5 109.	95 268	3.3 35	572261.	.0076	274.1	35'	72294.	.824E-	-05 29	3.00	.0000	293.0
	.549E-06	5 109.	95 268	3.3 35	572288.	.0076	274.1	35'	72294.	.824E-	-05 29	3.00	.0000	293.0
	.845E-07	7 109.	95 268	3.3 35	572293.	.0076	274.1	35'	72294.	.824E-	-05 29	3.00	.0000	293.0
	.845E-07	7 109.	95 268	3.3 35	572293.	.0076	274.1	35'	72294.	.824E-	-05 29	3.00	.0000	293.0
	.845E-07	7 109.	95 268	3.3 35	572293.	.0076	274.1	35'	72294.	.824E-	-05 29	3.00	.0000	293.0
	.845E-07	7 109.	95 268	3.3 35	572293.	.0076	274.1	35'	72294.	.824E-	-05 29	3.00	.0000	293.0
	.845E-07	7 109.	95 268	3.3 35	572293.	.0076	274.1	35'	72294.	.824E-	-05 29	3.00	.0000	293.0
	.692E-02	2 109.	66 267	7.9 34	87787.	.0076	274.1	35	69825.	.823E-	-05 29	3.00	.0000	293.0
	.742E-02	2 107.	43 264	1.8 34	62103.	.0076	273.9	35	51292.	.821E-	-05 29	3.00	.0000	293.0
	.359E-02	2 108.	20 266	5.3 35	601536.	.0076	273.8	354	44920.	.820E-	-05 29	3.00	.0000	293.0
_														
_	T 	FI	х 	v	W	M	D OM		RO	TT 	P	(G1 G2	2
	.8400	.003	.000	.1	.403E-	06	.1 261	. 8	84.51	301	374E+	07.0	00. 00	00
	.8415	. 396	.000	. 5	.426E-	06	.3 261	. 8	81.70	297	356E+	07 .0	002 .00	00
	.8425	. 657	.001	. 6	.453E-	06	.4 261	.8	82.57	294.	354E+	07.0	003 .00	00
	.8440	1.050	.002	.7	.505E-	06	.4 261	. 8	81.76	287	322E+	07 .0	00. 00	00
	.8450	1.312	.003	.7	.542E-	06	.4 261	. 8	75.96	279	292E+	07 .0	00. 00	00
	.8460	1.574	.004	.7	.579E-	06	.3 261	. 8	70.93	271.	267E+	07.0	00.00	00
	.8475	1.966	.004	.5	.625E-	06	.2 261	.8	65.03	263.	225E+	07.0	00.00	06
	.8485	2.228	.005	. 4	.647E-	06	.1 261	. 8	52.71	242.	152E+	07.0	0. 000	10
	.8500	2.621	.005	.2	.671E-	06	.0 261	. 8	28.16	191.	609E+	06.0	00. 00	07
	.8510	2.883	.005	.1	.677E-	06	.0 261	. 8	17.12	158.	326E+	06.0	00. 00	05
	.8520	3.144	.005	1	.677E-	06	.0 261	. 8	10.49	130.	169E+	06 .0	00. 00	03
	.8535	3.537	.005	3	.665E-	06	.0 261	.8	5.97	104.	100E+	06.0	00.00	00
	.8545	3.799	.005	4	.648E-	06	.0 261	.8	5.72	102.	100E+	06 .0	00.00	00
	.8560	4.192	.004	6	.612E-	06	.0 261	.8	5.77	102.	103E+	06 .0	00.00	00
	.8570	4,454	.004	7	.580E-	06	.0 261	. 8	6.00	104	111E+	06 (000 00	00
	.8580	4.715	.003	- 7	.544E-	06	.0 261	.8	6.37	107	121E+	06		00
	.8595	5.108	.002	7	.488E-	06	.0 261	.8	7.07	111.	140E+	06 (000 .00	00
				• •						•				

.8605 5.370 .001 -.6 .455E-06 -.2 261.8 12.46 194. .148E+07 .023 .000 .8620 5.762 .000 -.4 .416E-06 -.2 261.8 78.99 294. .355E+07 .000 .000 .8630 6.024 .000 -.1 .404E-06 -.1 261.8 82.39 299. .370E+07 .000 .000

G= .1	51E-02	DVN=	.23	7E+02	IC= 3	5						
GGP	ROII	TII		 РВХ	 MI	TI		PI	VI	тс	Qн	TCD
.186E-02	2 106.1	1 265	.7 34	40376.	.0075	272	. 9	3464325.	.808E-0	5 293.0	0.0000	293.0
.113E-02	2 106.3	5 266	.1 34	47474.	.0075	272	. 9	3462072.	.807E-0	5 293.0	0.0000	293.0
.186E-02	2 106.1	9 265	.9 34	36322.	.0075	272	. 9	3460260.	.807E-0	5 293.0	0.0000	293.0
.124E-02	2 106.0	5 265	.8 34	40865.	.0075	272	. 8	3456946.	.806E-0	5 293.0	0.0000	293.0
.640E-0	3 106.1	7 266	.1 34	47556.	.0075	272	. 8	3455838.	.806E-0	5 293.0	0.0000	293.0
.324E-0	3 106.2	4 266	.2 34	51048.	.0075	272	. 8	3455241.	.806E-0	5 293.0	0.0000	293.0
.123E-0	3 106.2	8 266	.3 34	53284.	.0075	272	. 8	3454873.	.806E-0	5 293.0	0.0000	293.0
.633E-04	4 106.2	9 266	.3 34	53950.	.0075	272	. 8	3454770.	.806E-0	5 293.0	0.0000	293.0
.226E-04	4 106.3	0 266	.3 34	54402.	.0075	272	. 8	3454695.	.806E-0	5 293.0	0.0000	293.0
.119E-04	4 106.3	0 266	.3 34	54530.	.0075	272	. 8	3454685.	.806E-0	5 293.0	0.0000	293.0
.563E-0	5 106.3	0 266	.3 34	54602.	.0075	272	. 8	3454675.	.806E-0	5 293.0	0.0000	293.0
177E-0	5 106 3	0 266	3 34	54652	0075	272	. e	3454675	806E-0	5 293 0	0 0000	293 0
7728-0	7 106 3	0 266	3 34 3 34	54674	0075	272	. U . R	3454675	806E-0	5 293 0	0 0000	293.0
7728-0	7 106 3	0 266	3 34	54674	0075	272	. U 8	3454675	806F-0	5 203 0	0 0000	203.0
772E 0	7 106 3	0 200	3 34	54674	0075	272	. U Q	3454675	.000E 0	5 293.0	0 .0000	293.0
.772E-0	7 106.3 7 106 3	0 200	. J J4 J J4	54074.	.0075	272	.0	3454075.	.000E-0	5 295.0	0 .0000	293.0
.772E-0	/ 100.3 7 106 3	0 200	.J J4 J J4	540/4.	.0075	272	. 0	3434073.	.000E-0	5 293.0	0.0000	293.0
. //ZE-0	1 106.3	200	.3 34	540/4. 71007	.00/5	272	. 8	3454675.	.806E-0	5 293.0	0.0000	293.0
.620E-02	2 100.0	2 205	.9 33	/188/.	.0075	272	. 8	3452396.	.8066-0	5 293.0	0.0000	293.0
.6968-02	2 103.8	2 262	. / 33	44481.	.0075	272	. /	3435999.	.803E-0	5 293.0	0.0000	293.0
.370E-02	2 104.5	3 264	.2 33	81072.	.0075	212	. 0	3429919.	.802E-0	5 293.0	0.0000	293.0
Т	FI	x	v	 W		D (ом	RO	тт	P	G1 G2	2
9120	003	000	1	403E-	06	1 20	61	8 81 83	299 3	61E+07	000 00	 10
9135	396	000	5	426E-	06	3 20	61 61	8 79 10	295 3	448+07	002 0	10
01/5	659	001	.5	1538-	00	1 20	61 61	8 70 05	202 3	42E+07	003 0	50 20
9160	1 051	002	.0	505F-	00	1 20	61. 61	8 79 15	2923	122-07		50 10
.9100	1 312	.002	. /	5/2E-	00	. 4 20	61. 61	9 73 54	2055	22E+07		50 20
. 9170	1 574	.003	. '	570E-	00	2 2	01. 61	0 60 67	2772		.000 .00	
.9100	1 967	004	. /	.J/98-	00	2 20	61. 61	8 62 96	261 2	20E+07		
.9195	1.907	.004	.5	.024E-	00	1 2	01. C1	0 02.90	2012			10
. 9205	2.229	.005	.4	.04/E-	06	.1 20	ο⊥. cı	8 51.02	2411	485+07	.000 .0.	
. 9220	2.621	.005	. 2	.0/18-	06	.0 20	οı.	8 27.20	1905	93E+06	.000 .00	
. 9230	2.883	.005	.1	.6//E-	06	.0 20	61. 61.	8 16.58	1573	098+06	.000 .00	J4
. 9240	3.145	.005	1	.6//E-	06	.0 20	61. 61	8 10.16	1301	64E+06	.000 .00	J2
. 9255	3.53/	.005	3	.665E-	06	.0 20	61. ст	8 5.8/	1041	005+06	.000 .00	10
. 9265	3.799	.005	4	.649E-	06	.0 20	61.	8 5.68	1031	00E+06	.000 .00	00
. 9280	4.192	.004	6	.611E-	06	.0 20	61.	8 5.73	1031	03E+06	.000 .00	00
. 9290	4.454	.004	7	.579E-	06	.0 20	61.	8 5.96	1051	11E+06	.000 .00	00
.9300	4.716	.003	7	.543E-	06	.0 20	61.	8 6.32	1071	21E+06	.000 .00	00
.9315	5.108	.002	7	.487E-	06	.0 20	61.	8 7.02	1121	41E+06	.000 .00	00
. 9325	5.370	.001	6	.454E-	06 -	.2 20	61.	8 12.23	1931	49E+07	.022 .0	00
.9340	5.763	.000	4	.416E-	06 -	.2 20	61.	8 76.49	2923	43E+07	.000 .00	00
.9350	6.024	.000	1	.404E-	06 -	.1 20	61.	8 79.78	2973	57E+07	.000 .00	00
G= .14	 46E-02	DVN=	.22	 9E+02	IC= 3	 ;						
GGP	ROII	TII		 РВХ	 мі	TI		PI	vi	тс	 Qн	TCD
.197E-02	2 102.5	4 263	.6 33	25301.	.0074	271	.7	3352875.	.791E-0	5 293.0	0.0000	293.0
.120E-02	2 102.8	0 264	.1 33	33533.	.0074	271	.7	3350366.	.791E-0	5 293.0	0.0000	293.0
.177E-02	2 102.6	6 263	.9 33	23702.	.0074	271	.7	3348603.	.790E-0	5 293.0	0.0000	293.0
.125E-02	2 102.5	2 263	.8 33	27851.	.0074	271	. 6	3345401.	.790E-0	5 293.0	0.0000	293.0
.679E-0	3 102.6	5 264	.1 33	34680.	.0074	271	. 6	3344243.	.790E-0	5 293.0	0.0000	293.0

.373E-03 102.71 264.2 3338363. .0074 271.6 3343621. .790E-05 293.00 .0000 293.0 .153E-03 102.76 264.3 3341021. .0074 271.6 3343178. .790E-05 293.00 .0000 293.0

	.830E-04	102.	78 264	.3 33	41867.	.0074 2	71.6	3343038.	.790E-0	05 293.0	000.000	293.0
	.348E-04	102.	79 264	.4 33	42449.	.0074 2	71.6	3342939.	.790E-0	05 293.0	000.000	293.0
	.185E-04	102.	79 264	.4 33	42646.	.0074 2	71.6	3342907.	.790E-	05 293.0	000.000	293.0
	.906E-05	5 102.	79 264	.4 33	42747.	.0074 2	71.6	3342875.	.790E-0	05 293.0	000.000	293.0
	.301E-05	5 102.	80 264	.4 33	42830.	.0074 2	71.6	3342872.	.790E-0	05 293.0	000.000	293.0
	.204E-05	5 102.	80 264	.4 33	42843.	.0074 2	71.6	3342872.	.790E-0	05 293.0	000.000	293.0
	.113E-05	5 102.	80 264	.4 33	42856.	.0074 2	71.6	3342872.	.790E-0	05 293.0	000.000	293.0
	.113E-05	5 102.	80 264	.4 33	42856.	.0074 2	71.6	3342872.	.790E-0	05 293.0	000.000	293.0
	.113E-05	5 102.	80 264	.4 33	42856.	.0074 2	71.6	3342872.	.790E-0	05 293.0	000.000	293.0
	.113E-05	5 102.	80 264	.4 33	42856.	.0074 2	71.6	3342872.	.790E-0	05 293.0	000.000	293.0
	.548E-02	2 102.	53 263	.9 32	63429.	.0074 2	71.6	3340813.	.789E-0	05 293.0	000.000	293.0
	.662E-02	2 100.	37 260	.8 32	32051.	.0074 2	71.4	3326589.	.787E-0	05 293.0	000.000	293.0
	.367E-02	2 101.	03 262	.2 32	67882.	.0074 2	71.4	3320472.	.786E-0	05 293.0	00.000	293.0
-	 יי	 דיז	 v	 v	 W	 MD		RO	 ጥጥ	 D	C1	
_			л 	• 								
	.9840	.004	.000	.1	.403E-06	5.1	261.	8 79.27	297:	349E+07	.000 .	000
	. 9855	. 397	.000	.5	.426E-06	5.3	261.	8 76.62	294:	333E+07	.002 .	000
	.9865	.659	.001	. 6	.453E-06	5.4	261.	8 77.46	290:	331E+07	.003 .	000
	.9880	1.051	.002	.7	.505E-06	5.4	261.	8 76.64	283:	301E+07	.000 .	000
	.9890	1.313	.003	.7	.543E-06	5.4	261.	8 71.21	2752	273E+07	.000 .	000
	. 9900	1.575	.004	.7	.579E-06	5.3	261.	8 66.50	268	250E+07	000	000
	.9915	1 0 0 0							200			
		1.968	.004	.5	.625E-06	5.2	261.	8 60.96	2602	212E+07	.000 .	006
	.9925	2.229	.004 .005	.5 .4	.625E-00	5.2 5.1	261. 261.	8 60.96 8 49.36	260: 240:	212E+07 140E+07	.000 .	006 010
	.9925 .9940	1.968 2.229 2.622	.004 .005 .005	.5 .4 .2	.625E-00 .648E-00 .670E-00	5.2 5.1 5.0	261. 261. 261.	8 60.96 8 49.36 8 26.36	260: 240: 189!	212E+07 140E+07 591E+06	.000 . .000 . .000 .	006 010 007
	. 9925 . 9940 . 9950	1.968 2.229 2.622 2.884	.004 .005 .005 .005	.5 .4 .2 .1	.625E-00 .648E-00 .670E-00 .677E-00	5 .2 5 .1 5 .0 5 .0	261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03	260 240 189 157	212E+07 140E+07 591E+06 302E+06	.000 . .000 . .000 .	006 010 007 004
	.9925 .9940 .9950 .9960	2.229 2.622 2.884 3.146	.004 .005 .005 .005 .005	.5 .4 .2 .1 1	.625E-00 .648E-00 .670E-00 .677E-00 .678E-00	5 .2 5 .1 5 .0 5 .0 5 .0	261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83	260 240 189 157 129	212E+07 140E+07 591E+06 302E+06 166E+06	.000 . .000 . .000 . .000 .	006 010 007 004 003
	.9925 .9940 .9950 .9960 .9975	2.229 2.622 2.884 3.146 3.538	.004 .005 .005 .005 .005 .005	.5 .4 .2 .1 1 3	.625E-00 .648E-00 .670E-00 .677E-00 .678E-00	5 .2 5 .1 5 .0 5 .0 5 .0 5 .0	261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77	260 240 189 157 129 104	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06	.000 . .000 . .000 . .000 . .000 .	006 010 007 004 003 000
	.9925 .9940 .9950 .9960 .9975 .9985	1.968 2.229 2.622 2.884 3.146 3.538 3.800	.004 .005 .005 .005 .005 .005 .005	.5 .4 .2 .1 1 3 4	.625E-00 .648E-00 .670E-00 .677E-00 .678E-00 .665E-00 .648E-00	5 .2 5 .1 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0	261. 261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77 8 5.64	260 240 189 157 129 104 103	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 100E+06	.000 . .000 . .000 . .000 . .000 . .000 .	006 010 007 004 003 000
	.9925 .9940 .9950 .9960 .9975 .9985 1.0000	1.968 2.229 2.622 2.884 3.146 3.538 3.800 4.193	.004 .005 .005 .005 .005 .005 .005 .004	.5 .4 .2 .1 1 3 4	.625E-00 .648E-00 .670E-00 .677E-00 .678E-00 .665E-00 .648E-00 .611E-00	5 .2 5 .1 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0	261. 261. 261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77 8 5.64 8 5.69	260 240 189 157 129 104 103	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 100E+06 103E+06	.000 . .000 . .000 . .000 . .000 . .000 . .000 .	006 010 007 004 003 000 000 000
	.9925 .9940 .9950 .9960 .9975 .9985 1.0000 1.0010	1.968 2.229 2.622 2.884 3.146 3.538 3.800 4.193 4.455	.004 .005 .005 .005 .005 .005 .005 .004	.5 .4 .2 .1 1 3 4 6 7	.625E-00 .648E-00 .670E-00 .677E-00 .678E-00 .665E-00 .648E-00 .611E-00 .579E-00	5 .2 5 .1 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0	261. 261. 261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77 8 5.64 8 5.91	260 240 189 157 129 104 103 103	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 100E+06 103E+06 111E+06	.000 . .000 . .000 . .000 . .000 . .000 . .000 . .000 .	006 010 007 004 003 000 000 000 000
	.9925 .9940 .9950 .9960 .9975 .9985 1.0000 1.0010 1.0020	1.968 2.229 2.622 2.884 3.146 3.538 3.800 4.193 4.455 4.716	.004 .005 .005 .005 .005 .005 .005 .004 .004	.5 .4 .2 .1 1 3 4 6 7 7	.625E-00 .648E-00 .670E-00 .677E-00 .678E-00 .665E-00 .648E-00 .611E-00 .579E-00 .543E-00	5 .2 5 .1 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0	261. 261. 261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77 8 5.64 8 5.91 8 6.28	260 240 189 157 129 104 103 105 108	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 100E+06 103E+06 111E+06 121E+06	.000 . .000 . .000 . .000 . .000 . .000 . .000 . .000 . .000 .	006 010 007 004 003 000 000 000 000
	.9925 .9940 .9950 .9960 .9975 .9985 1.0000 1.0010 1.0020 1.0035	1.968 2.229 2.622 2.884 3.146 3.538 3.800 4.193 4.455 4.716 5.109	.004 .005 .005 .005 .005 .005 .005 .004 .004	.5 .4 .2 .1 1 3 4 6 7 7 7	.625E-06 .648E-06 .670E-06 .677E-06 .678E-06 .665E-06 .648E-06 .611E-06 .579E-06 .543E-06 .487E-06	5 .2 5 .1 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0 5 .0	261. 261. 261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77 8 5.64 8 5.91 8 6.28 8 6.97	260. 2 240. 2 189. 2 157. 2 104. 2 103. 2 103. 2 105. 2 108. 2 113. 2	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 103E+06 111E+06 121E+06 141E+06	.000 . .000 . .000 . .000 . .000 . .000 . .000 . .000 . .000 . .000 .	006 010 007 004 003 000 000 000 000 000 000 000 000 000 000 000 000
	.9925 .9940 .9950 .9960 .9975 .9985 1.0000 1.0010 1.0010 1.0020 1.0035 1.0045	1.968 2.229 2.622 2.884 3.146 3.538 3.800 4.193 4.455 4.716 5.109 5.371	.004 .005 .005 .005 .005 .005 .005 .005	.5 .4 .2 .1 1 3 4 6 7 7 7 7	.625E-06 .648E-06 .670E-06 .677E-06 .678E-06 .665E-06 .648E-06 .611E-06 .579E-06 .543E-06 .487E-06 .453E-06	5 .2 5 .1 5 .0 5	261. 261. 261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77 8 5.64 8 5.69 8 5.91 8 6.28 8 6.97 8 12.18	260. 2 240. 2 189. 2 157. 2 104. 2 103. 2 103. 2 105. 2 108. 2 103. 2 104. 2 103. 2 104. 2 103. 2 104. 2 103. 2 105. 2 108. 2 113. 2 193. 2	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 103E+06 111E+06 121E+06 141E+06	.000 . .000 .	006 010 007 004 003 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
	.9925 .9940 .9950 .9960 .9975 .9985 1.0000 1.0010 1.0020 1.0035 1.0045 1.0060	1.968 2.229 2.622 2.884 3.146 3.538 3.800 4.193 4.455 4.716 5.109 5.371 5.763	.004 .005 .005 .005 .005 .005 .005 .005	.5 .4 .2 .1 1 3 4 6 7 7 7 7 6 4	.625E-00 .648E-00 .670E-00 .677E-00 .678E-00 .665E-00 .648E-00 .648E-00 .579E-00 .543E-00 .487E-00 .453E-00 .416E-00	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	261. 261. 261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77 8 5.64 8 5.69 8 5.91 8 6.28 8 6.97 8 74.13	260. 2 240. 2 189. 2 157. 2 104. 2 103. 2 105. 2 108. 2 113. 2 290. 2	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 100E+06 103E+06 111E+06 121E+06 141E+06 148E+07 331E+07	.000 . .000 .	006 010 007 003 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
	.9925 .9940 .9950 .9960 .9975 .9985 1.0000 1.0010 1.0020 1.0035 1.0045 1.0060 1.0070	1.968 2.229 2.622 2.884 3.146 3.538 3.800 4.193 4.455 4.716 5.109 5.371 5.763 6.025	.004 .005 .005 .005 .005 .005 .005 .004 .004	.5 .4 .2 .1 1 3 4 6 7 7 7 7 6 4 1	.625E-06 .648E-06 .670E-06 .677E-06 .678E-06 .665E-06 .648E-06 .648E-06 .579E-06 .543E-06 .487E-06 .453E-06 .416E-06	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	261. 261. 261. 261. 261. 261. 261. 261.	8 60.96 8 49.36 8 26.36 8 16.03 8 9.83 8 5.77 8 5.64 8 5.91 8 6.28 8 6.97 8 12.18 8 74.13 8 77.31	260. 2 240. 2 189. 2 157. 2 104. 2 103. 2 105. 2 108. 2 103. 2 <td< td=""><td>212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 100E+06 103E+06 111E+06 121E+06 141E+06 141E+07 331E+07 331E+07</td><td>.000 . .000 . .021 . .000 . .000 .</td><td>006 010 007 004 003 000 </td></td<>	212E+07 140E+07 591E+06 302E+06 166E+06 100E+06 100E+06 103E+06 111E+06 121E+06 141E+06 141E+07 331E+07 331E+07	.000 . .000 . .021 . .000 . .000 .	006 010 007 004 003 000

G= .141E-02 DVN= .221E+02 IC= 3

Научное издание

Елагин Михаил Юрьевич

Термодинамика открытых систем (Практическое применение)

Авторское редактирование

Изд. лиц. ЛР №020300 от 12.02.97. Подписано в печать Формат бумаги 60×84 1/16. Бумага офсетная. Усл. печ. л. Уч.-изд. л. . Тираж экз. Заказ №

Тульский государственный университет. 300600, г. Тула, просп. Ленина, 92.

Отпечатано в издательстве Тульского государственного университета 300600, г. Тула, ул. Болдина, 151.